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Abstract

Variable Annuities represent a major part of the present annuity market. Two main
types of Variable Annuities guarantees can be distinguished: the guarantees in case of
death (GMDB) and the guarantees in case of survival (GMAB, GMIB, GMWB and
GLWB). In the French market the guarantee in case of death is known by the name
of “garantie plancher” and is well developed. On the contrary, the guaranties in case
of survival are less developed. In particular, the withdrawal guarantees (GMWB and
GMLB) have just appeared in France.

The present report presents different analytical approaches to value and hedge the
Variable Annuities’ guarantees. A keen attention will be given to the GMWB guar-
antee. We will introduce a new valuation approach for GMWB inspired on previous
approaches. We will profit from this approach to study the capital requirement related
to this product. The report is composed of three parts:

• First, each GMxB guarantee will be described with some of its variants. The
market of Variable Annuities will be introduced throughout some figures, followed
by the analysis of this products market.

• Later, we will consider the GMDB, GMAB and GMIB guarantees. We will
present some basic results for each of these guarantees, illustrated by numerical
examples. We will not pursue to expose these guaranties in a profound manner.

• At last we will consider the case of no surrender, of optimal partial surrender and
of optimal total surrender of GMWBs. We will also dedicate a Chapter to give
some ideas on the valuation of the GLWBs.

In the total surrender GMWB Chapter we will present a new approach to the GMWB
guarantees which is very adequate to this product. This approach will allow us to
study the withdrawal behavior of the policyholders. It should be noted that GMWB
products are particularly sensible to policyholder behavior. Once our main GMWB
framework is presented we will profit from it to study the impact of interest rate, eq-
uity, mortality and longevity risk. In order to do so we will follow a QIS4 standard
methodology approach. The results will provide us with a keen insight of this guarantee.

Keywords Variable Annuities, GMWB, Optimal Surrender.
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Résumé

Aujourd’hui, les contrats “Variable Annuities” représentent une part très importante
du marché des rentes. Il s’agit de produits en unités de compte combinés avec des
garanties optionnelles. On distingue les garanties en cas de décès (GMDB) et les
garanties en cas de vie (GMAB, GMIB, GMWB et GLWB). La garantie GMDB, con-
nue également sous l’appellation “garantie plancher”, est bien développée sur le marché
Français. En revanche, les garanties en cas de vie le sont moins. En particulier, les
garanties de retrait (GMWB et GLWB) sont apparues récemment en France.

Dans ce mémoire, les approches analytiques de valorisation et de couverture des “Vari-
ables Annuities” seront présentées. GMWB fera l’objet d’une attention spéciale. On
développera alors une stratégie de valorisation de cette garantie en s’inspirant des
méthodes existantes. Grâce à cette stratégie, on étudiera le besoin en capital lié à ce
produit. Le mémoire se décomposera en trois parties:

• Tout d’abord, chaque garantie GMxB sera décrite ainsi que quelques unes de leurs
variantes. On exposera certains montants de vente et d’encours mais également
des critiques sur ce marché.

• Ensuite, les modèles des garanties GMDB, GMAB et GMIB seront traités. Quelques
résultats de base pour chacune de ces garanties seront démontrés et on les illus-
trera par des exemples numériques. Toutefois, on n’exposera pas de manière
exhaustive ces garanties.

• Enfin, on considérera, dans une dernière partie, les effets de l’absence de rachat, le
cas du rachat partiel optimal et du rachat total optimal en GMWBs. On dédiera
un chapitre à la valorisation de GLWBs.

Dans le chapitre sur le rachat total optimal des garanties GMWB, on adoptera une
nouvelle stratégie de valorisation en adéquation avec le produit. On étudiera le com-
portement de l’assuré puisque la garantie GMWB y est sensible. Grâce à cette stratégie
de valorisation, on analysera l’impact des changements de taux d’intérêt, du cours des
actions, de la mortalité et de la longévité. On suivra alors la méthodologie standard
du QIS4 nous offrant ainsi une meilleure connaissance de la garantie.

Mots clés Variable Annuities, Unités de Compte, GMWB, Rachat optimal.
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.1.5 An itô’s lemma application . . . . . . . . . . . . . . . . . . . . . 95

.1.6 Feynman-Kac theorem . . . . . . . . . . . . . . . . . . . . . . . 96
.2 Stochastic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

.2.1 The control process . . . . . . . . . . . . . . . . . . . . . . . . . 97

.2.2 The stochastic controlled process . . . . . . . . . . . . . . . . . 97

.2.3 The value function . . . . . . . . . . . . . . . . . . . . . . . . . 98

.2.4 Sufficient conditions . . . . . . . . . . . . . . . . . . . . . . . . 98

.2.5 The principle of dynamic programming . . . . . . . . . . . . . . 100

.2.6 The Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . 100
.3 Vasicek’s Interest Rate Model . . . . . . . . . . . . . . . . . . . . . . . 101
.4 Central moments for Asian options bounds calculations . . . . . . . . . 104
.5 On the Inversion of a tridiagonal matrix . . . . . . . . . . . . . . . . . 107
.6 Derivation of a closed form formula for V0(A, t) . . . . . . . . . . . . . 110



Part I

Introduction

1



Chapter 1

General Introduction

Variable Annuities were in blossom in the world market, until the beginning of the
present financial crisis. Representing 71, 5% of the US annuity’s 2007 annuity sales,
variable annuities have become of great interest to the rest of the world. However,
the present financial crisis has reduced the policyholders’ interest in investing in a
volatile market, as stocks become less profitable policyholders restrain themselves from
investing in risky assets. In fact the total Variable Annuity sales for the fourth quarter
2008 reduced in 30.3% in comparison to the sales for the same period 2007 1. The crisis
has also impacted the insurers that sold these products. Variable Annuities portfolios
lost their value due to the crisis but the insurers that had well hedged their portfolios
did not suffer considerable losses 2. This highlights the importance of a product well
designed and hedged. However, the interest in variable annuities is still quite vivid in
France; most insurers are waiting for the crisis to be over to introduce new annuity
products that include these interesting features.

1.1 Why Variable Annuities?

Pension systems around the world are nowadays facing two great challenges. First, the
mortality rate has reduced and continues to reduce day by day, which clearly means
that a greater monetary provision should be set in order to provide a reasonable pen-
sion for life. In fact, even though people are living longer, health is non-granted; many
will be confronted with high medical and long-term care costs. Second, the baby-boom,
post-war generation, is arriving to the retirement age. This implies a greater rate be-
tween the retired population and the total population which might imply that pension
systems based in distribution will become short of capital.

Baby-boomers and later generations are faced with the challenge of ensuring an eco-

1NAVA Reports Fourth Quarter 2008, Variable Annuity Industry Data
2Milliman, Press Release December the 1st 2008.
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CHAPTER 1. GENERAL INTRODUCTION 3

nomically stable retirement. Personal savings should be well allocated and to do so
a wide range of options can be found in the market. These options vary from a very
conservative traditional annuity which guarantees a low rate and where no risk is taken,
to a risky mutual fund that might be very profitable but can also leave the costumer
short in savings. A reasonable mid-point in this spectrum of products are the Variable
Annuities. These annuities provide the costumer the opportunity to gain in good mar-
ket conditions with the guarantee that if the market crashes the costumer savings will
not be diminished. A product with such attractive features sells well but is naturally
complex. This complexity makes it difficult to value and to manage.

1.2 The present report

The present report introduces the reader to the Variable Annuities’ realm; a particular
attention will be given to the GMWB guarantee, which is up today the most promising
annuity feature. Our approach will be to explore the closed-formulas related to this
subject. Insurers’ portfolios are in many cases quite complex. To model this complexity
it normally best adjusted to use a Monte Carlo approach. From this point of view to
work on closed-formula seems only as an academic game but at least the following
four reasons should be considered by the practitioner to consider the closed-formula
approach

1. In most of the Variable Annuities guarantees the closed-formula can be incorpo-
rated inside of a Monte Carlo general portfolio simulation.

2. When an optimization is implicit in the procedure, this optimization can become
extremely difficult or impossible to implement in Monte Carlo. Such is the case
of the optimal surrender behavior of the policyholder. Closed-formulas can be
made in order to deal with this particular issue.

3. Closed-formula models can help to improve the product design. Even though
policyholder behavior is not always optimal the insurer should not be too much
exposed to a change in the policyholder behavior. Closed-formulas permit to
explore different product designs so that the insurer can protect himself from
policyholder behavior.

4. Closed-formula models can help to measure the impact on model assumptions.
Mortality tables are presented in an annual step. Many times a finer step is
needed; the interpolation strategy and the size of the step assumptions can impact
the value of the product. Closed-formula models can help to establish the size of
this impact. We will explore this particular issue on the GMDB Section.

The remaining of this report will be presented in the following manner. We will be-
gin with the basic definitions; the different GMxB will be exposed with the help of
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generalized examples. Next the market conditions will be presented; the use of figures
will allow us to understand the product’s impact in today’s market. We will also ex-
pose some analysts’ positions to try to understand the GMxB phenomenon. Latter we
will enter into the main subject of this report’s interest: valuation and management
of Variable Annuities. The basic valuation mathematical techniques will be presented
and illustrated with computational applications; a keen attention will be placed on the
GMWB guarantee.

A very brief introduction to stochastic calculus and the presentation of the stochastic
control, required to develop the GMWB guarantee, will be placed in the appendix.
Proofs to different lemmas and theorems that go beyond the subject of variable annu-
ities will be also placed in the appendix.

In order to approach the valuation and managing of Variable Annuities two perspectives
can be followed: a closed-form (analytical) perspective and a Monte Carlo (simulation)
perspective. In this report we will work from an analytical point of view. In some cases
we will find that the results should be approached with a numerical strategy. For a
general simulation approach please consult: Hardy [20], Bauer, Kling and Russ [3] and
Sun [43]. A simulation approach for the GLWBs can be found in Holz, Kling and Russ
[24]. For a binomial tree approach you can consult Ho, Lee and Choi [22] and Ho and
Mudavanhu [23].

1.3 The Surrender Conundrum

Surrender behavior is one of the most complex elements in the actuarial analysis. This
is particularly relevant for the Variable Annuity products. In fact the complexity of
the surrender behavior relays on its almost psychological character. The goal of a pol-
icyholder when she buys a retirement product is to have a secure source of income and
if possible she would prefer it to give her a good return. If the market moves and the
product becomes not interesting she might surrender her contract, however she is not
a trader and will most probably not follow the day-to-day stock market in order to
calculate the optimal amount and moment to surrender her policy. In this report we
do not suppose that all real life policyholders follow an optimal behavior but a word of
caution is given to the insurers about this subject: there is no guarantee that present
policyholder behavior will be maintained in the years to come.

Policyholders can and most probably will become more aware of trading opportunities
on their insurance products. There exists nowadays consulting firms that advice poli-
cyholders when and how to surrender in order to gain from their insurances. Insurers
must be aware of this and reduce the risk that they are taking when a product is sold.
This risk can be measured as contained inside the range of possibilities between the
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passive policyholder behavior and an optimal one. As this range is reduced the insurer
will know that he is less sensible to policyholder’s changes in surrender behavior. It is
inside this logic that the insurer should calculate the limits of this range. The insurer
should be aware of his exposition to this variable.

In this report we will present methods to calculate the extreme values of this range. We
will study some design elements that allow the insurer to reduce this interval. Simple
changes in the product design are enough to reduce this interval. Zhuliang Chen asserts
that GMWBs can become the next subprime [12] we consider that this should not be
the case, but only if insurers adjust their products to reduce this risk.



Chapter 2

Definition

Variable Annuities are contracts in which in exchange of an initial lump sum the pol-
icyholder receives an annuity or a lump sum in a specific date or dates in the future.
The value of the future payments depends on the performance of a mutual fund or
financial index. This value is protected by a guarantee. Different types of guarantees
can be found in the market; in the following paragraphs we will present these guaran-
tees in detail. Variable Annuities are an insurance product and as such usually have
tax advantages that are not present in common Mutual Funds.

An important feature of these products is that they represent a mid-point between a
strong expected performance without taking great risks. They are a mid-point between
mutual funds which have a high expected performance, but with high risk and fixed
annuities that have almost non-risk but their expected performance is not as high.

When we speak of Variable Annuities the main interest are the guarantees enclosed
to these annuities. The usual American notation to these guarantees is in the form of
GMxB: GMDB, GMAB, GMIB, GMWB and GLWB. Where these letters stand for:

6



CHAPTER 2. DEFINITION 7

• Guaranteed Minimal Death Benefit

• Guaranteed Minimal Accumulation Benefit

• Guaranteed Minimal Income Benefit

• Guaranteed Minimal Withdrawal Benefit

• Guaranteed Lifetime Withdrawal Benefit

Even though the GMxB notation is developed in the United States, similar products
under other names can be found in other countries. In France for example the following
products can be quoted:

• Contrat en unité de comptes avec garanties plancher

• Contrats avec option de conversion en rentes

• “Opération à fenêtre” avec capital garanti au terme

In Canada there are the Segregated Funds which are very similar to the American
variable annuities [19] but are focused on a renewal guarantee [40][46]. That is, the
policyholder has the right on certain dates to renew her policy keeping her initial condi-
tions. This kind of guarantee is hard to manage and is well developed on the Canadian
market.

In the British market the Unit-Liked products that had guarantees on the interest rate
had a great success during the 1970s and 1980s when the long term interest rates where
high but the lack of management techniques combined with a drop of interest rates
diminished the product impetus [5].

There is a great range of possible guarantees related to variable annuities. Not only
there are variations from country to country, but also from company to company. Even
more, simple guarantees can be mixed over in order to produce more complex ones. In
order to keep the trace of variable annuities theory we will restrict this report to the
classical GMxB in their typical presentation.

2.1 Guaranteed Minimal Death Benefit (GMDB)

GMDB is the most ancient and well known of the variable annuities guarantees. It
was introduced to the insurance market in 1980. Known in the French market as the
”garantie plancher”, GMDB guarantees the maximum between the mutual fund value
and a pre-established lump sum in case of death. Consider the following graph:
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At an initial time t0 the policyholder pays a lump sum S0, 100 Euros in our example.
This sum is put into a mutual fund which is random as the financial market. The mutual
fund value is represented by the skyline blue line. A minimum benefit is guaranteed,
this value normally corresponds to the initial lump sum paid: S0 and is represented by
the horizontal red line. At t1 the benefit minimum value is greater than the mutual
fund value and therefore if the policyholder dies at t1 then the benefit guaranteed is
paid to the beneficiary. At t2 the mutual fund has achieved a level superior to that of
the benefit and in case of death of the policyholder the mutual fund value is paid to
the beneficiary. On mathematical terms

Sum Paid = max(ST , S0),

where T corresponds to the moment of death, S0 to the premium (or mutual fund value
at moment 0) and ST the mutual fund value at the moment of death.
The guaranteed as has just been presented is called the prime return. There are
three other variations to this guarantee:

1. The Rising floor (or roll-up): in this case the minimum benefit is capitalized
with a given interest rate. That is, it increases in a guaranteed rate determined
in the contract. In our example this will correspond to the case in which the
horizontal red line is not horizontal anymore and has a slight exponential increase.
That is,

Sum Paid = max(ST , egT S0),

where g is the guaranteed interest rate and T the moment of death. Observe that
g is a rate stated in the contract and is less than r the risk-free rate.

2. Look-back (or rachet1): a series of dates are set to redefine the minimum benefit
value. Normally this is done during the contracts anniversaries. To redefine the
benefit value the maximum value between the actual benefit value and the actual
mutual fund value is taken. In our example this will correspond into turning the

1The word “rachet” is taken from the French. It corresponds to a mechanism with a wheel with
inclined teeth such that once turned, it cannot go back.
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horizontal red line into an upward step function that jumps on anniversary dates
when the mutual fund is over the benefit value. Therefore

Sum Paid = max(ST , St1 , St2 , ..., Stn),

where t1, .., tn are the dates set to redefine the minimum benefit value prior to T
the moment of death.

3. A rising floor with look-back. That is

Sum Paid = max(ST , eg(T−t1)St1 , e
g(T−t2)St2 , ..., e

g(T−tn)Stn).

The calculation of this product’s value and Greeks is not complex and will be presented
further on in this report.

2.2 Guaranteed Minimal Accumulation Benefit

(GMAB)

The Minimal Accumulation Benefit is the “in case of life” version of the GMDB. That
is

Sum Paid = max(ST , S0)

but in the accumulation benefit T corresponds to a fixed date in the future, that is, the
maturity of the accumulation phase. Observe that the guarantee can be exercised if
the policyholder is alive at time T while the guarantee of the GMDB can be exercised
at the moment of death. Once the accumulation phase has finished contracts normally
become an annuity, this means that the annuity base is guaranteed by this benefit. A
roll up version of this guarantee is possible

Sum Paid = max(ST , egT S0).

2.3 Guaranteed Minimal Income Benefit (GMIB)

The GMIB appeared in the market in 1996. In this guarantee the policyholder is given
the option to retrieve the Mutual Fund value or to receive an annuity with pre-specified
characteristics. This option can be executed on a given day or during a given period.
This given day corresponds usually to a contract’s anniversary (for example the 10th
contact anniversary) or the arrival of the policyholder to a certain age (for example 70
years of age). From this day onwards the policyholder can convert her mutual fund to
a fixed annuity that has a minimum guaranteed sum. This product is more complex
than the previous two, it has the choice ingredient: the moment of conversion is floored
but can be taken any moment later. As well, the interest rate plays a central role in
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the interest to exercise the option and therefore it is necessary to have an interest rate
model.
This guarantee also provides an option of a roll-up guarantee, that is, the minimum
sum for the annuity can be increased according to an interest rate.

2.4 Guaranteed Minimal Withdrawal Benefit

(GMWB)

GMWBs and GLWB are the most recent and promising variable annuity guarantees.
GMWB where first sold in 2002 and GLWB in 2004. The mechanism is the following,
the policyholder pays a lump sum S0 at t0. She is entitled to withdraw a fixed amount
S0

N
every year for a number N of years. Usually around 15 years. At the end of the

contract she will receive the exceeding amount of the mutual fund if there is any.
In order to keep the information of the amount that can still be withdrawn and the
amount of mutual fund left after withdrawals, two accounts are defined:

1. Mutual Fund account (W )

2. Withdrawals account (A)

At t0 both accounts are set to S0. That is W0 = S0 and A0 = S0. Both accounts will
decrease the amount withdrawn: Wt = Wt−dt−Gt and At = At−dt−Gt where Gt is the
amount withdrawn at time t and t− dt represent the instant just before. But while At

will only vary by the withdrawal process, Wt will also vary with the mutual fund.
For clarity consider the following graph.

If at the end of the contract, after N years, the mutual fund account is superior to the
withdrawal account the policyholder can withdraw the mutual fund value.
The GMWB is well illustrated by the following two graphs:
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In the first graph the mutual fund performs better than the withdrawal account. At
the last year there is more mutual fund than withdrawal account and therefore the last
withdrawal corresponds to the value of the mutual fund.

In the second graph the mutual fund has a very poor performance and the mutual fund
account diminish before the last year. In this case the guarantee takes place and the
policyholder receives what is left in the withdrawal account.
Up to this point this guarantee seems no to be very different from a fixed annuity with
a very particular option at the last year, but an important ingredient must be taken
into account: the policyholder might follow different withdrawal policies. In fact in a
normal GMWB the policyholder is entitled to withdrawal the amount she desires every
year up to S0

N
without penalization and up to the maximum between At and Wt with
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a penalization. This important feature gives the policyholder the ability to perform
better than just withdrawing a fixed amount every year. In financial mathematical
terms, this feature turns our problem into a stochastic optimization problem. The
mathematical instruments to do this kind of optimization and the solutions given to
this problem will take an important Part of this report.

In the model considerations of the GMWB two policyholder strategies will be taken
into account:

• Static strategy: The policyholder withdrawals S0

N
every year.

• Dynamic strategy: The policyholder withdrawals the exact amount that maxi-
mizes the value of her contract.

These strategies correspond to the strategies considered in the GMWB literature and
represent two extremes in the spectrum of possibilities.
An interest variation to the GMWB is to give the policyholder a 5% bonus for each year
no withdrawal is made. Another is to offer the policyholder to step-up her withdrawal
amount every certain number of years (3 in Metlife, 5 in Axa) if her mutual fund does
well.

2.5 Guaranteed Lifetime Withdrawal Benefit

(GLWB)

This guarantee is also kwon as the GMWB-for-life, that is, it consists of a GMWB that
do not have a year N when the guarantee finishes. The policyholder will have the right
to withdrawal a fixed amount G every year as long as she is alive. In such a guarantee
there is no withdrawal account, only a mutual fund that the policyholder can retrieve
if she surrenders her contract.

2.6 The relation between the GMxBs

The following graph represents the relation between the year the guarantee was released
and its level of complexity:
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It is clear that with the pass of time, the benefit’s complexity has enormously increased.



Chapter 3

The Variable Annuity Market

3.1 Some figures on Variable Annuities before the

present crisis

According to the NAVA (formerly the National Association for the Variable Annuities)
[36] the total annual sales of Variable Annuities in the United States of America in
2007 was of 182,2 billion dollars a new high record in the history of this product. In
2006 the total annual sales was of 157,3 billion dollars, a record up to that year. In the
following graph the amazing growth of Annuities products can be seen since 1988. In
1988 from the total of 48,9 billion dollars sold only 24,1% was due to variable annuities.
As the variable annuities became very popular the product arrived to similar levels to
that of fixed annuities in 1993 and from then on it has become the major product in
the annuity market. In 2007 variable annuities represented 71,5% of the US annuity
market.

14
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Even though 2001 and 2002 represent a decline in the product sales, the product has
now regain the 2000 levels and is blooming. Similar results can be inferred from the
following graph, which represents the annuities net assets.

Once again the product is in record values with 1485,2 billion dollars in assets, which
represents 73,9% of the US annuity market. The variable annuities have also had a re-
markable growth in the Asian market. Over the 40 life insurance companies established
in Japan more than 20 sell Variable Annuities. The guarantee with greatest success
is the GMAB which might be explained by the Asiatic low interest rates. Leading
Asiatic companies in this product are: Hartford, Sumitomo and ING. The following
graph represents the product’s growth in the Japanese market:

Presently the different types of variable annuities are entering the European market.
In the UK AEGON introduced a GMAB in 2006. In 2007 different Variable Annuities
entered the British market with Metlife, Hartford, AIG and Lincoln. In continental
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Europe in 2006 Axa introduced a GMIB product in Germany. In 2006 Generali also
introduced a Variable Annuity in Switzerland. In 2007 Axa launched a GMWB in
Italy, France and Spain.

3.2 Understanding the products market

Though a stochastic simulation research, Milevsky and Panyagometh (2001) compared
the performance of Variable Annuities with respect to Mutual Funds. These authors
found that the performance depended on the time to maturity of the annuity. Ac-
cording to these authors, although low-cost variable annuities are superior to low-cost
mutual funds for investors with a long time horizon, the critical threshold is at least
10 years for typical levels of risk aversion. And that for those more risk averse than
average, the break-even horizon is even larger.

According to Brown and Poterba (2004), there are at least three reasons for why in-
dividuals demand variable annuities. These reasons are not necessarily exclusive. The
first reason is to accumulate wealth at favourable after-tax rates of return. Variable
annuities are purchased in Part to avoid the tax burden on investments in traditional
taxable accounts. A second reason is that these products provide various forms of
insurance. That is, the policyholder has guarantees that protect her from the finan-
cial market’s risks. When the policyholder buys a Variable Annuity she pays some
basic points to insure that the market will not diminish her savings. The third reason
is that these products can become fix life annuities that give security for the retirement.

From the total amount of variable annuities sold in the US market in 2005, 82% had
GMDB guarantees, 75% had GMWB guarantees, 46% GMIB guarantees and 37%
GMAB guarantees. The fact that the sum of percentages is not 100% follows from
the fact that guarantees can be combined. In fact from the percentages is clear that
guarantees are usually combined.

From the figures just showed it is clear that today GMWB represents by far the most
sold living guarantee in the US. According to Ayers and Sholder (2006) ”the most
commonly-offered (and popular) GLB at this time is the guaranteed minimum with-
drawal benefit (GMWB). Based on stated company plans, versions of GMWBs will
continue to outpace the other GLB choices, and represent the focus of most product
enhancements that are currently under development. (...) Among the 15 executives
interviewed, at least 7 were launching, or planning to launch, a GMWB product with
”for life” component (...)”.

Even though they are very recent, GMWB for life have become very strong in the US
market. According to Herschler (2006) three key factors explain this:
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1. Simple and flexible vs. complex and rigid: GMWB and GMWB for life are easy
to understand and policyholder finds interesting to be able to surrender if she
has gain in the mutual fund. Lifetime annuitization is commonly perceived as
too inflexible.

2. Control loss aversion trumps bigger monthly checks: most of policyholders are
loss averse, this means that they weight more heavily the loss of value that the
gain of value. A guarantee that floors the losses but do not cap the winnings
goes well with this trend.

3. Investors’ dim view of pooling mortality risk: policyholders don’t like the idea
that if they die early their savings will be used to pay someone else’s annuities
as happens with fix annuities for life. In the GMWB for life if the policyholder
dies early, the mutual fund account value will be given to her beneficiaries.

This third point coincides with the 2007 Nava Consumer Survey, which found that
fewer than two out of ten old Americans would consider purchasing a product with
guaranteed payments for life, which do not continue to be paid after they die because
they would like to leave inherence onto their heirs.

3.3 Some figures on Variable Annuities during the

present crisis

The present financial crisis has impacted the whole of the financial market, where
variable annuities are not an exception. In what follows we will present the actual
impact on the US market as reported by the NAVA association. First we will observe
the chart of quarter net sales of variable annuities during the last two years. Please
notice that the previous sales graph was annually based while the following is quarterly.

Now let’s observe the evolution of the underlying assets during the same period.
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From these graphs it is quite clear that the Variable Annuity market, as the financial
market, has been strongly impacted by the present financial market.
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Chapter 4

GMDB valuation

The following Section is based on the arguments of Milevsky’s article on Titanic Op-
tions [32]. We will keep Milevsky’s parameters, that is we will work with a flat interest
rate curve.

We will consider the usual asset model

dSt = (rt − α)Stdt + σ(St, t)StdBt S0 = 1

where rt is the interest process, α is the insurance risk charge, σ(St, t) the asset’s
volatility and Bt a Brownian motion. Observe that it consists of a classical geometric
Brownian motion model. Define

Rt = e
R t

0 rsds

the value of a monetary unit at time t. In fact Rt could be seen the value of a money
market account and R−1

t as the discount factor.
The idea of the model is to find the value of α such that the insurer’s engagement is
equal to the policyholder’s engagement. Denote τ the stopping time that represents
either the moment T of death of the policyholder or a minimum min(T, K) between T
and K, where K is a moment when the contract expires. Let Ft denote the stochastic
discounted value of fees collected at time t and Vt the value of the GMDB guarantee
at time t. Therefore aim of the model is to find α such that

Ex[Fτ ] = Ex[Vτ ].

4.1 The policyholder’s engagement

Lets first consider the policyholder’s engagement Ft. By construction, we have

dFt = R−1
t αStdt.

20
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By chain rule we have that

d(R−1
t St) = −rtR

−1
t Stdt + R−1

t dSt

= −rtR
−1
t Stdt + R−1

t ((rt − α)Stdt + σ(St, t)StdBt)

= −R−1
t αStdt + R−1

t σ(St, t)StdBt

= −dFt + R−1
t σ(St, t)StdBt,

therefore

Fτ =

∫ τ

0

dFtdt

= −
∫ τ

0

d(R−1
t St) +

∫ τ

0

R−1
t σ(St, t)StdBt

= R−1
0 S0 − R−1

τ Sτ +

∫ τ

0

R−1
t σ(St, t)StdBt

= 1 − R−1
τ Sτ +

∫ τ

0

R−1
t σ(St, t)StdBt.

Which means that, if r and σ are constant

Ex[Fτ ] = 1 − Ex

[
e−rτSτ

]
+ Ex[Martingale]

= 1 − Ex

[
e−rτSτ

]

= 1 − Ex

[

e(−α− 1
2
σ2)τ+σBτ

]

= 1 − Ex

[

E
[

e(−α− 1
2
σ2)t+σBt

∣
∣
∣ τ = t

]]

= 1 − Ex

[
e−ατ

]
.

Observe that Ex [e−ατ ] is a Laplace transform of the random variable τ valued at α. We
now consider two examples of possible values of Ex[Fτ ] according to the distribution
of τ . For the first example we can let τ = T the moment of death of the policyholder
and consider that the mortality distribution is exponential. Therefore

Eλ[FT ] = 1 − λ

∫ ∞

0

e−(α+λ)tdt =
α

λ + α
.

A second example is when we consider τ = min(T, K) where K is the expiration of the
contract. Therefore

Ex[Fτ ] = 1 − Ex[e
−α min(T,K)]

= 1 − Ex[e
−αK1K<T ] − Ex[e

−αT1T<K ]

= 1 − e−αKPx[K < T ] −
∫ K

0

e−αtdFx(t)

= 1 − e−αK(1 − Fx(K)) −
∫ K

0

e−αtdFx(t),
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where Fx is the mortality cumulative distribution function. In the exponential distri-
bution case this turns out to be

Eλ[FT ] = 1 − e−(α+λ)K − λ

∫ K

0

e−(α+λ)tdt =
α

λ + α

(
1 − e−(α+λ)K)

)
.

4.2 The insurer’s engagement

Now let’s consider the insurer’s engagement Vt. This engagement depends on the
guarantee offered.

4.2.1 The Premium Return

First we will consider the premium return. In such a case the death payment is

max(ST , S0) = ST + max(S0 − ST , 0),

which clearly corresponds to the asset value at T plus a put option with strike S0. In
our model we take for simplicity S0 = 1. Therefore the guarantee is worth [39]:

Ex[VT ] = Ex[max(1 − ST , 0)] = Ex[E[max(1 − St, 0)|T = t]]

= Ex[Put(1, 1, T )] =

∫ ∞

0

Put(1, 1, t)dFx(t),

where P corresponds to the Black-Sholes/Merton price of a put option. That is,

Put(1, 1, t) = e−rtN (−d2

√
t) − e−αtN (−d1

√
t),

where N is the Gaussian normal cumulative distribution function, and

d1 =
r − α + 1

2
σ2

σ
d2 = d1 − σ.

4.2.2 The Rising Floor

Now, in the case of a rising floor GMDB the guarantee is worth

Ex[VT ] = Ex[max(egT − ST , 0)] = Ex[E[max(egT − St, 0)|T = t]]

= Ex[BSM(T, g|σ, r, α)] =

∫ ∞

0

BSM(t, g|σ, r, α)f(t)dt,

where BSM corresponds to the strike modified Black-Sholes/Merton price of a put
option. That is,

BSM(t, g|σ, r, α) = e(g−r)tN (−ξ2

√
t) − e−αtN (−ξ1

√
t),

where N is the gaussian normal cumulative distribution function, and,

ξ1 =
r − g − α + 1

2
σ2

σ
ξ2 = ξ1 − σ.



CHAPTER 4. GMDB VALUATION 23

4.2.3 The Look Back

Through a similar argument it can be shown that the look-back GMDB has an option
value of

Ex[VT ] =

∫ ∞

0

GSG(t|σ, r, α)f(t)dt,

where GSG is the Goldman, Sosin and Gatto look-back option valuation which is worth

GSG(t|σ, r, α) = e−rtN (−ξ2

√
t) − e−αtN (−ξ1

√
t) − η(e−rtN (ξ3

√
t) − e−αtN (ξ1

√
t)),

where,

η =
σ2

2(r − α)
ξ1 =

r − α + 1
2
σ2

σ
ξ2 = ξ1 − σ ξ3 = ξ1 −

2(r − α)

σ
.

4.2.4 The Exponential Mortality Example

Explicit closed formulas can be found for the exponential mortality. In order to do so
we will calculate the value of

∫ K

0

e−atN (−b
√

t)dt =

∫ K

0

e−at

∫ −b
√

t

−∞

1√
2π

e−
1
2
x2

dxdt

=

∫ K

0

e−at

∫ 0

−∞

1√
2π

e−
1
2
x2

dxdt +

∫ K

0

e−at

∫ −b
√

t

0

1√
2π

e−
1
2
x2

dxdt

=

∫ K

0

e−at 1

2
dt +

∫ −b
√

K

0

1√
2π

e−
1
2
x2

∫ K

(x
b
)2

e−atdtdx

=
1 − e−aK

2a
+

∫ −b
√

K

0

1√
2π

e−
1
2
x2

(

e−aK − e−a(x
b
)2

−a

)

dx

=
1 − e−aK

2a
− e−aK

a

∫ −b
√

K

0

1√
2π

e−
1
2
x2

dx +
1

a

∫ −b
√

K

0

1√
2π

e−
1
2
x2(1+ 2a

b2
)dx

=
1 − e−aK

2a
− e−aK

a

(

N
(

−b
√

K
)

− 1

2

)

+
1

a
√

1 + 2a
b2

(

N
(

−b
√

K
√

1 + 2a
b2

)

− 1

2

)

=
1

2a
− e−aK

a
N
(

−b
√

K
)

+
1

a
√

1 + 2a
b2

(

N
(

−b
√

K
√

1 + 2a
b2

)

− 1

2

)

.
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Therefore if K → ∞ and if a > 0 and b > 0 we have that
∫ ∞

0

e−atN (−b
√

t)dt =
1

2a
− 1

2a
√

1 + 2a
b2

=
1

2a

(

1 − b√
b2 + 2a

)

and if K → ∞ and if a > 0 and b < 0 we have that
∫ ∞

0

e−atN (−b
√

t)dt =
1

2a

(

1 +
b√

b2 + 2a

)

.

Let

MK(a, b) =
1

2a
− e−aK

a
N
(

−b
√

K
)

+
1

a
√

1 + 2a
b2

(

N
(

−b
√

K
√

1 + 2a
b2

)

− 1

2

)

.

Let’s do the calculations for the rising floor formula with exponential mortality using
the preceding lemma. For K < ∞ we have that

Eλ[V ] =

∫ K

0

BSM(t, g|σ, r, α)λe−λtdt

= λ

∫ K

0

e(g−r−λ)tN (−ξ2

√
t)dt − λ

∫ K

0

e−(α+λ)tN (−ξ1

√
t)dt

= λMK(r + λ − g, ξ2) − λMK(α + λ, ξ1),

where ξ1 =
r − g − α + 1

2
σ2

σ
and ξ2 = ξ1 − σ.

For K → ∞ we have that

Eλ[V ] =

∫ ∞

0

BSM(t, g|σ, r, α)λe−λtdt

= λ

∫ ∞

0

e(g−r−λ)tN (−ξ2

√
t)dt − λ

∫ ∞

0

e−(α+λ)tN (−ξ1

√
t)dt

=
λ

2(r − g + λ)

(

1 − ξ2
√

ξ2
2 + 2(r − g + λ)

)

− λ

2(α + λ)

(

1 − ξ1
√

ξ2
1 + 2(α + λ)

)

,

where ξ1 =
r − g − α + 1

2
σ2

σ
and ξ2 = ξ1 − σ.

Observe that for our demonstration to work well we require ξ1, ξ2, r + λ− g and α + λ
to be positive, which is often the case since r, λ, g, α and σ are positive and normally
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r > g + α + 1
2
σ2.

A very similar demonstration can be done for the look-back case, if K < ∞

Eλ[V ] =

∫ K

0

GSG(t|σ, r, α)λe−λtdt

=λ

∫ K

0

e−(r+λ)tN (−ξ2

√
t)dt − λ

∫ K

0

e−(α+λ)tN (−ξ1

√
t)dt

− ηλ

∫ K

0

e−(r+λ)tN (ξ3

√
t)dt + ηλ

∫ K

0

e−(α+λ)tN (ξ1

√
t)dt

=λMK(r + λ, ξ2) − λMK(α + λ, ξ1)

− ηλMK(r + λ,−ξ3) + ηλMK(α + λ,−ξ1),

and if K → ∞

Eλ[V ] =
λ

2(r + λ)

(

1 − ξ2
√

ξ2
2 + 2(r + λ)

)

− λ

2(α + λ)

(

1 − ξ1
√

ξ2
1 + 2(α + λ)

)

− ηλ

2(r + λ)

(

1 +
ξ3

√

ξ2
3 + 2(r + λ)

)

+
ηλ

2(α + λ)

(

1 +
ξ1

√

ξ2
1 + 2(α + λ)

)

,

where

η =
σ2

2(r − α)
ξ1 =

r − α + 1
2
σ2

σ
ξ2 = ξ1 − σ ξ3 = ξ1 −

2(r − α)

σ
.

Observe that we have supposed again that r > g + α + 1
2
σ2.

4.2.5 The Greeks

In mathematical finance the greeks correspond to the infinitesimal sensitivity of a price
with respect to one its variables. In mathematical terms these correspond to the first
and second derivatives of the price function. Observe that for the GMDB the price
function is always an integral of a known put option times the mortality density with
respect of the time variable. Explicit formulae are known for the greeks of these put
options, for explicit formulas see for example Hull [25]. If the derivate is done with
respect to a variable x different to t we have the following

∂

∂x
GMDB(x, t) =

∂

∂x

∫ ∞

0

Put(x, t)f(t)dt =

∫ ∞

0

∂

∂x
Put(x, t)f(t)dt

=

∫ ∞

0

Greekx(x, t)f(t)dt.
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Let’s consider a simple example to illustrate the idea, take the ∆ (derivate with respect
to the underlying asset) of a pure premium GMDB with exponential mortality, in such
a case we have

GMDBDelta =

∫ ∞

0

PutDelta(x, t)λe−λtdt =

∫ ∞

0

(N (d1

√
t) − 1)λe−λtdt

=

∫ ∞

0

e−λtN (d1

√
t)λdt − 1 =

1

2

(

1 − d1
√

d2
1 + 2λ

)

− 1

= −1

2

(

1 +
d1

√

d2
1 + 2λ

)

,

where d1 =
r − α + 1

2
σ2

σ
.

4.3 Numerical examples

Numerical examples are calculated using a mortality table by generation. Four age
where consideres: 30, 40, 50 and 60 years, such that the policiholder would have her
age in 2009. We considered a 15 year contract for each age.

In order to implement the GMDB analytical results two approches are possible: 1) Fit
the mortality curve with a continous parametrical model, or 2) discretizise the time
step and approach mortality from a discrete perspective. The first approach requires
that the model fits well the data which is not always the case. In fact a one parameter
model such as the exponential model fits poorly the data while two or thee parameter
models have a better fit but the time integral

E[V ] =

∫ K

0

Put(t)dt

has no longer a analitical expression and must be approched numerically [32]. The
second approach is straight forward to implement but a time step must be chosen to
be small enough not to distort the continous property of mortality. Normally this time
step is smaller than a year and mortality tables are yearly then an interpolation hy-
pothesis must be cosidered.

We implemented both approches. First using a least square method the mortality
curves where fitted by an exponential mortality. The squared errors where high and
this methodology showed not to be appropriate from the beggining; in particular the
exponential mortality fits poorly for high ages. The following table presents the lamb-
das fitted to a 15 year mortality curve interval for policyholders that had 30, 40, 50
and 60 years in 2009.
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Age in 2009 30 40 50 60
lambda 0,038% 0,093% 0,252% 0,642%
error 0,106% 0,389% 0,933% 3,358%

From this approach no information could be implied to the mortality table, insted
this approches results where very usefull to test the second approach. For the second
approach two time steps where cosidered: a year and a month. In order to interpolate
the mortality table to monthly steps we supposed the uniform distribution of mortality
during the months of a given year, that is

S12t+u = (1 − u
12

)S12t + u
12

S12(t+1),

where t ∈ IN and u ∈ {0, 1, ..., 11}.

In order to test the time discretization bias we fitted a λ for each age considered and
calculated the insurance risk charge for the exponential model. Then the second ap-
proach was applied using the mortality table constructed by the exponential model.
Since we used the implicit exponential model table, then the first approach results
corresponded exactly to the continous time values (for the exponential table) and we
could test the discretization of time in the second approach. That is, as the time step
becomes smaller the second approach converges to the first. The following tables rep-
resent the insutance risk charges for the exponental model and the discrete approach
models.



CHAPTER 4. GMDB VALUATION 28

Age in 2009 30
Guarantee Exponential year step (1/1) month step (1/12) week step (1/52)

model value relative value relative value relative
value (bp) (bp) error (bp) error (bp) error

Rising floor 0% 0,227 0,229 0,86% 0,227 0,17% 0,227 0,04%
1% 0,292 0,297 1,67% 0,293 0,22% 0,292 0,05%
2% 0,376 0,385 2,44% 0,377 0,26% 0,376 0,06%
3% 0,481 0,496 3,15% 0,482 0,31% 0,481 0,07%

Look-back 1,065 1,102 3,49% 1,068 0,33% 1,066 0,08%
Age in 2009 40

Guarantee Exponential year step (1/1) month step (1/12) week step (1/52)
model value relative value relative value relative

value (bp) (bp) error (bp) error (bp) error
Rising floor 0% 0,555 0,560 0,84% 0,556 0,16% 0,555 0,04%

1% 0,715 0,727 1,66% 0,717 0,21% 0,716 0,05%
2% 0,919 0,941 2,42% 0,921 0,26% 0,920 0,06%
3% 1,176 1,213 3,14% 1,180 0,31% 1,177 0,07%

Look-back 2,605 2,696 3,47% 2,614 0,33% 2,607 0,08%
Age in 2009 50

Guarantee Exponential year step (1/1) month step (1/12) week step (1/52)
model value relative value relative value relative

value (bp) (bp) error (bp) error (bp) error
Rising floor 0% 1,511 1,523 0,80% 1,513 0,16% 1,511 0,04%

1% 1,947 1,978 1,62% 1,951 0,21% 1,948 0,05%
2% 2,502 2,562 2,39% 2,509 0,26% 2,504 0,06%
3% 3,202 3,302 3,11% 3,212 0,31% 3,205 0,08%

Look-back 7,088 7,331 3,42% 7,112 0,33% 7,094 0,08%
Age in 2009 60

Guarantee Exponential year step (1/1) month step (1/12) week step (1/52)
model value relative value relative value relative

value (bp) (bp) error (bp) error (bp) error
Rising floor 0% 3,874 3,901 0,69% 3,880 0,16% 3,876 0,04%

1% 4,992 5,067 1,52% 5,002 0,21% 4,994 0,05%
2% 6,418 6,565 2,30% 6,435 0,26% 6,422 0,07%
3% 8,222 8,471 3,03% 8,247 0,31% 8,228 0,08%

Look-back 18,161 18,762 3,31% 18,220 0,33% 18,175 0,08%

As axpected, relative error decreases as the time step is smaller. This is natural, since
the discretemodel converges to the discrete model. A more interesting observation is
that the discrete model gives always a higher insurance risk value, this is because the
discretisation considers deaths to occur at the end of period while in the continous
model deaths happen through out all the period this implies that in the discrete model
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guarantees are payed later that in the continous model and since these guarantees
are put options and put options are more expensive at higher maturities, so guar-
anttes become more expensive. This means that discretisation of time over-values the
guarantees. This could be considered as a conservative mesure in the GMDB valuation.

It must also be obseved that relative error increases as the guaranted interest rate is
higher. This follows from the fact that the Put options value increases faster than lin-
ear with respect to guaranteed interest rate. In practical terms it means that a smaller
time step should be taken for higher guaranteed interest rates. Observe as well that
relative error is not very sensible to the age of the policyholder.

It is always difficult to define a relative error small enough to be accepted, in our con-
sideration the week step is a good enough approximation to the “real” value. Therefore
the next calculatons are done with a week-step.

In the next graph we represent the relation between the look-back and several roll-up
GMDB insurance risk charges. The graph was done with σ = 15% and r = 5% using
a week-step discretization and the “real” mortality table.

Observe that the charge is larges as the guaranteed interest rate is bigger. This follows
from the fact that if a better rate is guaranteed then the guarantee should cost more.
Another way to see this is that a Black-Sholz and Merton put option value increases if
the g interest rate is increased.

Observe as well that the look-back is more expensive than the roll-ups given in the
graph, this follows from the fact that the interest rate r taken is larger than each of the
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g guaranteed, which is usually the case. The look-back guarantees the in expectancy
the growth of the underlying and which in our case is r.



Chapter 5

GMAB valuation

By definition GMAB are guarantees that will take effect only if the policyholder is
alive after a certain date K. In such a case she is paid max(S0, SK) if is a premium
return guarantee or the max(S0e

gK , SK) if is a roll-up guarantee, if she dies before K
she will get ST where T is her moment of death.
For the policyholder’s engagement we will have the case τ = min(T, K) which as
demonstrated in the GMDB Section is

Ex[Fτ ] = 1 − e−αK(1 − Fx(K)) −
∫ K

0

e−αtfx(t)dt,

where fx is the mortality density and Fx its cumuative ditribution function.

5.1 The Premium return

In the premium return guarantee we have that the payment is

ST1T<K + max(S0, SK)1T≥K = Sτ + max(S0 − Sτ , 0)1T≥K .

Therefore the guarantee is

GMAB = Ex[max(S0 − SK , 0)1T≥K ] = Ex[Put(1, 1, K)1T≥K ]

=

∫ ∞

K

Put(1, 1, t)dt = Put(1, 1, K)Sx(K),

where Sx(K) is the probability that an individual which is has x years at t continues to
be alife at K and Put coorresponds to the Black-Sholes/Merton price of a put option.
That is

Put(1, 1, K) = e−rKN (−d2

√
K) − e−αKN (−d1

√
K),

where N is the gaussian normal cumulative distribution function, and

d1 =
r − α + 1

2
σ2

σ
d2 = d1 − σ.
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5.2 The Rising Floor

For the Rising floor with a similar argument we have that

GMAB = Ex[max(egK − SK , 0)1T>K ] =

∫ ∞

K

BSM(K, g|σ, r, α)f(t)dt

= BSM(K, g|σ, r, α)Sx(K),

where BSM coorresponds to the strike modified Black-Sholes/Merton price of a put
option. That is

BSM(K, g|σ, r, α) = e(g−r)KN (−ξ2

√
K) − e−αKN (−ξ1

√
K),

where N is the gaussian normal cumulative distribution function, and

ξ1 =
r − g − α + 1

2
σ2

σ
ξ2 = ξ1 − σ.

5.3 The Greeks

As with the GMDB guarantee, the greeks are usually easily valuated by:

∂

∂y
GMAB(y, t) =

∫ ∞

K

Greeky(y, K)f(t)dt

= Greeky(y, K)Sx(K),

where y is any of the variables of which the option value depends. That is, the un-
derlying value S, time to maturity T − t, volatility σ, market interest rate r or the
guaranteed interest rate g. It is usual olso to consider the second derivate with respet
to the underlying.

5.4 Numerical examples

In order to illustrate the values of the GMAB guarantee we considered policyholders
that had 30, 40, 50 and 60 years in 2009. We took σ to be 20% and r the market
interest rate to be 5%. A week-step approximation was used to calculate Ex[Fτ ] while
no approximation was required to calculate Ex[Vτ ] since the guarantee can only take
place in a precise time moment: K. The following graph was obtained:
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First of all observe that the guarantee charge α decreases as the policyholder becomes
older, this is because as she is older there is less probability that she will survive to the
end of the contract, in this case 15 years, and so that the guarantee will take place.
Notice that this trend is exactly the oposite to the GMDB guarantee which increases
which age, this is easily explained since GMDB is a “in case of death” guarantee while
the GMAB is a “in case of life” one.

Now observe that the as the guaranteed interest rate increases the charge value also
does. The reason is that the put option value increases as the guaranteed interest rate
does. We see that the look back option is more expensive than the rising-floor for
the guaranteed interest rates given, this is because the look back grows in a similar
speed as guaranteing the market interest rate, in our exemple the market interest rate
is 5% which is higher to the guaranteed interest rates used. This is very similar to the
GMWB guarantee logic.



Chapter 6

GMIB valuation

6.1 An asset composed of risk-free bonds

The Guaranteed Minimum Income Benefit guarantees minimal conditions to an annu-
ity if the policyholder desires to annuitise her contract. This benefit depends on the
asset’s performance as in the interest rate level at the time of conversion if there is
an interest rate guarantee. In order to reduce the complexity of the problem follow-
ing Milevsky and Promislow’s article [33] we will consider the asset to be composed
of bonds, and therefore the only risk to be the interest rate risk. According to these
authors “(...) this call option on annuity purchase factors can be viewed as the right,
but not the obligation, to purchase a fixed immediate life annuity, for a deterministic
strike price during the life of the contract. The company has essentially granted the
policyholder an option on two underlying stochastic variables; future interest rates and
future mortality rates”. As it follows from this sentence, mortality rates are considered
to be stochastic and play a predominant role in their model.

Denote rt the instantaneous interest rate and ht the hazard rate. We will suppose rt

to be independent of ht. Define
ξt = rt + ht

the hazard-plus-interest rate process. The following two paragraphs show the interest
of adding these two processes and the effect that this has on the model.

Consider on one hand the interest rate process. In absence of mortality the price of a
zero coupon bond at time t with maturity at T , corresponds to

Dt(T ) = EQ

[

e−
R T

t
rudu
∣
∣
∣Ft

]

,

where EQ[·] corresponds to the risk neutral expectation. Dt(T ) can be seen as well as
the discount factor and is the value seen from t of a monetary unit on T .
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On the other hand we have the mortality process. The probability of survival to time
T , conditional to being alive at time t, is

pt(T ) = E
[

e−
R T

t
hudu

∣
∣
∣Ft

]

.

From the preceding to formulas it is clear that rt plays in the stochastic process a very
similar role to ht in the mortality process.

Now consider a mortality contingent claim, that is a monetary claim that the policy-
holder can only make if she survives up to time T . The value of this claim seen from
time T , with t < T , corresponds to

Λt(T ) = Dt(T )pt(T )

= EQ

[

e−
R T

t
rudu
∣
∣
∣Ft

]

E
[

e−
R T

t
hudu

∣
∣
∣Ft

]

= EQ

[

e−
R T

t
ξudu
∣
∣
∣Ft

]

.

Note that the last equality uses the fact that the two processes are independent. Ob-
serve that a annuity set today corresponds to a set of mortality contingent claims.

Analogously to the forward price of a default-free zero-coupon bond, it can be defined
a Λt(s, T ) pure endowment bought at time s, seen from time t and with maturity at
T , with t < s < T . This corresponds to a mortality contingent claim that is bought in
the future. A future annuity would just be a set of pure endowments. Notice as well
that the value of a pure endowment

Λt(s, T ) = EQ

[

e−
R T

s
ξudu
∣
∣
∣Ft

]

=
Λt(T )

Λs(T )
.

The GMIB guarantee with an asset composed of risk-free bonds corresponds to a set
of call options on pure endowments. Let’s denote Ct(s, T, Λ) a call option on a pure
endowment Λt(s, T ) with strike value Λ. We have therefore that

Ct(s, T, Λ) = EQ

[

e−
R s

t
ξudu max(Λs(T ) − Λ, 0)

∣
∣
∣Ft

]

= EQ

[

e−
R s

t
ξudu max

(

EQ

[

e−
R T

s
ξudu
∣
∣
∣Fs

]

− Λ, 0
)∣
∣
∣Ft

]

.

In their article, Milevsky and Promislow, chose a CIR model for the interest rate and a
Mean Reverting Brownian Gompertz for the hazart rate. Even though CIR produces
well known closed-formed solutions, the Mean Reverting Brownian Gompertz process
does not and therefore they are forced to apply a Monte Carlo simulation to obtain
numerical examples.
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A CIR model is one of the most popular interest rate models and satisfies the following
stochastic differential equation

drt = κ(θ − rt)dt + σr

√
rtdBt.

It can be shown that
Dt(T ) = C1(t, T )e−rtC2(t,T ),

where

C1(t, T ) =

[
2γe(κ+γ)(T−t)/2

(γ + κ) (eγ(T−t) − 1) + 2γ

]2κθ/σ2
r

C2(t, T ) =
2
(
eγ(T−t) − 1

)

(γ + κ) (eγ(T−t) − 1) + 2γ

and γ =
√

κ2 + 2σ2
r .

The Mean reverting Brownian Gompertz is introduced on Milevsky and Promislow’s
[33] article. It consists on process that expected to grow exponentially, that has a
variance proportional to the value of the hazard rate, that will never hit zero and that
exhibits mean reversion. It has the following form

ht = h0e
gt+σYt with g, σ, h0 > 0 and dYt = −bYtdt + dBh

t with b > 0.

When b → 0 the expected hazard rate is equal to the standard Gompertz function. It
can be shown that

dht =
(
g + 1

2
σ2 + b ln(h0) + bgt + b ln(ht)

)
htdt + σhtdBh

t ,

which is very similar to the Black-Derman-Toy short rate model.

Unfortunately the Mean reverting Brownian Gompertz process does not have a closed-
formula solution and requires some kind of approximation. Numerical examples are
shown in Milevsky and Promislow’s article. To conclude it is easy to see that

GMIB =
∞∑

i=1

Ct(s, Ti, Λ),

where Ti are the dates the annuity is paid.



Part III

Valuation models of the GMWB
and GMLB Variable Annuities
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The Guaranteed Minimum Withdrawal Benefit (GMWB) is the most complex of the
GMxBs. Not only the basic payment structure is strongly related to Asian options, but
the guarantee value is very sensible to the policyholder’s behavior. That is, in order to
price this guarantee it is important to take into account the surrender behavior of the
policyholder.

A variation of this product is the GMLB, Guaranteed Minimum Withdrawal Benefit
for Life. It corresponds to the case where the guarantee is maintained for all the life
of the policyholder. This variation implies some important differences in the way to
model the product.

This GMWB/GLWB Part of the report will be divided in five Chapters. In Chapter 7
we will introduce the notations, assumptions and the general guidelines we will use for
the GMWB/GLWB model. On Chapter 8 we will present the valuation of the GMWB
in the case the policyholder restrains herself to withdraw on each period the contract
established amount. That is she does not do withdrawals with penalization. The
financial strategies used in this Section are those of the Asian Options. On Chapter 9
we will evaluate the GMWB in the case the policyholder optimizes her withdrawals. To
proceed to this evaluation we will require stochastic control instruments to model the
policyholders optimal behavior. On Chapter 10 we will consider a GMWB where the
policyholder either withdrawals the contract established amount or she makes a total
surrender of her contract. In such a case the only option she has is when to make the
total surrender, or not to make it. The financial instruments related to this contract
are the American Asian Options. At last, on Chapter 12 we will evaluate GLWB, in
order to do so we will use the strategies already developed in the GMWB Section and
will adapt them to the for Life case.



Chapter 7

Introduction to GMWB/GLWB

7.1 Financial Assumptions and Considerations

We will make the following assumptions on the financial market conditions:

• The financial market is complete.

• The financial market is free of arbitrage.

• There are no transaction costs.

• There is no restriction on short selling.

Since we are looking for an actuarial price, we will not consider acquisition or admin-
istration fees.

From a theoretical point of view it is usual to do some simplifying assumptions even
though these assumptions are not valid in the real world market. In particular there
exist market frictions such as transaction costs, taxes, bid-offer spread and liquidity.
It is also not possible to make transactions in a continuous manner in a real number
amount. Transactions are done in a discrete manner in amounts that are whole num-
bers. All these real world characteristics add risks into the products and therefore imply
an increase in the product’s value. We will not model them but some considerations
are due:

• The discrete nature of real world market should not be in itself an important
source of value change. In fact trading can be done several times a day, which for a
long maturity product such as Variable Annuity becomes almost an instantaneous
trading. As well, the huge asset value of Variable Annuities makes the discrete
nature of the amount not a problem in itself.

• Variable Annuity assets are usually ”blue chip” kind of assets which have high
trading quality and therefore they are normally very liquid.
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• Transaction costs and taxes on the contrary can increase the product’s value.
First because these are cost by themselves and second because transactions are
avoided to reduce costs and so hedging becomes more imperfect, this implies that
more risk is taken. Transaction costs can be easily modeled from a Monte-Carlo
point of view.

7.1.1 On liquidity risk

The previous considerations suppose a tranquil market. If the market stresses, liquidity
can become an issue. In fact, if the market agents become mistrustful of the market (or
at least of the assets that compose the Variable Annuity Unit Link) the trading of the
Variable Annuity’s assets can become difficult. This can be expressed in two manners:

• The Bid-Offer spread can expand. That is, the price for buying instantly becomes
considerably higher to the price of selling instantly. This means that the cost of
changing the hedge position or of selling the asset in order to pay withdrawals,
death outcomes, maturities and surrenders can become higher than expected.

• The selling or buying of certain assets becomes impossible. This is the extreme
case where no negotiation is done and it is not possible to change the position.
In such a case the asset manager can only expect for the liquidity to recover in
order to readjust his hedge or to sell to pay for outcomes. In practical terms
having a highly expanded Bid-Offer spread is almost equivalent to be in a not
selling or buying case.

Liquidity modeling can also be included in a Monte-Carlo framework. In order to
approach this risk a variable can be included to determine periods of non-trading.
Another way to approach liquidity model directly the Bid-Offer spread. This model
would require a trading rule that takes into account the cost obtained in the presence
of a large Bid-Offer spread.

7.2 Model Assumptions and Notation

We will make the following assumptions on the underlying reference portfolio process:

• There exists a risk neutral probability measure Q such that the asset price pro-
cesses are Q martingales.

• Under Q the asset follows a geometric Brownian motion:

dSt = rStdt + σStdBt

where r is the risk free interest rate, σ is a constant called the volatility and Bt

is a Q-Brownian motion.
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• In the case mortality is taken into account, mortality is independent of the finan-
cial risk.

Let Ft be the filtration generated by Bt, that is Ft = σ(Bu : 0 ≤ u ≤ t) for t ≥ t. For
notation simplicity we will denote EQ

t [·] for EQ[·|Ft]. The probability measure where
St is taken as a numeraire will be noted QS and so the corresponding expected value
will be noted EQS

t [·].

Let G be the amount established in the contract which is the limit before penalization.
In a GMWB contract G is defined as the lump sum premium ω0 divided by T the num-
ber of years of the guarantee. That is, if after T years the policyholder withdrawals
G each year, then the contracts maturity T she would have withdrawn her premium
w0. To observe some basic relations we will observe what happens when she does only
withdraws G each year.

Let Wt be the unit-link sub account. This sub account represents the amount of funds
asset that is in her account after withdrawals and insurance fee. Under the assumption
of constant withdrawals G, Wt follows a dynamic similar to the asset St except that
a insurance fee proportional to the Wt amount is charged and that the Wt amount is
reduced by the withdrawals G, that is:

{

dWt = (r − α)Wtdt − Gdt + σWtdBt

W0 = ω0

(7.1)

for Wt > 0. This stochastic process could become negative as the −Gdt element can
make dWt negative. This property, among others, shows that this process is far from
being a geometric Brownian motion. In fact, if Wt = 0 then the unit-linked account
is empty and it can no further change. Therefore if Wt = 0 then dWt = 0. Stated in
another manner, if Wt = 0 then for all s > t we have that Ws = 0.

7.3 The basics on the GMWB model

Lets first consider the case Wt > 0 for 0 ≤ t ≤ T . By using theorem .1.1 in the
appendix we have that

Wt = e(r−α−1
2

σ2)t+σBt

(

ω0 − G

∫ t

0

e−(r−α−1
2

σ2)s−σBsds

)

. (7.2)

Now, since e−(r−α−1
2

σ2)s−σBs > 0 then for each trajectory the random variable

t∫

0

e−(r−α−1
2

σ2)s−σBsds
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is increasing in t. Which means that once

e(r−α−1
2

σ2)t+σBt

(

ω0 − G

∫ t

0

e−(r−α−1
2

σ2)s−σBsds

)

has arrived to 0 it can only be 0 or negative. This implies that Wt can be expresed in
the following manner

Wt = e(r−α−1
2

σ2)t+σBt max

(

0, ω0 − G

∫ t

0

e−(r−α−1
2

σ2)s−σBsds

)

. (7.3)

By definition G = ω0

T
, which means that

Wt = ω0e
(r−α− 1

2
σ2)t+σBt

[

1 − 1

T

∫ t

0

e−(r−α− 1
2
σ2)s−σBsds

]+

. (7.4)

Note Yt = e−(r−α− 1
2
σ2)t−σBt . We have then that

Wt = ω0
1

Yt

[

1 − 1

t

∫ t

0

Ysds

]+

. (7.5)

This equation has an interesting financial interpretation. A Quanto option is an option
in which the payoff function is defined in a currency A but it is paid in another currency
(say B). Let Yt denote the currency exchange value. Then a Quanto option has the
form 1

Yt
f(Yt). We can see that Wt is a Quanto option.

An Asian option is an option where the mean value of an asset is considered in order to
define the options pay off. There are two factors that should be considered to under-
stand the four types of Asian options. First, the mean can be calculated as a geometric
mean or as an arithmetic mean. This first case is usually simple to evaluate since the
product of log-normal variables is a log-normal variable, on the contrary an arithmetic
Asian option is much harder to value. Second, the mean can play the role of strike
or of underlying in the payoff. When the mean plays the role of strike then the pay
off compares this mean with the final value of the asset. We say that it is a variable
strike Asian option. When the mean plays the role of underlying it is compared with
a fixed strike. Therefore in the case where the pay-off is in the form [K − 1

T

∫ T

0
Xtdt]+

we speak of an arithmetic fixed strike Asian option. For the rest of this report when
we speak of an Asian option we refer to an arithmetic fixed strike Asian option.

A Quanto Asian Put is a put on a currency A who’s value depends on the average
value of the currency A, but then is paid in a currency B. If follows that WT is the
payoff function of ω0 unities of a Quanto Asian Put.
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In a GMWB contract the policyholder receives the money she has withdrawn plus the
amount in her account at the maturity of the contract. That is the value of the GMWB
contract at time t is

e−r(T−t)EQ
t [WT ]

︸ ︷︷ ︸

UL account value

+

∫ T

t

e−r(s−t)Gds

︸ ︷︷ ︸

withdrawals

.

Since the premium consists of a lump sum ω0 at time 0, from an actuarial price per-
spective we have that

ω0 = e−rT EQ
0 [WT ] +

∫ T

0

e−rtGdt (7.6)

= e−rT EQ
0

[

ω0
1

YT

[

1 − 1

T

∫ T

0

Ytdt

]+
]

+

∫ T

0

e−rtω0gdt (7.7)

= ω0e
−rT EQ

0

[

1

YT

[

1 − 1

T

∫ T

0

Ytdt

]+
]

+
ω0g

r
(1 − e−rT ), (7.8)

where g = 1
T

the amount withdrawn for a monetary unit of guarantee. We have just
proved the following theorem.

Theorem 7.3.1 (Fundamental static GMWB relation). Let Wt be the unit-link sub-
account which follows the following dynamic







dWt = (r − α)Wtdt − Gdt + σWtdBt if Wt > 0

dWt = 0 if Wt = 0

W0 = ω0

where α is the insurance charge and G the fixed amount the policyholder withdrawals
each year. Let Yt = e−(r−α− 1

2
σ2)t−σBt . Then the following relation is due

e−rT EQ
0

[

1

YT

[

1 − 1

T

∫ T

0

Ytdt

]+
]

+
g

r
(1 − e−rT ) = 1, (7.9)

where g = 1
T
.

One can notice that this relation decompose a GMWB contract into

1. A fixed annuity that pays G each year during T years,

2. A Quanto Asian Put.

In what follows we will note

Ht := e−r(T−t)EQ
t

[

1

YT

[

1 − 1

T

∫ T

t

Yudu

]+
]

+
g

r
(1 − e−r(T−t))
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the GMWB value at time t and

Vt := EQ
t

[

1

YT

[

1 − 1

T

∫ T

t

Yudu

]+
]

the Quanto Asiatic option non-discounted expected pay-off.



Chapter 8

The static strategy for GMWB

8.1 The general case

In this Section we will suppose that the policyholder withdrawals the amount G which
is the limit before penalization in the contact. This amount G is withdrawn every
year and is equal to the principal amount ω0 divided by T the number of years of the
guarantee. This case corresponds exactly with the Theorem 7.3.1 case. What is left to
do is to evaluate the Quanto Asiatic option. In order to so so we will use some of the
strategies usual in the Asian Options literature.

To approach EQ
0

[

1
YT

[

1 − 1
T

∫ T

0
Ysds

]+
]

numerically different strategies have been pro-

posed in the Asian options literature. We are going to observe three of them. First, we
are going to make an approximation of the integral term by a log-normal distribution.
Second, we are going to estimate a tight lower bound to the asian option term. And
third, we are going to use a partial differential equation for the value of the Asian
Option. Demonstrations to each strategy can be found in the appendix.

However, a simple problem remains to be treated, our option is Quanto Asiatic and
not simply Asiatic. In order to profit of the rich literature on Asiatic options it would
be an advantage to eliminate the Quanto term. A change of numeraire is required to
solve this difference. Observe that

EQ
0

[

1

YT

[

1 − 1

T

∫ T

0

Ytdt

]+
]

= e(r−α)T EQS

0

[[

1 − 1

T

∫ T

0

Ytdt

]+
]

,

where Yt = e−(r−α+ 1
2
σ2)t−σBQS

t and QS is the probability that takes St as numeraire.
This second presentation of the problem will be used in the Log-Normal approximation
Section and in the lower bound approximation Section. For the PDE it is easier to
work with the Quanto Asiatic form.
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Calculation by Log-Normal Approximation

The sum of log-normal variables produces a random variable that has a distribution
hard to manage. This distribution con not expressed as a function of the usual func-
tions. A standard way to approach this difficulty is to approximate the sum distribution
by a log-normal distribution. However there are other ways to approach it, such as
with gamma function (Milevsky and Posner [31]). To fit a log-normal distribution to
a sum of log-normal distributions there is a plenty of possible criteria, we are going
to use a classic one: we suppose that both have the same first and second moments.
That is, the first two moments of the sum of log-normal variables is calculated and are
used as parameters of the log-normal distribution that is an approximation of the sum.
This approximation has proved to be quite good, however there is no guarantee that
it is good enough for certain parameter values. That is, it should be carefully used.
However it has a great advantage: it’s implementation es very simple.
Closed formulas for the first and second moments of the arithmetic mean of a geometric
brownian motion have been calculated by Turnbull and Wakeman (refer to Hull [25]).

Adapting their formulae to our notation we find that if Yt = e−(r−α+ 1
2
σ2)t−σBQS

t and we
define µ = −(r − α) then

M1 := EQS

0

[
1

T

∫ T

0

Ytdt

]

=
eµT − 1

µT

and

M2 := EQS

0

[(
1

T

∫ T

0

Ytdt

)2
]

=
2e(2µ+σ2)T

(µ + σ2)(2µ + σ2)T 2
+

2

µT 2

(
1

2µ + σ2
− eµT

µ + σ2

)

.

Once the arithmetic mean of our problem was become a log-normal distribution the
calculation of the price of the GMWB can be easily written with the help of the Black
and Scholes put option valuation. That is, the GMWB product with static strategy is
worth

V = e−αT (N (−d2) − FN (−d1)) +
1

rT

(
1 − e−rt

)
,

where

d1 =
ln(F ) + 1

2
σ2

IT

σI

√
T

, d2 = d1 − σI

√
T , F = M1, and σ2

I =
1

T
ln

(
M2

M2
1

)

.

The simplicity of this formula is astonishing in comparison to the approches that follow.
Some numerical examples of the results obtained by the different approaches will be
presented at the end of this Section.
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Calculation by Upper and Lower Bounds

Next we will bound this guarantee’s value by the Rogers and Shi methodology [41].
Let A and Z be two random variables, then by the tower property end the Jensen’s
inequality we have that

E[max(A, 0)] = E[E[max(A, 0)|Z]] ≥ E[max(E[A|Z], 0)]

and

E[max(A, 0)] = E[max(E[A|Z], 0)] + 1
2
(E[abs(A)|Z] − abs(E[A|Z]))

≤ E[max(E[A|Z], 0)] + 1
2
E [abs(A − E[A|Z])|Z]

≤ E[max(E[A|Z], 0)] + 1
2
E[
√

V ar[A|Z]],

so

E[max(E[A|Z], 0)] ≤ E[max(A, 0)] ≤ E[max(E[A|Z], 0)] + 1
2
E[
√

V ar[A|Z]].

The tightness of the bounds depends on the choice of Z. Z should be chosen to make
V ar[A|Z] small.

The difficulty to value Asian options is that the arithmetic mean of log-normal variables
is not easily tracktable. On the contrary, the geometric mean of log-normal variables is
easy to deal with and usually near enough to the arithmetic mean of log-normal vari-
ables. Geometric mean of log-normal variables is easy to deal with because it reduces
to the arithmetic mean of normal variables wich is a normal variable. On the Rogers
and Shi approximation [41] the information that is gathered from the arithmetic mean
of normal variables is used to approach with conditional expectation the arithmetic
mean of log-normal variables. That is, we find the expected value and variance of Yt

conditional to
∫ T

0
Budu. Let’s see how this is done.

Let Z =
T∫

0

BQS

u du, as shown in lemma 5 in the appendix we have that EQS

[Z] = 0 and

V arQS

[Z] = T 3

3
. Observe that Z ∼ N (0, T 3

3
). For the rest of this Section take t ≤ T ,

EQS
[

BQS

t Z
]

= EQS

[∫ T

0

BQS

t BQS

u du

]

=

∫ T

0

min(t, u)du = t

(

T − t

2

)

.

By the Projection Theorem we have that

EQS

[BQS

t |Z] = 3
t

T 3

(

T − t

2

)

Z

V arQS

[BQS

t |Z] = t − 3
t2

T 3

(

T − t

2

)2

= t − 3

T

(

t − t2

2T

)2

.
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Let

mt = 3
t

T 3

(

T − t

2

)

and v2
t = t − 3

T

(

t − t2

2T

)2

.

Since Yt id log-normal we have that

EQS

[Yt|Z] = e−(r−α+σ2)t−σmtZ+ 1
2
σ2v2

t

EQS

[Y 2
t |Z] = e−2(r−α+σ2)t−2σmtZ+2σ2v2

t .

Now consider the random variable YtYT , we have that

EQS
[

(BQS

t + BQS

T )Z
]

= t

(

T − t

2

)

+
T 2

2

EQS

[BQS

t + BQS

T |Z] = (mt + mT )Z

V 2
t := V arQS

[BQS

t + BQS

T |Z] = V arQS

[BQS

t + BQS

T ] − 3

T 3

(

t

(

T − t

2

)

+
T 2

2

)2

= T + 3t − 3

T 3

(

t

(

T − t

2

)

+
T 2

2

)2

and since YtYT is log-normal we have that

EQS

[YT Yt|Z] = e−(r−α+σ2)(T+t)−σ(mt+mT )Z+ 1
2
σ2V 2

t .

As shown on the appendix (lemma 5), we have that

EQS

[∫ T

0

Ytdt

∣
∣
∣
∣
Z

]

=

∫ T

0

EQS

[Yt|Z]dt

V arQS

[∫ T

0

Ytdt

∣
∣
∣
∣
Z

]

=
1 − 2σ

µ2
(1 − 2EQS

[YT |Z] + EQS

[Y 2
T |Z]) +

σ2

µ2

∫ T

0

EQS

[Y 2
t |Z]dt

+ 2
σ

µ

∫ T

0

EQS

[Yt|Z]dt − 2
σ

µ

∫ T

0

EQS

[YT Yt|Z]dt −
(∫ T

0

E[Yt|Z]dt

)2

,

for µ = r − α + σ2. So by Rogers and Shi approximation we have that

EQS

[[

1 − 1

T

∫ T

0

EQS

[Yt|Z]dt

]+
]

≤ EQS

[[

1 − 1

T

∫ T

0

Ytdt

]+
]

and

EQS

[[

1 − 1

T

∫ T

0

Ytdt

]+
]

≤EQS

[[

1 − 1

T

∫ T

0

EQS

[Yt|Z]dt

]+
]

+
1

2T
EQS





√

V arQS

[∫ T

0

Ytdt

∣
∣
∣
∣
Z

]


 .
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Notice that since Z ∼ N (0, T 3

3
) then

EQS

[f(Z)] =

∫ ∞

−∞
f(z)

3

T 3
√

2Π
e−

3z2

2T3 dz.

Observe that the option value has been under and upper bounded and that this bound
only require a numerical integration to be calculated.

The Rogers and Shi lower bound is usually quite near to the real value. Unfortunately
the upper bound can be too high, for a tighter approach to the upper bound of Asian
options see Thompson [44]. In what follows it will be given more importance to the
lower bound than to the upper bound. In fact, the lower bound tourns out to be a fair
well approximation to the guarantees value.

Calculation by Differential Equation

Another usual approach to value Asian Option is the use of differential equations1.
Remember that we are interested in finding the value of

EQ

[

1

YT

[

1 − 1

T

∫ T

0

Ytdt

]+
]

,

where Yt = e−(r−α− 1
2
σ2)t−σBt , that is

dYt = −µYtdt − σYtdBt with Y0 = 1 and µ = r − α − σ2.

Let Xt =
∫ t

0
gsdYs, where gt =

(
t − T

T

)

so

Xt =

∫ t

0

gsdYs = 1 + gtYt −
1

T

∫ t

0

Ysds

and let Zt =
Xt

Yt

, so since gT = 0 and YT > 0

EQ

[

1

YT

[

1 − 1

T

∫ T

0

Ytdt

]+
]

= EQ

[
1

YT

[XT ]+
]

= EQ

[
[ZT ]+

]
.

Now,

dZt =
1

Yt

dXt + Xtd

(
1

Yt

)

+ dXtd

(
1

Yt

)

=
1

Yt

gtdYt + Xt

(
1

Yt

(r − α)dt +
1

Yt

σdBt

)

− gtσ
2dt

= (r − α)(Zt − gt)dt + σ(Zt − gt)dBt.

1On this Section we will follow the methodology of Večeř [45] as presented by Lord [29].
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Therefore by Feyman-Kac theorem we have that V (t, z) = EQ
t

[
[ZT ]+

]
satisfies the

following differential equation

∂V

∂t
+ (r − α)(Zt − gt)

∂V

∂Z
+

1

2
σ2(Zt − gt)

2∂2V

∂Z2
= 0,

with teminal condition V (T, Z) = [Z]+.

Let A(t, Z) = (r − α)(Zt − gt) and B(t, Z) = 1
2
σ2(Zt − gt)

2, then, we propose the
implicit difference scheme

V n+1
j − V n

j

∆t
+ A(tn, Zj)

V n
j+1 − V n

j−1

2∆Z
+ B(tn, Zj)

V n
j+1 − 2V n

j + V n
j−1

∆Z2
= 0,

for n = 0, ..., N and j = 1, ..., J . If we consider V n
0 = 0 and V n

J+1 = V n+1
J+1 the extreme

values can be treated. Observe that if tN = T then V N
j = [Zj]

+ and if tn < T then the
vector V n satisfies

V n = (I − ∆tLn)−1(V n+1 + ∆tF n),

where I is the identity matrix, Ln is the tridiagonal square matrix such that Ln
j,j−1 =

B(tn, Zj)

∆Z2
− A(tn, Zj)

2∆Z
, Ln

j,j = −2
B(tn, Zj)

∆Z2
and Ln

j,j+1 =
B(tn, Zj)

∆Z2
+

A(tn, Zj)

2∆Z
and F n

is a zero vector except for the position J where it’s value is equal to Ln
J,J+1V

n+1
J+1 . A

simple way to obtain V n+1
J+1 in each step is to reduce J by one each step.

Observe that (I−∆tLn) becomes then a tridiagonal matrix. There exist fast algorithms
to invert these type of matrices, for more information please refer to the appendix.

8.2 Inclusion of stochastic interet rate

Following Peng, Leung and Kwonk [38] methodology we will consider the Vasicek
interest rate model, which with the asset models gives the following system

dSt = rtStdt +
√

1 − ρ2σSStdB1,t + ρσSStdB2,t

drt = k(θ − rt)dt + σrdB2,t

where B1,t and B2,t are independent standard Q-Bronwnian processes, ρ is a constant
called correlation, θ, k and σr are the Vasicek model parameters and σS is the asset
model volatility. As shown on the appendix, the value of a zero-coupon Bond under
the Vasicek model is

D(t, T ) = em(t,T )−n(t,T )rt ,
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where b(t, T ) = 1
k

(
1 − e−k(T−t)

)
and m(t, T ) =

(

θ − σ2

2k2

)

(b(t, T ) − (T − t))−σ2

4k
b2(t, T )

and the following relation is respected

dD(t, T )

D(t, T )
= rtdt − σrb(t, T )dB2,t

therefore the financial model can be expressed as

dSt

St

= rtdt + σSdBt

dDt

Dt

= rtdt + σDdBt,

where Bt =

(
B1,t

B2,t

)

σS = (
√

1 − ρ2σS ρσS) and σD = (0 − σrb(t, T )). The

sub-account process will have the following partial fifferential equation
W0 = ω0, if Wt > 0 then dWt = (rt − α)Wtdt − Gdt + σSWtdBt and if Wt = 0 then
dWt = 0. By the application of theorem .1.1 we have that for Wt > 0

Wt = Zt

(

w0 − G

∫ t

0

1

Zu

du

)

for
Zt = e

R t

0(ru−α− 1
2
σSσ

T
S)du+

R t

0 σSdBu

and so

Wt = Zt

(

max

(

w0 − G

∫ t

0

1

Zu

du, 0

))

.

The value of the GMWB contract with stochastic interest rate would then be

V (W, r, 0) = EQ
0

[

e−
R T

0 ruduWT +

∫ T

0

e−
R u

0 rsdsGdu

]

= EQ
0

[

e−
R T

0 ruduWT

]

+ G

∫ T

0

D(0, u)du.

In order to calcul EQ
0

[

e−
R T

0 ruduWT

]

it is required to change the numeraire. Consider

a new mesure QS with St as numeraire. If Mt is the money market account process,
numeraire de Q, then

dQS

dQ

∣
∣
∣
∣
FT

=
ST /S0

MT /M0
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and so we have that

EQ
0

[

e−
R T

0 ruduWT

]

= EQS

0

[

e−
R T

0 rudu ST /S0

MT /M0

WT

]

= EQS

0

[
ST

S0

ZT max

(

w0 − G

∫ T

0

1

Zu

du, 0

)]

= e−αT EQS

0

[

max

(

w0 − G

∫ T

0

1

Zu

du, 0

)]

.

Observe that is equation es very similar to the one we use without stochastic interest
rate.

Now, by Girsanov Theorem the QS-Brownian motion BQS

t satisfies the relation dBQS

t =
dBt − σ

T
Sdt. Therefore

Zt = e
R t

0(ru−α+ 1
2
σSσ

T
S)du+

R t

0 σSdBQS

u ,

where rt satisfies drt = k(θ + ρ
k
σS − rt)dt + σrdBQS

2,t .

Different numerical applications are possible to solve this equation. The methodology
followed by Peng, Leung and Kwonk [38] corresponds to a calculation by upper and
lower bounds, they use Rogers and Shi [41] lower bound, as we do on the previous
Section, and for un upper bound they use Thompson’s [44] methodology.

8.3 Numerical Examples

Three methodologies where implemented: the log-normal approximation, the calcula-
tion by lower bounds and the calculation by partial difference equation. The upper
bound is usually too high and was not considered for this table. No implementation
of the stochastic interest rate for the static strategy was done. However it was imple-
mented for the dynamic strategy and can be observed on the following Section.

We considered r = 5% and took two possible values for σ, σ = 20% and σ = 30%. The
results are resumed in the following table:
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σ = 20% σ = 30%
Contractual Maturity Log-Normal Lower PDE Log-Normal Lower PDE

rate, g T = 1/g Approx. Bound Approx. Bound
4% 25,00 17,11 17,59 27,71 58,55 50,40 54,38
5% 20,00 27,87 28,32 38,60 85,09 75,61 80,00
6% 16,67 40,09 40,45 48,92 113,46 102,80 107,05
7% 14,29 53,35 53,60 61,11 143,04 131,31 135,33
8% 12,50 67,40 67,49 74,57 173,45 160,70 164,48
9% 11,11 82,00 81,94 88,88 204,38 190,70 194,24
10% 10,00 97,06 96,80 103,79 235,66 221,08 224,45

As we can see, as the contractual rate is higher, the option charge also increases. It
seems reasonable that one would pay more if she is to obtain a higher guaranteed
value. As is usual in the option realm, with a higher volatility the price (in this
case the charge) increases. In fact one can see that in the passage from σ = 20% to
σ = 30%, the charge doubles. As expected we can also see that the lower bound is
a bit lower than the PDE, but we can see that it is not at many basic points of distance.

The log-normal approximation is for σ = 20% in almost all values of g lower than the
lower bound. In fact it is almost the lower bound. On the contrary for σ = 30% the
log-normal approximation is some basic points too high.

If a precise value is desired the PDE approach is the most accurate. However is the
hardest to implement and a tiny differential step is required to obtain a good precision.
The lower bound is a good approximation that is known to be beneath the real value,
its implementation is quite easy, eventhough a numerical integral is required. The log-
normal approximation is quite easy to implement but one should be mistrustful to the
values obtained.



Chapter 9

The dynamic strategy for GMWB

9.1 The basic case

Let St be the asset value, which is in fact the guarantee’s underlying. We suppose that
St follows a geometric Brownian motion

dSt = rStdt + σStdBt,

where Bt is a standard Brownian motion, σ the asset volatility and r the risk-free inter-
est rate. Let α be the insurance risk charge. Suppose Ft is the filtration natural to Bt.
If not stated otherwise, expectations will be taken under the risk-neutral probability
EQ[·].

Les At be the value of the GMWB account. We take At to be a right-continuous Ft

adapted process. At the beginning of the contract At is equal to ω0 which is the prod-
uct’s premium. During the contracts life, At will decrease with the withdrawals until
it arrives to a 0 value. If at T , maturity of the contract, the value is A is still positive
all the account value is withdrawn by the policyholder and AT becomes zero.

We will take γs the withdrawal rate such that

At = A0 −
∫ t

0

γsds, 0 ≤ γ0 ≤ λ

where λ is the maximal withdrawal rate, suppose that λ is large enough.

When the policyholder withdrawal more than the quantity G established in the con-
tract, a penalty charge is due. Let k be this penalty charge. Let λ > G. Therefore, if
the policyholder withdraws at a rate γs less than G she receives the same rate γs, but
if she withdrawals more than G then she will receive a rate of G + (1− k)(γ −G). We

54
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define function h to represent this relation

h(γs) =

{

γs if 0 ≤ γs ≤ G

G + (1 − k)(γs − G) if γs > G
.

Let Wt be the unit-liked account value. That is Wt is an account that varies with St

but that is reduced by the withdrawals. Wt follows then the following relation

dWt = (r − α)Wtdt + σWtdBt + dAt, if Wt > 0,

when Wt becomes zeros, it maintains its value in zero. That is, if Ws = 0 then for all
t > s we have that Wt = 0. W0 = ω0 which is the premium paid by the policyholder.
If at the contract’s maturity T the asset account WT is more than zero, then the poli-
cyholder will receive WT .

The contracts value at moment t is the expected value of all possible future flows.
Therefore

V (W, A, t) = max
(γs)s∈]0,T [∈A

Et







e−r(T−t) max(WT , 0)
︸ ︷︷ ︸

what is left in the account

+

∫ T

t

e−r(u−t)h(γu)du

︸ ︷︷ ︸

what will be withdrawn







.

We are going to use the Hamilton-Jacobi-Bellman (HJB) relation to find an stochastic
differential equation that is satisfied by the value function V . Using Section .2 notation
we have that O =]0, +∞[×]0, +∞[ and A = [0, λ]]0,T [, we will have a two dimensional
state process Xt defined in the following manner

Xt =

(
At

Wt

)

dAt = −γtdt

dWt = ((r − α)Wt − γt) dt + σWtdBt

b(Xt, γt) =

(
−γt

(r − α)Wt − γt

)

σ(Xt, γt) =

(
0

σWt

)

.

And the value function as defined in Section .2 are

f(t,Xt, γt) = h(γt) Ψ(τ,Xτ ) = max(Wτ , 0) r(Xt, t, γt) = r.

Let’s first verify if Section .2.4 conditions are fullfilled. The Lipschitz conditions are
easily verified

|b(X1,t, γt) − b(X2,t, γt)| =

∣
∣
∣
∣

(
0

(r − α)(W1,t − W2,t)

)∣
∣
∣
∣
≤ (r − α)|X1,t − X2,t|
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|σ(X1,t, γt) − σ(X2,t, γt)| =

∣
∣
∣
∣

(
0

σ(W1,t − W2,t)

)∣
∣
∣
∣
≤ σ|X1,t − X2,t|

so it is enoght to take L = max(r − α, σ).

The good definition of V is given by the fact that f(Xt, γt) ≤ λ(1+ |Xt|) and Ψ(Xt) ≤
λ(1 + |Xt|).

The continuity of the stopping time one can take O1 = IR×]0, +∞[×IR and O2 =
IR2×]0, +∞[ to accomplish H ′2. Then δ1(t, w, a) = w and δ2(t, w, a) = a which are
clearly C2 functions and if (w, a) ∈ Γtransversal we have that w = 0 or a = 0 and so
either δ1(w, a) = 0 or δ2(w, a) = 0 and we have that

∂δi

∂t
+ Lαδi = −γt ≤ 0 for i = {1, 2}

which means that the Hamilton-Jacobi-Bellman equation is satisfied, that is

V (W, A, t) =







sup
γ∈A

(
∂V

∂t
+ LαV + h(γt) − rV

)

= 0 if inside D

V = Ψ if t = τ

which for (W, A, t) ∈ D is

∂V

∂t
+ max

γt

(

h(γt) − γt

(
∂V

∂A
+

∂V

∂W

))

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV = 0.

Now, let C =
∂V

∂A
+

∂V

∂W
. It is clear that for any δ > 0

V (W + δ, V + δ, t) ≤ V (W, A, t) + δ,

which implies that C ≤ 1. Let g(C) = max
γt

(h(γt) − γtC) which is

g(C) =

{

(1 − C)G si (1 − k) < C ≤ 1

kG + λ(1 − k − C) si 0 ≤ C ≤ (1 − k)

= G min(1 − C, k) + λ max(1 − k − C, 0)

and so inside D we have that

∂V

∂t
+ g

(
∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV = 0.
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Which is equivalent to saying that the following system is true and at least one of the
inqualities is satisfied in the frontier

∂V

∂t
+

(

1 − ∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV ≥ 0

∂V

∂t
+ kG + λ

(

1 − k − ∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV ≥ 0

when λ → ∞ the system becomes equivalent to saying that the following system is
true and at least one of the inqualities is satisfied in the frontier

∂V

∂t
+

(

1 − ∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV ≥ 0

1 − k − ∂V

∂A
+

∂V

∂W
≥ 0

and there fore the system is equivalent to

min

(
∂V

∂t
+

(

1 − ∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV,

1 − k − ∂V

∂A
+

∂V

∂W

)

= 0.

In order to apply a numerical approach to the differential equation, boundary conditions
are required. The payout at maturity T is V (W, A, T ) = max(X, (1−k)A) and if A = 0
then the value function becomes the actual value of the underlying : V (W, 0, t) =
We−α(T−t). In fact as W is large in relation to A this relation tends to be satisfied,
that is lim

W→∞
V (W, A, t) = We−α(T−t). Now, since in our stochastic differential equation

A has only first order derivates, we can numerically avoid to know the value of function
when A is large. For V (0, A, t) in the appendix (lemma 6) is prorfed that

V (0, A, t) = (1 − k) max(A − Gτ ∗, 0) +
G

r

(

1 − e−r min( A
G

,τ∗)
)

,

where τ ∗ = min

(

− ln(1 − k)

r
, T − t

)

.

Following Dai, Kwong and Zwong [17] discretisation methodolgy a two-level implicit
finite difference scheme was implemented. Let

Rn
j,k =

σ2

2
W 2

j

V n
j+1,k − 2V n

j,k + V n
j−1,k

∆W 2
+ (r − α)Wj

V n
j+1,k − V n

j−1,k

2∆W
− rV n

j,k

Rn+1
j,k =

σ2

2
W 2

j

V n+1
j+1,k − 2V n+1

j,k + V n+1
j−1,k

∆W 2
+ (r − α)Wj

V n+1
j+1,k − V n+1

j−1,k

2∆W
− rV n+1

j,k .
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For the linear R part a Crank-Nicholson scheme was applied while the non-linear part
was completely implicit, that is

V n+1
j,k − V n

j,k

∆τ
=

1

2
Rn

j,k +
1

2
Rn+1

j,k + g(Cn+1
j,k )

where Cn+1
j,k =

V n+1
j,k − V n+1

j−1,k

∆W
+

V n+1
j,k − V n+1

j,k−1

∆A
and τ = T − t the time to maturity.

The discrete withdrawal model

The previous approach supposes that withdrawals are made continuously. In fact in
real a contract that is not the case. To correct this inconsistency Dai Kwonk and Zong
[17] (see also Chen and Forsyth [13]) propose to use the following model. Withdrawals
are made on dates ti for i = 1, .., N . Then the time reverse scheme would be divided
into two time sets

1. The time intervals between withdrawals ]titi+1[ where the GMWB account does
not change and so the option value does not change accordingly, that is ∂V

∂A
= 0,

so the PDE becomes
∂V

∂t
+ LV = 0.

2. At withdrawal dates t1, ..., tN the policyholder withdrawals in such a manner that
the GMWB value plus the amount received from the withdrawal is maximized,
that is

V (W, A, t−i ) = max
0≤γ≤A

{
V (max(W − γ, 0), A − γ, t+i ) + f(γ)

}
,

where

f(γ) =

{

γ if 0 ≤ γ ≤ G

G + (1 − k)(γ − G) if γ > G
.

Boundary conditions should be established for these equations. Define V0(A, t) =
V (0, A, t), the value function where no money is left in the unit liked account. In such
a case the value variation in the non-withdrawal periods only varies with the discount
rate, that is

∂V0

∂t
= rV if t /∈ {t1, ..., tN}.

If it is a withdrawal period withdrawals can only be made on the GMWB account, that
is

V0(A, t−) = max
0≤γ≤A

{
V0(A − γ, t+i ) + f(γ)

}
.

The discrete time formulation of the problem is more realistic and simpler to imple-
ment. The PDE depends on a single variable and is linear. That is not the case of the
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continuous formulation. In fact the non linearity of the continuous formulation makes
the differential scheme extremely unstable. Chen and Forsyth explore alternatives to
stabilize such difference scheme. In our implementation we considered simpler and
nearer to reality to apply the discrete version. In Dai Kwonk and Zong it is suggested
that there are time steps that are of type 1 (time between withdrawals) and others are
type 2 (withdrawal moments). In our implementation we considered more accurate to
apply at each time step the difference equation but in the appropriate gaps between
time steps apply the maximization equation (optimized withdrawals). These small al-
gorithm differences explain the slight difference between our results.

Some numerical examples following the discrete withdrawal approach will be presented
at the end of this Chapter.

9.2 The stochastic interest rate case

To include into our model an stochastic interest rate, we propose the following system:

dAt = −γtdt

dWt = ((rt − α)Wt − γt) dt +
√

1 − ρ2σWtdB1
t + ρσWtdB2

t

drt = p(rt, t)dt + q(rt, t)dB2
t

where B1
t and B2

t are independenr brownian motions. Observe that Wt’s brownien
motion

√

1 − ρ2B1
t + ρB2

t is correlated to rt’s brownien motion B2
t by a factor of ρ. To

begin, we will let p(r, t) and q(r, t) be any mesurable function, later on this Chapter
we will impose some conditions in order to make the process converge.

Let O =]0, ω0[×]0, +∞[×]0, +∞[ be the state space and A = [0, λ]]0,T [ the strategy
space.

The system can be written in the matrix form

X(t) =





At

Wt

rt



 b(Xt, γt) =





−γt

(rt − α)Wt − γt

p(rt, t)





σ(Xt, γt) =





0 0
√

1 − ρ2σWt ρσWt

0 q(rt, t)





1

2
σ · σt =





0 0 0

0 1
2
σ2W 2

t
q(rt,t)σWt

2

0 q(rt,t)σWt

2
q2(rt,t)

2




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with the same target-functions as the non-interest rate case

f(t,Xt, γt) = h(γt) Ψ(τ,Xτ ) = max(Wτ , 0).

The good definition of V is proofed by the same argument that for the non-stochastic
interest rate case.

For the continuity of the stopping time take O1 = IR×]0, +∞[×IR2 and O2 = IR2×]0, +∞[×IR
and O3 = IR3×]0, +∞[. Then δ1(t, w, a, r) = w, δ2(t, w, a, r) = a and δ3(t, w, a, r) = r
which are clearly C2 functions and if (w, a, r) ∈ Γtransversal we have that w = 0, a = 0
or r = 0 and so either δ1(w, a, r) = 0, δ2(w, a, r) = 0 or δ3(w, a, r) = 0 and we have
that: if w = 0 then ∂δ1

∂1
+ Lαδ1 = −γt ≤ 0, if a = 0 then ∂δ2

∂2
+ Lαδ2 = −γt ≤ 0 and if

r = 0 then S ∗ Dδ3 = q(0, t) and q(0, t) 6= 0 for the Vasicek and the Hull and White
Models.

Followung the same line of argument of the previous Chapter, the Hamilton-Jacobi-
Bellman equation is:

V (W, A, t) =







sup
γ∈A

(
∂V

∂t
+ LαV + h(γt) − rV

)

= 0 if inside D

V = Ψ if t = τ

which for (W, A, r, t) ∈ D. By the HJB theorem the value function V satisfies the
partial differential equation

∂V

∂t
+ g

(
∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV

+
q2(rt, t)

2

∂2V

∂r2
+ q(rt, t)σWt

∂2V

∂W∂r
+ p(rt, t)

∂V

∂r
= 0.

In the following we will consider a Vasicek interest rate model. This simple model allows
us to see the interest rate model inclusion consequences on the GMWB guarantee. The
Vasicek model is

drt = (a − brt)dt + σrdB2
t

where a, b and σ are positive constants.

The GMWB partial differential equation with the Vasicek interest rate model becomes

∂V

∂t
+ g

(
∂V

∂A
+

∂V

∂W

)

+ (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV

+
σ2

r

2

∂2V

∂r2
+ σrWt

∂2V

∂W∂r
+ (a − brt)

∂V

∂r
= 0,
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which from a discrete withdrawal perspective means that on the non-withdrawal time
set, V satisfies the following PDE

∂V

∂t
+ LV = 0

and that on the withdrawal days

V (W, A, r, t) = max
0<γ<A

{
V ([W − γ]+, A − γ, r, t+) + f(γ)

}

where

LV = (r − α)W
∂V

∂W
+

1

2
σ2W 2 ∂2V

∂W 2
− rV

+
σ2

r

2

∂2V

∂r2
+ σrWt

∂2V

∂W∂r
+ (a − brt)

∂V

∂r
.

The inclusion of stochastic interest rate adds a dimension into the partial difference
equation. From a discrete withdrawals perspective this means that not counting time
t and the GMWB account At, the value process Vt is composed of two dimensions: the
unit-link account and the stochastic interest rate process. In order to resolve numeri-
cally the PDE a Crank-Nicholson scheme was applied. We used the Kronecker product
to deal with the two dimensionality of the matrices. In what follows we are going to
present in more detail the numerical approach. For a fixed moment t and a fixed value
of At the value process Vt can be represented by a N × M matrix V where the first
dimension represents the unit-link value Wt and the second dimension represents the
interest rate value rt.

We will represent the unit-link value as a diagonal matrix W with the set of possible
values W1, ...,WN in the diagonal, homogeneously separated ones to each other with
a step of ∆W . We will represent the interest rate with a matrix R that is diagonal,
with values r1, ..., rM on the diagonal, separated in with a step ∆r. As a general rule
W will multiply on the left of the value matrix V and R on the right. This will allow
as to use the correct value of Wi and rj for the corresponding value cell Vi,j.
In order to compute the derivates we use the matrix D1

x and D2
x:

D1
x =

1

2∆x










0 1 0 · · · 0
−1 0 1 · · · 0

0 −1 0
. . . 0

...
...

. . . . . .
...

0 0 0 · · · 0










and D2
x =

1

∆x2










−2 1 0 · · · 0
1 −2 1 · · · 0

0 1 −2
. . . 0

...
...

. . . . . .
...

0 0 0 · · · −2










.

Observe that D1
W and D2

W are N ×N matrices while D1
r and D2

r are M ×M matrices.
To avoid to overcharge the notation D1

r will correspond to the matrix that has −1 on
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the upper diagonal and 1 on the lower diagonal. Notice also that the simple application
of these matrices losses the border values, in order to correct this problem we introduce
the following matrices:

H1
W =

1

2∆W










−V0,1 −V0,2 · · · −V0,M

0 0 · · · 0
...

...
...

...
0 0 · · · 0

VN+1,1 VN+1,2 · · · VN+1,M










,

H2
W =

1

∆W 2










V0,1 V0,2 · · · V0,M

0 0 · · · 0
...

...
...

...
0 0 · · · 0

VN+1,1 VN+1,2 · · · VN+1,M










,

H1
r =

1

2∆r








−V1,0 0 · · · 0 V1,M+1

−V2,0 0 · · · 0 V2,M+1
...

...
...

...
...

−VN,0 0 · · · 0 VN,M+1








and H2
r =

1

∆r2








V1,0 0 · · · 0 V1,M+1

V2,0 0 · · · 0 V2,M+1
...

...
...

...
...

VN,0 0 · · · 0 VN,M+1








,

where H1
W ,H2

W , H1
r and H2

r are all N × M matrices. The values of these matrices are
the border values and are supposed to be known, that is for a given time and value A
of the GMWB account these matrices are constant matrices.

This matrix notation allows us to write numerically

∂V

∂t
+ (r − α)W

∂V

∂W
+ 1

2
σ2W 2 ∂2V

∂W 2
− rV + 1

2
σ2

r

∂2V

∂r2
+ ρσσrW

∂2V

∂W∂r
+ (a − br)

∂V

∂r

≈ ∂V

∂t
+ W (D1

W V + H1
W )(R − αIM) + 1

2
σ2W 2(D2

W V + H2
W ) − V R

+ 1
2
σ2

r(V D2
r + H2

r ) + ρσσrW ((D1
W V + H1

W )D1
r + H1

r ) + (V D1
r + H1

r )(aIM − bR)

=
∂V

∂t
+ WD1

W V (R − αIM) + 1
2
σ2W 2D2

W V + V (1
2
σ2

rD
2
r − R + D1

r(aIM − bR))

+ ρσσrWD1
W V D1

r + H,

where

H = 1
2
σ2W 2H2

W + 1
2
σ2

rH
2
r + H1

r (aIM − bR) + WH1
W (R− αIM) + ρσσrW (H1

W D1
r + H1

r )

is a constant matrix.

We will like to write this expression in the form Iv + h where v and h are vector
representations of V and H. To be more precise v corresponds to the column vector
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that has as first N lines the first column of V , as second N lines the second column of
V and so on. If A is a N × N matrix and B is a M × M matrix then

AV B = Y ⇔ (BT ⊗ A)v = y,

where ⊗ is the Kronecker product and y is the column vector that represents Y . Using
this relation we have that our differential equation becomes

∂v

∂t
+ Iv + h,

where

I =
1

2
σ2(IM ⊗ W 2D2

W ) +
(
(1

2
σ2

rD
2
r − R + D1

r(aIM − bR))T ⊗ IM

)

+
(
(R − αIM)T ⊗ (WD1

W )
)

+ ρσσr

(
(D1

r)
T ⊗ WD1

W

)

and h is the vector representation of H.

The Crank-Nicholson approach gives us

vn+1 − vn

∆t
=

1

2
Ivn +

1

2
Ivn + 1 + h,

that is
vn =

(
INM − 1

2
∆tI

)−1 (
(INM + 1

2
∆tI)vn+1 + ∆th

)
.

Observe that INM − 1
2
∆tI is a NM × NM matrix, that should be inversed. However

since I does not depend on the time moment t or of the GMWB account A, this
inversion should only be done once, that is, before all loops.

9.3 Numerical Examples

Discrete schemas where applied for the three variations for the dynamic strategy
GMWB. In the three cases the discrete withdrawal model was considered. In all our
calculations we took the following parameters : r = 5% and σ = 20% or σ = 30%.
Present short-period interest rate is lower than 5% but 5% is a standard amount to
be used in Variable Annuities literature for numerical examples. The fact of using this
amount allows us to compare our results to the ones of other researchers. This is in
accordance with the spirit of a report that is mostly theorical and proposes instruments
that could be used in any financial market environment. Volatilities of σ = 20% or
σ = 30% are usual in the financial market. A σ = 30% can be expected in perturbed
agitated financial markets like the present one. Let’s see the results.
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The basic case

For the basic case we constructed a table with the same structure as the one done by
Dai Kwonk and Zong [17].

Contractual Maturity k = 5% k = 10%
rate, g T = 1/g σ = 20% σ = 30% σ = 20% σ = 30%

4% 25,00 0,98% 2,03% 0,52% 1,25%
5% 20,00 1,19% 2,49% 0,66% 1,56%
6% 16,67 1,40% 2,96% 0,81% 1,88%
7% 14,29 1,58% 3,37% 0,94% 2,15%
8% 12,50 1,75% 3,77% 1,08% 2,45%
9% 11,11 1,94% 4,19% 1,22% 2,76%

10% 10,00 2,09% 4,54% 1,35% 3,02%

Our results are very similar to those of Dai Knok and Zong. The main difference withe
their results is that we considered the discretized withdrawals while in their corre-
spononding table the withdrawals are continous. Other difference are due to possible
discretitation difference such as the grill construction. In our discretization the policy-
holder withdraws each 6 months, which in terms of a guarantee that lastes for several
years gives values near to those the continous model, however a discrete withdrawal
gives a guarantee that is less expensive. Comparing both table one can see that this
differences costs between 2 and 10 basic points.

In the table we can observe that the insurance rate charge is larger in a more volatile
situation. This result is in accordance with the fact that volatility affects possitively
the price of financial options. We can observe that the step from σ = 20% to σ = 30%
can double the insurance rate charge.

We observe as well that with a higher penalization rate k the GMWB value decreases,
that is the required insurance rate charge is smaller. This is natural since with higher
penalization the policyholder is restrained to use her surrender option. That is, since
depasing the contractual withdrawal rate g becomes more expensive optimal situations
to do so will be lesser and the option becomes less interesting. The optimal value
bemcomes lesser and so the insruance rate charge α is also reduced.

9.4 The static-dynamic strategies relation

If the policyholder follows a static strategy the value of the GMWB is always less
than that of the GMWB of a policyholder that follows a dynamic strategy, given that
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all other conditions are equal. This follows directly from the fact that the dynamic
strategy is the optimal between all possible strategies in the sense of increasing the
option value. Now according the the penalty value, the dynamic strategy value varies
as seen in the following graph:

which was calculated for G = 6%, σ = 20% and r = 5%.

Observe that the value of the dynamic strategy converges to the static strategy value
as K → 1. Which is due to the fact that if the penalty K = 100% there is no interest
in withdrawing more than the value specified in the contract. Since we have a discrete
withdrawel, the static strategy for this withdrawl is just a few basic point beneath the
dynamic strategy one.



Chapter 10

The Total Surrender GMWB

In the Dai Kwok Zong model the surrender behaviour is modelled as a result of par-
tial surrender. However nowadays most of the GMWB products contain clauses that
neutralise the partial surrender behaviour. That is, in many GMWB products when
the policyholder surrender an amount over the withdrawal guaranteed rate, the policy
characteristics (such as withdrawal amount guaranteed or insurance fee) change in such
a manner that it this becomes equivalent to making a total surrender of the contract
and buying a new contract with these new conditions.

These kinds of clauses are also present in the step-up guarantee. This guarantee changes
the policy characteristics when the unit link is too favourable in relation to the GMWB
product in order to re-establish the equilibrium. In fact if the unit link price rises fast
and it becomes interesting to the policyholder to surrender, the step-up guarantees
makes a re-adjustment of the policy terms in order to make the GMWB as interesting
as the unit link and therefore to discourage the policyholder to surrender.

Under this logic it becomes relevant to model the GMWB product as a product where
only a total surrender is possible. Implicitly it is acknowledge that partial surrender is
possible but in it is supposed that the product is re-adjusted in such a manner that in
terms of modelling it is enough to consider only the total surrender case.

The Dai Kwok Zong strategy to model partial surrender is to use the Hamilton-Jacobi-
Bellman machinery. We will adapt their instruments to consider the total surrender
case using an American option strategy.

In order to keep our results the best adjusted to the present market conditions we will
use the following information as input parameters to the closed-formula models:

• Swap yield curve as at 31 December 2008.

• Asset mixes of 30% / 70%, 50% / 50% and 70% / 30%. On the 31st may 2009

66
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NAVA’s repport one can see that in average the US market asset composition
has 42% equity and 58% of other assets of fixed accoutns, allocation, bonds and
money market. Variable Annuities products are sold on asset mixes, that is,
they are not only composed of equity but also they are composed of bonds and
therefore their volatility is less than the market volatility, which is now a day
above 30%.

• The contractual rate in the GMWB guarantee will be taken from 4% to 10%
which is the range of values used in the present market.

• We will use a mortality table by generation TGF05. We wuppose our policyholder
is a 60 year old woman.

10.1 The basic model

Consider the value of a static GMWB at time t

Ht = EQ
t

[

e−
R T

t
rvdvWT

Sx(T )

Sx(t)
+

∫ T

t

e−
R u

t
rvdv

(

g
Sx(u)

Sx(t)
+ Wu

fx(u)

Sx(t)

)

du

]

,

where Sx is the survival function of a policyholder that has x year at t = 0. We will
suppose that Sx is differentiable. Let fx be the density function of mortality, Wt the
value of the unit-link and g the fixed withdrawal rate. Let

Vt = HtSx(t) = EQ
t

[

e−
R T

t
rvdvWT Sx(T ) +

∫ T

t

e−
R u

t
rvdv (gSx(u) + Wufx(u)) du

]

.

If the Hamilton-Jacobi-Bellman theorem is used with a singleton control space A = {g}
the theorem becomes a generalized version of the Feymen-Kac theorem. In such a case
we have that Vt satisffes the following PDE

∂V

∂t
+ LV + gSx(t) + Wtfx(t) − rtV = 0

with final condition VT = WT Sx(T ). We have also that

∂V

∂t
= Sx(t)

∂H

∂t
− Htfx(t) and LV = Sx(t)LH.

Therefore

Sx(t)
∂H

∂t
− Htfx(t) + Sx(t)LH + gSx(t) + Wtfx(t) − rtHtSx(t) = 0

or the equivalent
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∂H

∂t
+ LH + g − (Ht − Wt)µx(t) − rtHt = 0,

where µx(t) is the force of mortality
fx(t)

Sx(t)
and with final condition HT = WT .

Please remark that this PDE is valid if rt is a deterministic function but it is also valid
if rt is an stochastic process. The difference between this two cases is the form of the
operator L.

10.1.1 The In-the-moneyness of the GMWB

At every moment t, the policyholder might be interest in finishing her contract. Ht

represents the value the contract has including all the information due to future pay-
ments of annuity g and to the future withdrawal of the unit-link Ws (with s > t) due to
surrender, to death or to arrival to maturity. This is the value she gets if she keeps the
contract. While Wt is what she gets if the contract is finished due to surrender or death.

We will say that the GMWB is in-the-money if Ht > Wt, at-the-money of Ht = Wt

and out-of-the-money if Ht < Wt. It only makes sense to surrender if the contract is
out-of-the-money. In fact we will use this relation when we include a surrender be-
havior into the model. If surrender is included to the model the contact can never be
out-of-the-money because in such a case is better to surrender. We can keep the PDE
but at each time step establish Ht− = max(Wt, Ht+). Eventhough this approach by
lower bound is not necessarily optimal, this form of modeling is usual in American type
options.

The effect of mortality on the contract is also tightly related to the in-the-moneyness of
the GMWB. From the PDE we can observe that an increment of mortality in-creases
the value of the GMWB if the contract is out-of-the-money while it reduces the value
of the GMWB if the contract is in-the-money. This is a clear consequence of the fact
that is better to keep the contract if it is in-the-money and mortality is a way out of
the contract.

10.1.2 Including Surrender Charges

A surrender charge can easily be included in the total surrender GMWB model. The
PDE presented previously is maintained. Buy the optimal surrender is done taking
into account the price

Ht− = max(Ht+ , (1 − k)Wt)

where k is the surrender charge. Observe that no fee will be charged in case of death.
Only the surrender behaviour is charged.
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Our model supposes that surrender corresponds to the policyholder decision of partial
surrender but it can also correspond to application of a step-up guarantee. Therefore
this surrender charges should also be considered as a step-up fee.

10.2 Numerical Implementation

Using the previous model we calculated the insurance fee in basic points from an
acturial pricing perspective. The fees obtained are the following.

k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 5,808 59,699 171,845 437,657
0,05 11,184 91,224 246,986 607,428
0,06 18,948 128,815 330,958 787,832
0,07 28,228 168,555 416,319 964,894
0,08 40,624 215,955 513,717 1159,971
0,09 52,546 259,126 600,959 1331,738
0,10 68,404 312,304 705,003 1532,186

The following graph represent the optimal surrender behaviour for a GMWB guarantee
without surrender charge.
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In this example W0 = 100. Observe that the optimal behaviour is almost a straight line
from (0, 100) to (T, 0), that is, the policyholder optimal behaviour consists basically in
surrender each time the Wt overpasses At where At is the GMWB account.

We also considered the case when a fee is charged to surrender. In the following graph
we observe the effect of the surrender charge on the insurance fee from an actuarial
pricing perspective.

It is clear that a higher surrender charge will reduce the insurance fee. This is a quite
logical relation. Now, it is important to compare this graph to the one we had calcu-
lated for the partial surrender in the Dai Kwonk Wong model. If graphs are compared
it is quite clear that the surrender charge effect is much stronger in the total surrender
case. While surrender charges that strongly reduce the behavioural range of the policy-
holder are too high in the partial surrender context, they are commercially attainable
in the total surrender model.

On the next table you can observe the insurance fee in basic points for a total surrender
GMWB with a 50 bps surrender charge.
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k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 0,77 27,07 117,22 349,96
0,05 1,72 48,19 177,66 499,16
0,06 3,29 75,25 247,22 660,73
0,07 5,40 104,99 319,28 821,73
0,08 9,10 142,00 404,10 1000,12
0,09 14,49 176,12 477,82 1157,17
0,10 23,41 219,31 573,76 1353,01

These results are in basic points. It is clear that a higher level of risk in the equity /
bond composition implies a higher price. Higher volatility usually increases the price
of derivate products.

The following graph represent the optimal surrender behaviour for a GMWB guarantee
without surrender charge.

Observe that at t = 0 the optimal surrender fronteir is stablished at a value higher
than W0 = 100 this is asily explained by the fact that by definition H0 = 100 and the
max(H0, (1−k)W0) has to be H0 in a neighbourhood of this value. However the frontier
descends as the time passes, this is explainable by the fact that there is a continous
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constant withdrawal and there is a lesse amount to be taken into account. At the end
a huge change appears in the frontier, all of a sudden the frontier becomes quite high.
To explain this sudden change it migh be better to consider the fontier at T . At T we
have that HT = WT so the max(HT , (1−k)WT ) has to be HT , that is it does not make
sense to surrender. As k is higher there should be a neighbourhood to this phenomene,
this neighbourhood is the sudden change that we observe in the frontier. The higher
k is the earlier the jump will appear.

From this graph we can assert that for k > 0 there is a moment of time when it
makes no more sense to surrender and the optimal strategy is to carry the guarantee
to maturity.



Chapter 11

GMWB and QIS 4

On this Section we will apply some of the QIS4 Standard Methodology instruments
to measure some of the risks of the GMWB product. The following risks will be
considered:

• Interest rate risk

• Equity risk

• Mortality risk

• Longevity risk

Following the QIS4 standard methodology we will calculate the GMWB net present
value after stressing each of these variables. In fact the methodology was the following:

1. The central scenario was used to calculate the insurance fee. Since we are working
at an actuarial price level, the final NAV of this exercise was 0.

2. Using the insurance fee calculated at 1) we calculated the NAV of the GMWB
product within each stress scenario. As the NAV in 1) is 0 then the NAV change
is equal to the NAV in 2).

On each of our results we will take 100 e to be the initial lump sum paid by the
policyholder, that is our nominal will be of a hundred.

11.1 Interest rate risk

QIS 4 standard methodology proposes a set of impacts to be applied to the interest
rate curve. The relative movement changes considered are the following:

73
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These impacts affect the interest rate curve used in the model and it also affects the
value of the bond part of the portfolio. The bond part of all the variable annuity net
assets sub account in 2009 in the USA was composed as follows [26]:

Billions of Dollars
Long-Term Corporate 1,30
Long-Term Government 1,00
Intermediate-Term Corporate 66,60
Intermediate-Term Government 27,10
Short-Term Corporate 5,50
Short-Term Government 0,90

Which means that more than 90% of the bond portfolio is intermediate-term. Ac-
cordingly we will suppose that the bond part of the portfolio of our example has a
modified duration is of 3 years. Using this duration, the interest rate impact and the
Equity/Bond composition we can calculate the initial value of the portfolio for each
stress scenario.

The changes in the interest rate curve produce two stress scenarios: an interest rate
UP scenario and an interest rate DOWN scenario. Let’s first consider the effect of a
plummet in the interest rate.

k = 0 pbs Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,28 -0,94 -1,55 -2,16
0,05 -0,33 -0,96 -1,51 -2,06
0,06 -0,35 -0,93 -1,42 -2,00
0,07 -0,34 -0,87 -1,33 -1,96
0,08 -0,34 -0,83 -1,32 -1,94
0,09 -0,32 -0,79 -1,28 -1,88
0,10 -0,32 -0,77 -1,29 -1,89



CHAPTER 11. GMWB AND QIS 4 75

k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,45 -1,60 -2,31 -2,92
0,05 -0,55 -1,58 -2,19 -2,70
0,06 -0,64 -1,50 -2,02 -2,53
0,07 -0,67 -1,37 -1,85 -2,39
0,08 -0,68 -1,29 -1,76 -2,34
0,09 -0,64 -1,19 -1,67 -2,23
0,10 -0,61 -1,14 -1,62 -2,19

It must first be observed that a decrease in the value of the interest rate curve implies a
loss to the insurer. Insurance fee was calculated on the hypothesis of a certain interest
rate curve, that of 31 December 2008. The GMWB contract guarantees a minimum
set of payments, when the interest rate drops these payments become more expensive
for the insurer to pay.

It is quite clear that this negative impact of a drop in the interest rate curve is stronger
if the unit link has a larger part in equity. Both risk-free and equity parts of the port-
folio are sensible to interest rate movements but the equity part has volatility.

More interesting is the relation between the contractual rate (g) and the drop in in-
terest rate. Observe that the effect is opposite if the unit link is composed entirely
of equity or not. A high volatility the GMWBs will be more affected by an interest
rate drop if it has a small contractual rate, while if it has a small volatility it is the
contracts that have a small contract rate that are less affected. The intricate relations
between these variables are difficult to grasp but at least one observation can be made.
The contracts with smaller g are the ones which have a longer maturity, remember
that the maturity T is equal to 1

g
. Longer periods of time permit high volatilities to

make an important effect. This might explain the cross relation between these variables.

Observe now that the impact of the interest rate drop is stronger when a surrender
charge is included. In fact what is happening is that it becomes in itself less interesting
for the policyholder to surrender her contract when the interest rate has dropped but
the insurance fee α is higher on the no surrender charge contract. In other words the
contract that has a surrender charge becomes penalized as there is less surrender while
having a lower insurance fee.

Now we are going to consider the UP stress scenario. Consider first the case when
there is no surrender charge:
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k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 0,00 0,00 0,00 0,00
0,05 0,00 0,00 0,00 0,00
0,06 0,00 0,00 0,00 0,00
0,07 0,00 0,00 0,00 0,00
0,08 0,00 0,00 0,00 0,00
0,09 0,00 0,00 0,00 0,00
0,10 0,00 0,00 0,00 0,00

In the table for a no surrender charge contract we optained a zero result no matter
the policy characteristics. This result might seem very strange at first glance. But the
reason for this is very simple and quite enlightening.

In fact if what happens is that the optimal surrender of the policyholder profits from
all the possible stress gains the insurer could get from the GMWB contract. Surrender
is done at each gain opportunity since there is no surrender charge.

Even more enlightening is what happens when there is in fact a surrender charge.

k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 0,104 0,478 0,490 0,500
0,05 0,167 0,480 0,490 0,500
0,06 0,238 0,480 0,490 0,500
0,07 0,294 0,480 0,490 0,500
0,08 0,326 0,480 0,490 0,500
0,09 0,325 0,480 0,490 0,500
0,10 0,329 0,480 0,490 0,500

The NAV change is upper bounded by the surrender charge k times the shocked initial
lump sum. In our examples le lump sum is 100 e. Once shocked, the inital lump
sums are 95 e, 96 e, 98e and 100e. The NAVs obtained correspond to these initial
lump sums times the surrender charge of 50 bps. The following assertion can be stated:

No matter the stress scenario, if the policyholder behaviour is optimal the NAV
change is bounded by the surrender charge times the initial shocked lump sum.
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11.2 Equity Risk

In what follows and following the QIS 4 standard model we study the NAV of the
GMWB given a drop of 32% of the equity value. Observe that if the equity decreases
32% this does not mean that the unit link portfolio will do the same, in fact only the
risky part of this portfolio will shut. The unit link shocks are the following for the
different equity/bond compositions

The following table represents the NAV change for a lump sum of 100 e:

k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,1321 -1,0550 -2,7211 -6,7434
0,05 -0,2506 -1,5765 -3,7812 -8,8664
0,06 -0,4158 -2,1617 -4,8696 -10,8578
0,07 -0,6077 -2,7497 -5,8950 -12,6019
0,08 -0,8521 -3,4044 -6,9656 -14,3070
0,09 -1,0829 -3,9742 -7,8580 -15,6559
0,10 -1,3721 -4,6205 -8,8210 -17,0499

k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,2379 -1,6262 -3,4772 -7,5291
0,05 -0,4300 -2,1997 -4,5268 -9,5546
0,06 -0,6828 -2,8060 -5,5747 -11,4370
0,07 -0,9565 -3,3880 -6,5425 -13,0798
0,08 -1,2692 -4,0205 -7,5393 -14,6945
0,09 -1,5225 -4,5564 -8,3814 -15,9773
0,10 -1,8275 -5,1627 -9,2591 -17,2874

It must first be notice the high impact a equity plummet can have on an GMWB
guarantee. On our model the insurer uses a percentage of the equity in order to hedge
the guarantee’s risk. However if the equity drops the amount collected in order to pro-
duce the hedge is reduced and the probability of having an exercise of the guarantee
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increases. To avoid this pitfall some insurers charge an amount that do not depend on
the equity level.

The impact of equity drop is higher on higher volatility contracts. To elements should
be considered. First, as the unit link is composed of a high percentage of equity, the
equity drop has a higher impact. Second, as with the drop of interest rates, higher
volatility contracts get higher impacts on variable changes.

When the equity losses value the contracts with higher contractual rate (g) are the
most affected. This can be explained by the fact that the probability of having to
exercise the guarantee increases. The higher the contractual rate the more the insurer
will have to take in charge in case of a diminish of the unit link.

At last it is important to observe that the contracts with surrender charge where more
affected by the equity drop. As with the interest rate drop case the explanation is that
this change in the variable implies a reduction in the probability to surrender. That is
policyholder behaviour between surrender and no surrender charge contracts becomes
more similar while the insurance charges α are smaller for the surrender charge contract.

11.3 Mortality/Longevity risk

Following the QIS4 Standard model methodology we stressed the mortality in by in-
creasing the mortality rates by 10% for each age and we constructed a longevity scenario
by decreasing the mortality rates by 25% for each age.

The following are the results for the longevity case:

k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 0,0000 -0,0004 -0,0009 -0,0015
0,05 -0,0001 -0,0004 -0,0009 -0,0015
0,06 -0,0001 -0,0005 -0,0010 -0,0015
0,07 -0,0001 -0,0005 -0,0011 -0,0017
0,08 -0,0001 -0,0006 -0,0011 -0,0018
0,09 -0,0001 -0,0006 -0,0011 -0,0017
0,10 -0,0001 -0,0006 -0,0012 -0,0018
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k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,0001 -0,0011 -0,0016 -0,0015
0,05 -0,0001 -0,0010 -0,0015 -0,0017
0,06 -0,0001 -0,0009 -0,0013 -0,0019
0,07 -0,0002 -0,0008 -0,0011 -0,0014
0,08 -0,0002 -0,0008 -0,0010 -0,0007
0,09 -0,0003 -0,0007 -0,0009 -0,0022
0,10 -0,0003 -0,0008 -0,0013 -0,0005

The following are the results for the mortality case:

k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 0,0000 0,0000 0,0000 0,0000
0,05 0,0000 0,0000 0,0000 0,0000
0,06 0,0000 0,0000 0,0000 0,0000
0,07 0,0000 0,0000 0,0000 0,0000
0,08 0,0000 0,0000 0,0000 0,0000
0,09 0,0000 0,0000 0,0000 0,0000
0,10 0,0000 0,0000 0,0000 0,0000

k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 0,0000 0,0004 0,0007 0,0006
0,05 0,0000 0,0004 0,0006 0,0007
0,06 0,0001 0,0004 0,0005 0,0007
0,07 0,0001 0,0003 0,0004 0,0006
0,08 0,0001 0,0003 0,0004 0,0004
0,09 0,0001 0,0003 0,0004 0,0009
0,10 0,0001 0,0003 0,0005 0,0002

Observe that NAV change is negative in the longevity risk and positive for the mortal-
ity risk. A simple explanation is due: as more policyholders survive up to the maturity
of the contract more guarantees must be paid by the insurer.

However these values are immaterial. One can venture to say that the surrender be-
havior, in our model, takes most of the policyholder exists and not much involuntary
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exists remain.

As results are very small, some value oscilation is due to numerical implementation
and approximation. We will restrain ourselves of further analysis.

11.4 Equity and Longevity Cross Effect

Even though the QIS4 do not propose to consider the effect of simultaneously having
an equity stress and a mortality stress we will consider this case as well. The following
results are the change in NAV when both equity and longevity are shocked:

k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,1324 -1,0573 -2,7254 -6,7496
0,05 -0,2511 -1,5790 -3,7856 -8,8726
0,06 -0,4164 -2,1643 -4,8740 -10,8638
0,07 -0,6084 -2,7524 -5,8994 -12,6077
0,08 -0,8529 -3,4072 -6,9699 -14,3126
0,09 -1,0838 -3,9770 -7,8622 -15,6612
0,10 -1,3731 -4,6233 -8,8252 -17,0549

k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,2383 -1,6289 -3,4819 -7,5356
0,05 -0,4305 -2,2024 -4,5315 -9,5610
0,06 -0,6834 -2,8087 -5,5793 -11,4432
0,07 -0,9572 -3,3908 -6,5469 -13,0856
0,08 -1,2701 -4,0233 -7,5436 -14,7002
0,09 -1,5234 -4,5592 -8,3856 -15,9827
0,10 -1,8284 -5,1654 -9,2632 -17,2925

These results do not seem very different to those obtained when only the equity was
shocked. As longevity is included the value decreases. However observe what happens
if we subtract the equity shocked tables from the previous tables, we obtain:
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k = 0 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,0004 -0,0023 -0,0043 -0,0061
0,05 -0,0005 -0,0024 -0,0044 -0,0061
0,06 -0,0006 -0,0026 -0,0044 -0,0060
0,07 -0,0007 -0,0027 -0,0044 -0,0058
0,08 -0,0008 -0,0028 -0,0044 -0,0056
0,09 -0,0009 -0,0027 -0,0042 -0,0053
0,10 -0,0010 -0,0028 -0,0041 -0,0051

k = 50 bps Equity / Bond composition
Contractual 30% 50% 70% 100%

rate (g)
0,04 -0,0004 -0,0027 -0,0047 -0,0065
0,05 -0,0005 -0,0027 -0,0046 -0,0063
0,06 -0,0006 -0,0028 -0,0046 -0,0061
0,07 -0,0007 -0,0028 -0,0044 -0,0059
0,08 -0,0008 -0,0028 -0,0044 -0,0056
0,09 -0,0009 -0,0027 -0,0042 -0,0053
0,10 -0,0010 -0,0027 -0,0041 -0,0051

These values are four or five times more important that those obtained when only
longevity was considered. The risk of longevity increases in an important manner in
the presence of equity risk. It seems clear that the addition of both risks is far from
representing the effect of the mutual risk presence.
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GLWB valuation

GMWBs for-life contracts can be approached from a Monte-Carlo perspective as is
done by Holz, Kling and Russ [24]. On this Section we will adapt the GMWB guar-
entee develepments of the previous Section to the “for-life” case.

The GLWBs can be considered as very long maturity GMWBs. One important differ-
ence must be high-lighted with respect to the way GMWBs have been modeled in this
report: in GMWBs we have taken the maturity T to be equal to ω0

G
where G is the

amount the policyholder is allowed to withdrawal without a penalization, this can not
longer be the case for GLWBs.

In this Section we will construct a static strategy GLWB as a portfolio of GMWBs. In
order to do so we must consider a GMWB where T is unrelated to G. Thes guarantee
will be called the general-GMWB. It follows from equation 7.3 that

WT = e(r−α−1
2

σ2)T+σBT max

(

0, ω0 − G

∫ T

0

e−(r−α−1
2

σ2)t−σBtdt

)

(12.1)

and following the same argument that is followed in Section 8.1 we have that the value
of the general-GMWB is

V [general-GMWB] = e−rT EQ

[

1

YT

[

1 − g

∫ T

0

Ytdt

]+
]

+
g

r
(1 − e−rT ).

Observe that the only difference with equation 7.9 is that we no longer have that g = 1
T
.

Now we will concentrate in finding the value of

EQ

[

1

YT

[

1 − g

∫ T

0

Ytdt

]+
]

.

This option turns out to be also Quantum Asiatic but with another strike if written in
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the following manner

gT EQ

[

1

YT

[
1

gT
− 1

T

∫ T

0

Ytdt

]+
]

,

where
Yt = e−(r−α− 1

2
σ2)t−σBt .

Now a GLWB guarantee is equivalent to a portfolio of general-GMWB weighted by the
percentage of policyholders that dies at each maturity year. That is,

GLWB =

∫ ∞

0

general-GMWB(t, σ, r, g)dFx(t),

where Fx() is the cumulative distribution function of a policyholder of age x at the
time of valuation and t is the maturity of the general-GMWB guarantee.

Calculation by Differential Equation

This option can be valued with a partial differential equations approach very similar
to the one used for GMWBs with static strategy. Let

Xt =
1

gT
− 1 +

∫ t

0

gsdYs =
1

gT
+ gtYt −

1

T

∫ t

0

Ysds

with gt =
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)
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, then
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− gtσ
2dt

= (r − α)(Zt − gt)dt + σ(Zt − gt)dBt.

Therefore by the thorem of Feyman-Kac theorem we have that V (t, z) = EQ
t

[
[ZT ]+

]

satisfies the following differential equation

∂V

∂t
+ (r − α)(Zt − gt)

∂V

∂Z
+

1

2
σ2(Zt − gt)

2∂2V

∂Z2
= 0,
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with teminal condition V (T, Z) = [Z]+. Observe that the general-GMWB EDP is
exactly the same EDP that for the T = 1

g
case. The only difference between the

general-GMWB system of equations and the GMWB system of equations is the value
of Zt at 0, that is, in the general case we have that

Z0 =
1

gT
− 1,

while on the GWBDs we have Z0 = 0. This implies that the same difference scheme
that was used for the GMWB might be applied.

However the calculation should be done for as many periods as those in xhich the
policyholder has a non-negative probability of being alife, this in addition to the fact
that a precise EDP requires a fine grid implies that the algorithm is very slow. We
have already shown that the lower bound approximation is in fact very near to the
real value so we suggest to use the approximation, which is quite fast in computational
terms to approach the value of the general-GMWBs. On the next Section we will show
how.

Approximation by Lower Bounds

From the calculations of lower bonds made in Section 8.1 it follows that if

mt = 3
t

T 3

(

T − t

2

)

v2
t = t − 3

T

(

t − t2

2T

)2

and

EQS [Yt|Z] = e−(r−α+σ2)t−σmtZ+ 1
2
σ2v2

t ,

then

EQS

[[

1 − g
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EQS [Yt|Z]dt

]+
]

≤ EQS

[[

1 − g
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0

Ytdt

]+
]

,
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where QS is the probability that take S as numeraire. This lower bound is a good
approximation to the function value. And so the general-GMWB is worth

V [general-GMWB] =e−rT EQ
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]+
]

+
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2
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3
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+
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r
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where only numerical integrations are required.



Conclusion

On the present report we have presented a general glance of the variable annuities. We
have introduced the product and its standard guarantees. As well we presented some
general figures on the markets and on the possible future development of these prod-
ucts. Our main focus of attention was the GMWBs guarantee. In particular we have
focused on the study of the effect of optimal surrender on this guarantee. However,
the other guarantees where also briefly treated.

We have chosen to approach the variable annuities from a non-simulation point of
view, that is from an ”analytical“ point of view. From a practical point of view it is
normally easier to follow a Monte-Carlo approach. In fact not to follow a Monte-Carlo
approach usually implies several simplifications in the modeling. However our choice
of an analytical approach is well grounded. Not only it allowed us to examine the
effects of passing from a continuous model to a discrete one in GMDBs but mainly
it allowed us to explore the effects of optimal surrender in GMWBs. The problem of
optimal behavior is better suited from an analytical approach. In fact the Monte-Carlo
approach follows a past-to-future path but optimality supposes in fact to choose the
best moment and amount by taking into account the future possible outcomes. That is,
it is better fitted by a future-to-past perspective. Amongst the analytical approaches
there are some that follow this direction. In particular the PDE approaches are very
well suited for optimality problems.

The first Part of the report was dedicated to the GMDB, GMAB and GMIB guaran-
tees. Our presentation was general the basics on value calculation of these products
where presented and some numerical examples.

A second Part was dedicated to GMWBs and in a lesser manner to GLWB. Three gen-
eral approaches where taken with respect to the GMWBs. First it was considered the
case where no surrender was done by the policyholder. This case leaded us to a very
keen relation between GMWBs and financial derivates: GMWBs are strongly related
to Asian options. The no-surrender case decomposes the GMWBs into a quanto-asiatic
option and a fixed annuity. Therefore the valuation of the no-surrender GMWB was
inspired on Asiatic option techniques. We presented three of them: by approximation
of the sum of log-normal variables, by a lower bound and by PDEs. The approximation
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of the sum of -log-normal variables produces a solution very easy to implement and that
showed in our examples not to be too misleading, however as being an approximation it
must be treated with caution, in particular in extreme parameter configurations. The
lower bound showed to be a very good approximation, however from a prudent pricing
perspective it would be better to have an upper bound. The PDE is without doubt
the most precise approach, however it is as well the harder to implement.

The second general approach applied to the GMWBs was to consider optimal partial
surrender. This approach is treated with the help of the Hamilton-Jacobi-Bellman
machinery. Two surrender charges were taken into account 5% and 10%. We observed
that the insurance charge was larger for the smaller surrender charge. As well we
observed that for high volatility the insurance charge is greater. We compared the
insurance charges with different values of surrender charge and observed that the in-
surance charge dropped vividly as the surrender charge increased up to joining the
value of those obtained for a no-surrender model.

The third general approach consisted in allowing only total surrender. This approach
is related to the family of present contracts in which the contract characteristics are
changed if the policyholder makes a partial surrender, this changes usually are equiv-
alent to making a total surrender and then buying a new contract under new charac-
teristic of less value. The approach is also related to the step-up type of guarantee.
In order to model this approach we used instruments borrowed from the American-
Asian options. As a result we established a PDE who’s values where adjusted from
the future to the past, according to the optimal surrender behavior. Two surrender
charges were considered: a surrender charge of 0 bps and a surrender charge of 50 bps.
Observe that the surrender charges are much smaller than those considered for the
partial surrender model. We observed that the insurance fees were higher if there was
a higher volatility and smaller for the higher surrender charge. We also observed that
the insurance fee drop rapidly if we increase the surrender charge up to establishing
in a no-surrender value. For this Part of the model we incorporated an interest rate
curve, while up to this moment we had supposed a flat forward curve, and we also
incorporated a mortality curve. We observed the optimal surrender behavior. This
behavior is almost linear when there is no surrender charge while a more sophisticated
form appears in the presence of a surrender charge. This form implies a non-surrender
zone around the lump value at the beginning of the contract and also a no-surrender
zone for all contract values at the end of the contract. This to zones correspond to
the fact that at the beginning the contract is at a fair price and surrender would im-
ply losing the surrender charge and that at the end of the contract there is always a
payment of what is left in the unit-link and so it makes no sense to surrender just before.

Once the three general approaches were presented we considered some of the risks asso-
ciated to this product. To do so we took the third approach as the basic approach and
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we applied the QIS4 standard methodology to measure the interest rate risk, the equity
risk, the mortality risk and the longevity risk. Some general principles where observed.
In fact we observed that the NAV change was bounded by the surrender charge times
the initial shocked lump sum. This is a consequence that once this limit is crossed the
policyholder surrenders taking the remaining gain. We also observed that the NAV
change was negative when there was a drop in the interest rate, a drop in the equity
or a reduction of mortality. It is clear that the first reduces the value of the unit-link,
the second has an impact on the feasibility of paying the withdrawals while the third
permits more policyholders to arrive to the final of the contract where the guarantee
takes place. In general we observed that the effect of volatility was to increase the NAV.
Now, the presence of a surrender charge has an affect similar to that of volatility: if
the NAV change is positive there is a higher gain, if the NAV change is negative there
is a higher loss. The presence of a surrender charge permits the insurer to charge a
lower insurance charge, if the market goes down then there is not much need of a the
surrender charge while there is a lower insurance charge and if the market go up then
the presence of the surrender charge discourages the policyholder to surrender leaving a
gain for the insurer. At last we considerd the case of simial longevity and equity shock
and we observed that the longevity equity is aplified by the presence of the equity shoch.

In the last Section we presented some ideas on the application of the GMWB techniques
into the GLWB guarantee. Mainly the point is to disaggregate the relation between
contractual rate and maturity while maintaining the advantages of the techniques just
developed for the GMWB. However our main focus of attention was the GMWB and
we did not pursue a further analysis of the GLWB guarantee.
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[10] Chancelier, J.-P., and Sulem, A. Méthodes numériques en contrôle stochas-
tique. Cours INRIA, 2005.

[11] Chaumont, S. Gestion optimale de bilan de compagnie d’assurance. PhD thesis,
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Appendix

In this Section the mathematical background to follow most of the demonstrations
will be presented. A brief introduction to stochastic calculus is due and the princi-
ples of stochastic control and in paticular the Hamilton-Jacobi-Bellman equation are
presented.

.1 Basic Definitions

The present Subsection will only present the basic stochastic definitions and theorems
required to introduce the stochastic control. A good introduction to the stochastic
calculus is Karatzas and Shreve’s book [28]. A good short introduction can be found
in Karatzas’ notes [27]. For a more financial approach a good source is Shreve’s book
[42].

.1.1 Some Definitions

A σ-albegra on a set Ω is a collection of subsets of Ω such that the empty set is included,
and is stable under complementation and enumerable union. It can be shown that for
every collection of subsets A of Ω there exists a unique σ-algebra that is the smallest
σ-algebra that contains A, we denote this σ-algebra as σ(A). We will denote IR the
set of the real numbers with σ-algebra σ(all the open subsets of the real numbers).
A mesurable function f : A → B is a function from the set A with σ-algebra A to
the set B with σ-algebra B such that if C ∈ B then f−1(C) ∈ A. We denote σ(f)
the smallest σ-algebra in A such that f is a mesurable function for a given (B,B). A
random variable is a mesurable function Y (ω) : Ω → IR, defined on a probability space
(Ω,F , P ). A stochastic process is a family of random variables X = {Xt; 0 ≤ t ≤ ∞}.
For every ω ∈ Ω, the function t → Xt(ω) is called the sample path or trajectory
of the process. We will denote FX

t = σ(Xs, 0 ≤ s ≤ t) the smallest σ-algebra such
that all functions in the family {Xs, 0 ≤ s ≤ t} are measurable. A set of σ-algebras
{Ft; 0 ≤ t < ∞} such that Fs ⊂ Ft for all 0 ≤ s ≤ t < ∞ is called a filtration. If
FX

t ⊆ Ft for all t ≥ 0, we say that X is adapted to the filtration Ft.
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.1.2 Brownian Motion

Brownian motion is a strochastic process {Bt; 0 ≤ t ≤ ∞} that satisfies

1. B0 = 0

2. Bt1 , Bt2 − Bt1 , · · · , Btn − Btn−1 are independent, for every n ≥ 1 and 0 = t0 <
t1 < ... < tn < ∞.

3. Bt − Bs ∼ N (0, σ2(t − s)), for every 0 < s < t < ∞.

4. Bt has continous sample paths.

It can be shown that this process exists. In fact is one of the most important processes
in financial mathematics. When σ = 1 we say that it is a standard Brownian Motion.

If B(1), ..B(d) are d independent, standard Brownian motions, the vector-valued process
B = (B(1), ..B(d)) is called a standard Brownian motion in IRd.

.1.3 Stochastic Integration

We will now brefly define the stochastic integral with respect to a Brownian motion.
Consider a Brownian motion {Bt} adapted to a given filtration {Ft}; for an adapted
process X we would like to define the stochastic integral

∫ t

0

XsdBs.

We will first define this integral with respect to a simple process. A process X is called
simple if there existes a partition 0 = t0 < t1 < ... < tn < tn+1 = T such that Xt(ω) is
constant in t for each subinterval [tj, tj+1) and all ω ∈ Ω. We define

∫ t

0

XsdBs :=
m∑

j=0

Xtj(Btj+1∧t − Btj) tm < t ≤ tm+1.

Now we will like to define this integral for a more general set of processes. Let Γ be
the set of the Ft-adapted right-continous with left limit processes θt such that

E

[∫ ∞

0

θ2
t dt

]

< ∞.

Define ||θ||2 = E
[∫∞

0
θ2

t dt
]
. Then the set Γ with || · || as norm is a complete space and

we can define our integral for all elements of this space. It is easy to see that all simple
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functions are in Γ and it can be shown that for every function θ ∈ Γ there exists a
series of simple functions θ(n) such that θ(n) n→∞−−−−−−→

L2([0,+∞))
θ. Then

∫ t

0

θ(n)
s dBs

n→∞−−−→
L2(Ω)

∫ t

0

θsdBs

is a good definition.

This definition can be generalized to an integral with respect to other stochastic pro-
cesses. We will not require this generalization for this report.

.1.4 Itô’s lemma

An Itô process is a stochastic process Xt that can be represented as

Xt = X0 +

∫ t

0

bsds +

∫ t

0

σsdBs,

where X0 is nonrandom and bt and σt are adapted stochastic processes.
Let f : IR+ × IR → IR be a C1×2 function with bounded derivates. Then the following
relation is true for all itô processes and is called Itô’s lemma.

f(t,Xt) = f(0, X0) +

∫ t

0

ft(s, Xs)ds +

∫ t

0

fx(s, Xs)bsdBs +

∫ t

0

fx(s, Xs)σsds

+
1

2

∫ t

0

fxx(s, Xs)σ
2
sds.

.1.5 An itô’s lemma application

The following theorem corresponds to Karatzas et Shreve’s [28] page 361 exercice. It is
a good illustration of the Itô’s lemma and it we will us this result for the static strategy
of the GMWBs.

Theorem .1.1. Let X(t) be the stochastique process that is the solution to

dX(u) = (a(u) + b(u)X(u))du + (γ(u) + σ(u)X(u))dB(u),

where B(u) is a Brownian motion with respect to a filtration F(u), u ≥ 0, and
a(u), b(u), γ(u), σ(u) are processes adapted to this filtration. Let t ≥ 0 and x ∈ IR
the time and initial value of the process. Let

Z(u) = exp

{∫ u

t

σ(s)dB(s) +

∫ u

t

(

b(s) − 1

2
σ2(s)

)

ds

}

Y (u) = x +

∫ u

t

a(s) − σ(s)γ(s)

Z(s)
ds +

∫ u

t

γ(s)

Z(s)
dB(s)

then X(u) = Y (u)Z(u).
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Proof. First, Y (0)Z(0) = x · 1 = x then the initial value is fulfilled. Also,

dZ(u) = d

(

exp

{∫ u

t

σ(s)dB(s) +

∫ u

t

(

b(s) − 1

2
σ2(s)

)

ds

})

= Z(u)

((

b(u) − 1

2
σ2(u)

)

du + σ(u)dB(u) +
1

2
σ2(u)du

)

= σ(u)Z(u)dB(u) + b(u)Z(u)du, u ≥ t,

dY (u) = d

(

x +

∫ u

t

a(s) − σ(s)γ(s)

Z(s)
ds +

∫ u

t

γ(s)

Z(s)
dB(s)

)

=
a(u) − σ(u)γ(u)

Z(u)
du +

γ(u)

Z(u)
dB(u), u ≥ t.

An so

dX(u) =d(Y (u)Z(u))

=Y (u)dZ(u) + Z(u)dY (u) + dZ(u)dY (u)

=Y (u)Z(u)(σ(u)dB(u) + b(u)du) + Z(u)

(
a(u) − σ(u)γ(u)

Z(u)
du +

γ(u)

Z(u)
dB(u)

)

+ Z(u)(σ(u)dB(u) + b(u)du)

(
a(u) − σ(u)γ(u)

Z(u)
du +

γ(u)

Z(u)
dB(u)

)

=σ(u)X(u)dB(u) + b(u)X(u)du + (a(u) − σ(u)γ(u))du + γ(u)dB(u)

+ (σ(u)dB(u) + b(u)du) ((a(u) − σ(u)γ(u))du + γ(u)dB(u))

=(b(u)X(u) + a(u) − σ(u)γ(u))du + (σ(u)X(u) + γ(u))dB(u) + σ(u)γ(u)du

=(a(u) + b(u)X(u))du + (γ(u) + σ(u)X(u))dB(u).

.1.6 Feynman-Kac theorem

Consider the differential stochastic equation:

dX(u) = β(u, X(u))du + γ(u, X(u))dW (u).

Let h(y) be a Borel-mesurable function. Let F > 0 fixed, and t ∈ [0, T ]. Let

g(t, x) = Et,x[h(X(T ))]

then Et,x[|h(X(T ))|] < +∞. Therefore g(t, x) is solution to the partial differential
equation

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0,

with the terminal condition g(T, x) = h(x),∀x.
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.2 Stochastic control

In this Section the Stochastic optimal control theory will be presented. This Section
is based on [11], [10] and [27]. We will present the parabolic Hamilton-Jacobi-Bellman
theorem. We have chosen the parabolic case since we will use it for a GMWB product,
which has a bounded term. That is, the product arrives to an end, either because there
is no more money left in the GMWB account or because the product has arrived to
maturity (see the GMWB dynamic surrender section for more details). We will not
use Hamilton-Jacobi-Bellman theorem in for-life GMWB.

.2.1 The control process

Let (Ω,F , P ) be a probability complete space. Let B be a p-dimensional Brownian
motion with Ft its natural filtration. The decision variables, or control variables, are
stochastic processes whose value can be decided at any time. That is, the value of these
variables depends only on the information available up to the time of the decision t.
To be more precise, a control process (αt)0≤t<T is an stochastic process adapted to
the natural filtration of the Brownian motion considered. We will denote A the image
space of the control process and will demand A to be compact in a separable space.
Denote A the set of all control processes, that is

A = {αt : 0 ≤ t < T, αt is Ft − mesurable}.

.2.2 The stochastic controlled process

Now suppose that Xt is a stochastic process (state variable) governed by the stochas-
tic differential equation:

{

dXt = b(Xt, αt)dt + σ(Xt, αt)dBt

X0 = x ∈ IRn
,

where Bt is the p-dimensional Brownian motion, the drift term b(Xt, αt) : IRn×A → IRn

is a continous function and the volatility term σ(Xt, αt) : IRn ×A → IRn×p is also con-
tinous. A Lipschitz contidion1 on the fonctions b et σ guarantees that the stochastic
differential equation has a unique solution and therefore that Xt is well defined. Such
an Xt is called a stochastic controlled process .

The image space of the stochastic control process is normally IRn, but for the interest
of GMWBs IRn is too large and we will rather take an open non-bounded subset of IRn,
let’s denote O this open non-bounded set. We will suppose as well that 0 < t < T ,
that is t is also inside an open interval of IRn.

1see Section .2.4.



APPENDIX 98

Now we will redefine our stocastic controlled process in order to include the time
information into the process and also into it’s image. Take

{

dYt = B(t, Yt, αt)dt + S(t, Yt, αt)dBt

Y0 = y ∈ IRn

to be the stochastic controlled process of our interest. Define X0 = x = (0, y) and
Xt = (t, Yt) the new stochastic controlled process. Take

b =

(
1
B

)

and σ =

(
0 · · · 0

S

)

then
{

dXt = b(Xt, αt)dt + σ(Xt, αt)dBt

X0 = x = (0, y) ∈ (0, T ) ×O,

with this notation we can consider that our process stops when Xt goes out of D =
(0, T ) ×O. There fore, we can define a stop time τ = inf{t > 0; Xt /∈ D}.

.2.3 The value function

The general problem of the optimal control theory is to find an stochastic control
process that will minimize a certain function of the trajectory of X. We will say that
the expected cost function for a given strategy α ∈ A is

V α(s, y) = Eα
s,y

[∫ τ

s

f(t, Yt, αt)e
−

R t

s
r(u,Yu,αu)dudt + Ψ(τ, Yτ )e

−
R τ

s
r(u,Yu,αu)du

]

,

where f and Ψ are continous and r(u, Yu, αu) is the interest rate process.
What we are looking for is the strategie α̂ that will minimze V α. If we can not find α̂
we will like at least to have the value of V α̂. Let

V (s, y) = inf
α∈A

V α(s, y)

the value function.

.2.4 Sufficient conditions

The good definition of Xt

The functions b and σ must be globaly Lipschitziens in D uniformilly in A to assure
the good definition of the controlled process. That is, there exists a constant L such
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that

|b(x, α) − b(x0, α)| ≤ L|x − x0|
|σ(x, α) − σ(x0, α)| ≤ L|x − x0|

for all (x, x0) ∈ D ×D and α ∈ A.

The good definition of V

One of the three following conditions is enought to assure the good definiton of V

(H1) f and Ψ are bounded in ther definition domain

(H2) f and Ψ increase like a polynom and Xt admits polynomial moments, that is
there exists a K > 0 and an m0 ∈ IN such that

f(x, α) ≤ K(1 + |x|m0) and Ψ(x) ≤ K(1 + |x|m0)

and

∀m ≤ m0, sup
α∈A

Eα
y

[

sup
s≤t≤T

|Xt|m
]

< ∞

(H3) f and Ψ increase exponentially and Xt admits exponential moments, that is there
exists a K > 0 and an λ0 > 0 such that

f(x, α) ≤ Keλ0|x| and Ψ(x) ≤ Keλ0|x|

and

∀λ ≤ λ0, sup
α∈A

Eα
y

[

sup
s≤t≤T

eλ|Xt|
]

< ∞.

The continuity of the stopping time τ

Let δ be the distance to the border of an open space O, that is

δ(x) =







+ inf
y∈∂O

|y − x| if x ∈ O

− inf
y∈∂O

|y − x| if x /∈ O
.

Let Lα
t be the linear, second-order differential opperator

LαV (x) =
n∑

i=1

bi(x, α)
∂V (x)

∂xi

+
1

2

n∑

i=1

n∑

j=1

sij(x, α)
∂2V (x)

∂xi∂xj

.

One of the following two hypothesis assures the border’s non-degeneration. This assures
the contiunuity of the stopping time.
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(H’1) δ is C2 and ∀x ∈ δO,∀α ∈ A, σ∗(x, α)Dδ(x) 6= 0 or Lαδ(x) < 0.

(H’2) We suppose that the open space D can be written as

D = ((0, T ) × IRn) ∩ (∩q
i=1Oi)

where the Oi are open spaces in IRn. We denote δi the distance to the border
of an open space. For all i = 1, .., q we have that δi is C2 in a neighborhood of
δOi and for every (s, y) ∈ Γtransversal ∃i ∈ {1, ..., q} such that δi(s, y) = 0 and
∀α ∈ A, S∗(s, y, α)Dδi(s, y) 6= 0 or ∂δi

δt
(s, y) + Lαδi(s, y) < 0.

.2.5 The principle of dynamic programming

Under the preceding conditions, V satisfies the following equation, for all x ∈ D and
for any t such that s ≤ t ≤ T

V (s, x) = inf
α∈A

Eα
s,y

[

V (t ∧ τ, Yt∧τ )e
−

R t∧τ

s
r(s,Ys,αs)ds +

∫ t∧τ

s

f(u, Yu, αu)e
−

R u

s
r(s,Ys,αs)dsdu

]

we can interpret this fundamental principle as a principle that states that the optimal
V can be “decomposed” into a the integral of f up to t and then to V starting at t.
The optimal value function after t for an optimal strategy from s is in fact just the
optimal value function after t.

.2.6 The Hamilton-Jacobi-Bellman equation

If V is C2(D) ∪ C(D̄) and the sufficient conditions of Section .2.4 are fulfilled then V
satisfies the classical Hamilton-Jacobi-Bellman equation:







inf
α∈A

(
∂V

∂t
(·) + LαV (·) + f(·, α) − r(·, α)V (·)

)

= 0 if inside D

V = Ψ if t = τ

where Lα
t is the linear, second-order differential opperator:

LαV (x) =
n∑

i=1

bi(x, α)
∂V (x)

∂xi

+
1

2

n∑

i=1

n∑

j=1

sij(x, α)
∂2V (x)

∂xi∂xj

and B = (bi)i=1,..,n and S = (sij)i,j=1,...,n.

Observe that if we are faced with a maximization problem V (s, y) = sup
α∈A

V α(s, y) the

Hamilton-Jacobi-Bellman equation becomes






sup
α∈A

(
∂V

∂t
(·) + LαV (·) + f(·, α) − r(·, α)V (·)

)

= 0 if inside D

V = Ψ if t = τ
.
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.3 Vasicek’s Interest Rate Model

The Vasicek’s Interest Rate Model follows the following stochastic differential equation:
drt = (a − brt)dt + σdBt where Bt is a Q-brownian motion.

Lemma 1. The solution to the Vasicek SDE is given by

rt = rse
−b(t−s) +

a

b

(
1 − e−b(t−s)

)
+ σ

∫ t

s

e−b(t−u)dBu.

Proof. Let Yt = rte
b(ts) with t ≥ s. Then by Ito’s lemma we have that

dYt = eb(t−s)drt + rte
b(t−s)dt

= eb(t−s)((a − brt)dt + σdBt) + rtbe
b(t−s)dt

= eb(t−s)(adt + σdBt).

Now,

rte
b(t−s) − rs =

∫ t

s

dYu =

∫ t

s

eb(t−u)adu +

∫ t

s

eb(t−u)σdBu

and so

rt = rse
−b(t−s) +

a

b

(
1 − e−b(t−s)

)
+ σ

∫ t

s

e−b(t−u)dBu.

Lemma 2. The price at time t of a zero-coupcon bond in Vasicek’s model is:

B(t, T ) = em(t,T )−n(t,T )rt ,

where

n(t, T ) = 1
b

(
1 − e−b(T−t)

)
and m(t, T ) =

(
a

b
− σ2

2b2

)

(n(t, T ) − (T − t)) − σ2

4b
n2(t, T ).

Proof. For Q the is risk-neutral probability we have that

B(t, T ) = EQ
t

[

e−
R T

t
rudu
]

.

Lets calculate
∫ T

t
rudu, this is,

∫ T

t

rudu =

∫ T

t

rte
−b(u−t)du +

∫ T

t

a

b

(
1 − e−b(u−t)

)
du + σ

∫ T

t

∫ u

t

e−b(u−s)dBsdu

= rtn(t, T ) + a

∫ T

t

n(u, T )du + σ

∫ T

t

∫ T

u

e−b(u−s)dudBs

= rtn(t, T ) + a

∫ T

t

n(u, T )du + σ

∫ T

t

n(u, T )dBu.
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Observe that −
∫ T

t
rudu is a gaussian variable, and that,

EQ
t

[

−
∫ T

t

rudu

]

= −rtn(t, T ) − a

∫ T

t

n(u, T )du = −rtn(t, T ) − a

b
(T − t − n(t, T ))

V Q
t

[

−
∫ T

t

rudu

]

= σ2

∫ T

t

n2(u, T )du =
σ2

b2
(T − t − n(t, T )) − σ2

2b
n2(t, T ).

And so e−
R T

t
rudu is a log-normal variable. Therefore

B(t, T ) = EQ
t

[

e−
R T

t
rudu
]

= e−rtn(t,T )−a
b
(T−t−n(t,T ))+ σ2

2b2
(T−t−n(t,T ))−σ2

4b
n2(t,T )

= e
−rtn(t,T )+

“

a
b
− σ2

2b2

”

(n(t,T )−(T−t))−σ2

4b
n2(t,T )

,

which proofs the lemma.

Observation Sometimes the Vasicek model is expressed as drt = b(θ − rt)dt + σdBt

in such a case

B(t, T ) = e
−rtn(t,T )+

“

θ− σ2

2b2

”

(n(t,T )−(T−t))−σ2

4b
n2(t,T )

.

Lemma 3. The dynamics for the bond price of the Vasicek model are

dB(t, T ) = B(t, T )(rtdt − σn(t, T )dBt).

Following Itô’s lemma

dB(t, T ) =
∂B(t, T )

∂t
dt +

∂B(t, T )

∂rt

drt +
σ2

2

∂2B(t, T )

∂r2
t

dt

=B(t, T )
∂

∂t
(m(t, T ) − n(t, T )rt)dt − B(t, T )n(t, T )drt +

σ2

2
B(t, T )n2(t, T )dt

=B(t, T )

(
∂

∂t
(m(t, T ) − n(t, T )rt) − n(t, T )(a − brt) +

σ2

2
n2(t, T )

)

dt

− B(t, T )n(t, T )σdBt.

Now,
∂

∂t
m(t, T ) =

(
a

b
− σ2

2b2

)(
∂

∂t
n(t, T ) + 1

)

− σ2

2b
n(t, T )

∂

∂t
n(t, T )

and
∂

∂t
n(t, T ) = −e−b(T−t).
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So

∂

∂t
(m(t, T ) − n(t, T )rt) − n(t, T )(a − brt) +

σ2

2
n2(t, T )

=

(
a

b
− σ2

2b2

)
(
1 − e−b(T−t)

)
+

σ2

2b
n(t, T )e−b(T−t) + e−b(T−t)rt − n(t, T )(a − brt) +

σ2

2
n2(t, T )

= an(t, T ) − σ2

2b
n(t, T ) +

σ2

2b
n(t, T )e−b(T−t) + rt

(
e−b(T−t) + bn(t, T )

)
− an(t, T ) +

σ2

2
n2(t, T )

= −σ2

2b
n(t, T )

(
1 − e−b(T−t)

)
+ rt +

σ2

2
n2(t, T )

= rt,

therefore dB(t, T ) = B(t, T )(rtdt − σn(t, T )dBt).



APPENDIX 104

.4 Central moments for Asian options bounds cal-

culations

Lemma 4. Let Z =
∫ t

0
Budu therefore

E[Bu|Z] = muZ

V ar[Bu|Z] = u − t3

3
m2

u

V ar[Bu + Bs|Z] = u + s + vu,s,

where mu = 3
u

t3

(

t − 1

2
u

)

and vu,s = 2 min(u, s) − t3

3
(mu + ms)

2.

Proof. Consider fist Z and Bu moments E[Bu] = 0, V ar[Bu] = u, E[Z] = 0,

V ar[Z] = E

[(

tBt −
∫ t

0

udBu

)2
]

= E[t2B2
t ] − 2tE

[

Bt

(∫ t

0

udBu

)]

+ E

[∫ t

0

u2du

]

= E[t2B2
t ] − 2tE

[

Bt

(

tBt −
∫ t

0

Budu

)]

+ E

[∫ t

0

u2du

]

= t3 − 2t3 + 2t

∫ t

0

udu +

∫ t

0

u2du

=
t3

3

Cov(Bu, Z) = E

[

Bu

∫ t

0

Bsds

]

=

∫ t

0

min(u, s)ds

= u

(

t − 1

2
u

)

.

Observe that Z and Bu are normal distributed. Now by the Projection Theorem we
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have that

E[Bu|Z] = E[Bu] +
Cov(Bu, Z)

V ar[Z]
(Z − E[Z])

= 3
u

t3

(

t − 1

2
u

)

Z

= muZ

V ar[Bu|Z] = V ar[Bu] −
Cov(Bu, Z)2

V ar[Z]

= u − 3
u2

t3

(

t − 1

2
u

)2

= u − t3

3
m2

u

Cov[Bu, Bs|Z] = Cov[Bu, Bs] −
Cov(Bu, Z)Cov(Bs, Z)

V ar[Z]

= min(u, s) − 3

t3

(

t − 1

2
u

)(

t − 1

2
s

)

= min(u, s) − t3

3
mums

V ar[Bu + Bs|Z] = u − t3

3
m2

u + s − t3

3
m2

s + 2 min(u, s) − 2
t3

3
mums

= 2 min(u, s) + (u + s) − t3

3
(mu + ms)

2.

Lemma 5. Let Yt = e−(µ+ 1
2
σ2)t−σBt and Z =

∫ t

0
Bsds therefore

E

[∫ t

0

Yudu

∣
∣
∣
∣
Z

]

=

∫ t

0

e−µu−σmuZ+ 1
2
σ2 t3

3
m2

udu

V ar

[∫ t

0

Yudu

∣
∣
∣
∣
Z

]

=

∫ t

0

∫ t

0

e−µ(u+s)−σ(mu+ms)Z+ 1
2
σ2vu,sduds.

Proof.

E

[∫ t

0

Yudu

∣
∣
∣
∣
Z

]

=

∫ t

0

E[Yu|Z]du

=

∫ t

0

e−(µ+ 1
2
σ2)u−σE[Bu|Z]+ 1

2
σ2V ar[Bu|Z]du

=

∫ t

0

e
−(µ+ 1

2
σ2)u−σmuZ+ 1

2
σ2

“

u− t3

3
m2

u

”

du

=

∫ t

0

e−µu−σmuZ+ 1
2
σ2 t3

3
m2

udu
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and

E

[(∫ t

0

Yudu

)2
∣
∣
∣
∣
∣
Z

]

=

∫ t

0

∫ t

0

E[YuYs]duds

=

∫ t

0

∫ t

0

e−(µ+ 1
2
σ2)(u+s)−σE[Bu+Bs|Z]+ 1

2
σ2V ar[Bu+Bs|Z]duds

=

∫ t

0

∫ t

0

e−µ(u+s)−σ(mu+ms)Z+ 1
2
σ2vu,sduds.
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.5 On the Inversion of a tridiagonal matrix

A Tridiagonal matrix is a square matrix such that that all entries that are not the
principal diagonal or on the diagonals above and below the principal diagonal, are
zero. That is, it is a matrix that has the following form:

A =















a1,1 a1,2 0 0 0 · · · 0
a2,1 a2,2 a2,3 0 0 · · · 0
0 a3,2 a3,3 a3,4 0 · · · 0
0 0 a4,3 a4,4 a4,5 0

0 0 0 a5,4 a5,5
. . . 0

...
...

...
. . . . . . . . .

0 0 0 0 0
. . . an,n















.

Define Bk with k = 1, ..., n the square submatrix if A composed of those elements ai,j

such that i ≤ k and j ≤ k. That is

B1 =
(
a1,1

)
,B2 =

(
a1,1 a1,2

a2,1 a2,2

)

,B3 =





a1,1 a1,2 0
a2,1 a2,2 a2,3

0 a3,2 a3,3



 , ...,Bn = A.

Let Bk = det(Bk) for k = 1, .., n. By definition B1 = a1,1, B2 = a1,1a2,2 − a1,2a2,1 and
it is easy to see that

Bk = ak,kBk−1 − ak−1,kak,k−1Bk−2

for k = 3, ..., n. This recursive formula allows to obtain the value of det(A) since
det(A) = Bn.

Now define Ck the square submatrix if A composed of those elements ai,j such that
i ≥ k and j ≥ k. That is

C1 = A, C2 =













a2,2 a2,3 0 0 · · · 0
a3,2 a3,3 a3,4 0 · · · 0
0 a4,3 a4,4 a4,5 0

0 0 a5,4 a5,5
. . . 0

...
...

. . . . . . . . .

0 0 0 0
. . . an,n













,

C3 =











a3,3 a3,4 0 · · · 0
a4,3 a4,4 a4,5 0

0 a5,4 a5,5
. . . 0

...
. . . . . . . . .

0 0 0
. . . an,n











, ..., Cn =
(
an,n

)
.
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Let Ck = det(Ck) for k = 1, .., n. Then we have that Cn = an,n, Cn−1 = an−1,n−1an,n −
an−1,nan,n−1 and

Ck = ak,kCk+1 − ak+1,kak,k+1Ck+2

for k = 1, ..., n − 2. Let Dk =
k∏

j=1

aj+1,j for k = 1, ..., n − 1 and Ek =
k∏

j=1

aj,j+1 for

k = 1, ..., n − 1 the second diagonal products.

Each element of A−1 is the product or division of some of the elements B, C, D or E,
lets see how. Consider first what happens to A if we delete colomn i and line i. Take
for exemple i = 3













a1,1 a1,2 0 0 · · · 0
a2,1 a2,2 0 0 · · · 0
0 0 a4,4 a4,5 0

0 0 a5,4 a5,5
. . . 0

...
...

. . . . . . . . .

0 0 0 0
. . . an,n













.

The resulting matrix has 2 non-zero square blocs in diagonal: Bi−1 and Ci+1 and so it’s
determinant is Bi−1Ci+1, which means that the diagonal element αi,i of A−1 is

αi,i =
Bi−1Ci+1

Bn

.

Consider what happens to A−1 if we delete line i and colomn j with i < j. For exemple
i = 2 and j = 4,













a1,1 a1,2 0 0 · · · 0
0 a3,2 a3,3 0 · · · 0
0 0 a4,3 a4,5 0

0 0 0 a5,5
. . . 0

...
...

...
. . . . . . . . .

0 0 0 0
. . . an,n













.

The resulting matrix is an upper triangular by-blocs matrix, this means that it’s de-
terminant is the product of the determinants of the blocs in the diagonal. The firts
bloc is Bi−1, the second bloc is an upper triangular matrix and the third bloc is Cj+1.
Then

αi,j = (−1)i+j Bi−1Dj−1Cj+1

BnDi−1
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At last consider what happens to A−1 if we delete line i and colomn j with i > j. For
exemple i = 4 and j = 2,













a1,1 0 0 0 · · · 0
a2,1 a2,3 0 0 · · · 0
0 a3,3 a3,4 0 · · · 0

0 0 a5,4 a5,5
. . . 0

...
...

. . . . . . . . .

0 0 0 0
. . . an,n













.

This is a lower triangular by-blocs matrix. In this case

αi,j = (−1)i+j Bj−1Ei−1Ci+1

BnEj−1

Putting all together we have the following theorem.

Theorem .5.1. Let A be a tridiagonal matrix with elements ai,j. Let B1 = a1,1,
B2 = a1,1a2,2 − a1,2a2,1 and Bk = ak,kBk−1 − ak−1,kak,k−1Bk−2 for k = 3, ..., n. Let
Cn = an,n, Cn−1 = an−1,n−1an,n − an−1,nan,n−1 and Ck = ak,kCk+1 − ak+1,kak,k+1Ck+2.

Define Dk =
k∏

j=1

aj+1,j for k = 1, ..., n − 1 and Ek =
k∏

j=1

aj,j+1 for k = 1, ..., n − 1. Let

A−1 = [αi,j] then
for i = j

αi,i =
Bi−1Ci+1

Bn

for i < j

αi,j = (−1)i+j Bi−1Dj−1Cj+1

BnDi−1

for i > j

αi,j = (−1)i+j Bj−1Ei−1Ci+1

BnEj−1

.
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.6 Derivation of a closed form formula for V0(A, t)

Lemma 6. This lemma is taken from Dai, Kwonk and Zong [17]. Suppose that
V (W, A, t) is governed by the following differential stochastic equation

min

(

−∂V

∂t
− σ2

2
W 2 ∂2V

∂W 2
− (r − α)W

∂V

∂W
+ rV − max

(

1 − ∂V

∂W
− ∂V

∂A
, 0

)

G

,
∂V

∂W
+

∂V

∂A
− (1 − k)

)

= 0,

with V (0, A, T ) = A(1 − k) and V (0, 0, t) = 0. Then

V0(A, t) = (1 − k) max(A − Gτ ∗, 0) +
G

r

(

1 − e−r min(τ∗, A
G

)
)

with

τ∗ = min

(

− ln(1 − k)

r
, T − t

)

.

Proof. Observe that if W = 0 then we have that
∂V

∂W
= 0 so the equation becomes

min

(

−∂V0

∂t
+ rV0 − max

(

1 − ∂V0

∂A
, 0

)

G,
∂V0

∂A
− (1 − k)

)

= 0

with V0(A, T ) = A(1 − k) and V0(0, t) = 0.

Case 1 If 1 ≥ ∂V0

∂A
> (1 − k) so −∂V0

∂t
+ rV0 − G + G

∂V0

∂A
= 0.

Let U0(A, t) = V0(A, t)er(T−t) − G
T∫

t

er(T−u)du then

∂U0

∂t
− G

∂U0

∂A
= 0,

which is an hyperbolic ecuation with auxiliary conditions U0(A, T ) = A(1 − k) and

U0(0, t) = −G
T∫

t

er(T−u)du. The solution of this kind of equations has the form

U0(A, t) = F

(

t +
A

G

)

,

where F must be determined from the auxiliary conditions. This equations has a unique
characteristic which is the line T = t + A

G
, this line divides the function’s domain into
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two solution regions.

At t = T we have that V0(A, T ) = A(1 − k) so ∂V0

∂A
(A, T ) = (1 − k) which do not

correspond to the case 1. So we will focus on A = 0 that is U0(0, t) = −G
T∫

t

er(T−u)du

which means that

F (t) = −G

T∫

t

er(T−u)du

and so

U0(A, t) = F

(

t +
A

G

)

= −G

T∫

t+ A
G

er(T−u)du.

Which implies that

V0(A, t) = e−r(T−t)




−G

T∫

t+ A
G

er(T−u)du + G

T∫

t

er(T−u)du




 = G

t+ A
G∫

t

e−r(u−t)du.

Observe that

∂

∂A




G

t+ A
G∫

t

e−r(u−t)du




 = e−r A

G < 1

and therefore 1 ≥ ∂V0

∂A
for A ≥ 0 and r, G > 0. To satisfy case 1 conditions we would

only require that A < −G
r

ln (1 − k). This region combined with the region determined
by the characterisic gives

{

(A, t) : A < min

(

−G

r
ln (1 − k) , G(T − t)

)}

.

Let

τ ∗ = min

(

−1

r
ln (1 − k) , T − t

)

.

Case 2 If ∂V0

∂A
= 1 − k

Then V0(A, t) = A(1− k) + C(t) where C(t) is a function of t. To maintain continuity
one would expect to have for A ∈ [0, A0] and t ∈ [0, T ] we have

Gτ ∗(1 − k) + C(t) = V0(Gτ ∗, t) = G

t+τ∗

∫

t

e−r(u−t)du,
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and so for A ≥ GB(A, t)

V0(A, t) = A(1 − k) + G

t+τ∗

∫

t

e−r(u−t)du − Gτ ∗(1 − k).

Putting all together

Putting case 1 and case 2 solutions together we find that

V0(A, t) = (1 − k) max(A − Gτ ∗, 0) +
G

r

(

1 − e−r min(τ∗, A
G

)
)

,

with

τ∗ = min

(

− ln(1 − k)

r
, T − t

)

.


