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Abstract

In many problem domains, combining the predictions of sev-
eral models often results in a model with improved predictive
performance. Boosting is one such method that has shown
great promise. On the applied side, empirical studies have
shown that combining models using boosting methods pro-
duces more accurate classification and regression models.
These methods are extendible to the exponential family as
well as proportional hazards regression models. This article
shows that boosting, which is still new to statistics, is widely
applicable.

I will introduce boosting, discuss the current state of
boosting, and show how these methods connect to more stan-
dard statistical practice.

1 Introduction

The trend toward model mixing had a resurgence in eco-
nomics (Bates and Granger 1969), has increased in the ma-
chine learning community, and is partially accepted in the
statistics community. Researchers in these fields often had
different goals in mind as they developed their methodology.
Breiman (1996) specifically wanted to reduce the variance of
prediction models and proposedbagging. Bayesian model
averaging (Madigan et al. 1996, Hoeting et al. 1999) hoped
to alleviate the problems associated with model selection and
account for the uncertainty involved in model search. Other
methods like stacking (Wolpert 1992) and bumping (Tibshi-
rani and Knight 1995) attempted simply to decrease predic-
tion bias. Researchers found that in all these cases a viable
solution involved fitting several models and merging the pre-
dictions that each model produced.

Boosting is one of the latest prediction methods that pro-
ponents believed, at least initially, was the latest addition
to the class of model mixing procedures. Boosting, rapidly
made popular in the machine learning community, is a topic
slowly making its way into mainstream statistics research.

∗Appeared in 1999 inComputing Science and Statistics 31, 172–181.

Computational learning theorists desired a method for trans-
forming a collection of weak classifiers into one strong clas-
sifier (Schapire 1990, Freund 1995). This work culminated in
the work by Freund and Schapire (1997) who introduced the
AdaBoostalgorithm, now commonly referred to as theDis-
crete AdaBoostalgorithm. They discovered an algorithm that
sequentially fits “weak” classifiers to different weightings of
the observations in a dataset. Those observations that the pre-
vious classifier poorly predicts receive greater weight on the
next iteration. The finalAdaBoostclassifier is a weighted
average of all the weak classifiers. In a wide variety of classi-
fication problems, their weighting scheme and final classifier
merge have proven to be an effective method for reducing bias
and variance, and improving misclassification rates (Bauer
and Kohavi 1999, Dietterich 1998). Empirical evidence has
shown that the base classifier can be fairly simplistic (shal-
low classification trees) and yet, when boosted, can capture
complex decision boundaries (Breiman 1998).

From the statistician’s point of view, the breakthrough
in boosting occured in Friedman, Hastie, and Tibshirani
(2000). Although still focused on classification problems,
they showed that Freund and Schapire’sAdaBoostalgorithm
is an optimization method for finding a classifier that mini-
mizes a particular exponential loss function. Other authors
have also made the connection between boosting and opti-
mization (Breiman 1999, Mason et al. 2000). Friedman et al.
proceeded to show that this exponential loss function used in
AdaBoostis closely related to the Bernoulli likelihood and
developed a new boosting algorithm that finds a classifier to
directly maximize a Bernoulli likelihood. The important find-
ing of this work is that it links the rather obscure work of
the computational learning theorist to a likelihood method of
standard statistical practice.

In this article I will trace the development of boosting
methodology from their computational learning theory ori-
gin to the latest perception as functional optimization algo-
rithms. Although boosting algorithms on the surface appear
complex, closer inspection will show that they have much in
common with how a statistician might fit familiar linear mod-
els. This similarity will lead directly into their application to
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N . For t in 1, . . . , T iterate the following steps.

1. Using the weights, estimateP (Y = 1|x).

2. Setht(xi) = log P̂ (Y =1|x)

P̂ (Y =−1|x)
.
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w
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4. Normalizewt+1
i so that they sum to 1.

The final boosted model suggested by Freund and Schapire
that combines the models of each iteration is

H(xi) = sign

(
T∑

t=1

ht(xi)

)

whereαt is a tuning parameter that we will set to 1.

Figure 1: The Real AdaBoost algorithm

exponential family and proportional hazards regression mod-
els, all of which can admit a boosted form. We also can ex-
ploit the modular structure of boosting algorithms to ensure
that our model has the most desirable statistical properties,
robustness, variance reduction, interpretability, and scalabil-
ity to massive datasets. Lastly, I will address the question as
to whether boosting algorithms belong in the class of model
mixing and where I believe the future of prediction models
lies.

2 Boosting for classification

Even before it was published, Freund and Schapire’sDiscrete
AdaBoostwas generating great interest. It seemed that the
performance of just about any classifier could achieve im-
provements in both bias and variance. Furthermore, the pro-
cedure seemed immune to overfitting. One would simply fit
the classifier,h1(x), to the dataset, upweight the observa-
tions it misclassified, and fit another classifier,h2(x), using
the new observation weights. The algorithm iterates several
times piling more weight on the difficult to classify observa-
tions. In the end all the classifiers participate in a weighted
vote for the final classification rule. They developed their
particular weight and merge scheme to iteratively reduce an
upper bound on the training misclassification error.

Some early research has investigated boosting specific
types of classifiers. Classification trees seem to dominate

most boosting research because of their flexibility and per-
formance in high-dimensions. Furthermore, boosting tends to
improve classification trees greatly since they are often unsta-
ble, slight variations in the dataset drastically changing their
predictions. Leo Breiman said that AdaBoost with trees is the
best “off-the-shelf” classifier (Breiman 1998). The boosted
näıve Bayes classifier has also seen some success. Charles
Elkan’s application of boosted naı̈ve Bayes won first place
out of 45 entries in the data mining competition KDD’97
(Elkan 1997). However, while the usual non-boosted naı̈ve
Bayes approach leads to elegant and effective explanations
(see, for example, Madigan, Mosurski, and Almond 1996 and
Becker, Kohavi, and Sommerfield 1997), theAdaBoost-ed
version destroys this feature. Ridgeway, Madigan, Richard-
son, and O’Kane (1998) showed that the boosted naı̈ve Bayes
classifier forms decision boundaries that are approximately
linear in the predictors. This allows easy interpretation of the
model’s reasoning process.

Besides empirical exploration into the performance of
these classifiers, statisticians and computational learning the-
orists began the search for the explanation. Freund and
Schapire (1997) showed that eachAdaBoostiteration reduces
the training error and produced some generalization error
bounds based on VC dimension. However, the performance
in practice often outpaced this bound.

More recently attention has shifted to a refinement of the
original AdaBoostalgorithm. TheReal AdaBoostalgorithm
(Schapire and Singer 1998) produces “confidence rated pre-
dictions”. Suppose we wish to predict a binary outcome
Y ∈ {−1, 1} with a classifierF (x) ∈ (−∞,∞) that puts
out a positive number if it favorsY = +1 and a negative
number if it favorsY = −1. The magnitude ofF (x) de-
termines the confidence in the prediction. This is similar to
the log-odds interpretation. In detail theReal AdaBoostalgo-
rithm proceeds as shown in figure 1.

In a rather obscure technical report, Breiman (1999) first
noticed thatAdaBoostwas an optimization algorithm. This
connection with optimization was clarified and expanded
upon in Friedman, Hastie, and Tibshirani (2000). Their ar-
gument is as follows. As before, letY ∈ {−1, 1} and our
classifier,F (x), will produce a real-valued output. Let the
loss of a particular classifier be

J(F ) = E
[
e−yF (x)

∣∣x
]
. (1)

The loss function in (1) is small when the signs ofy andF (x)
agree, or in other words, when the classification is correct.
One can also show that (1) is an upper bound, though not
a very tight one, on the misclassification rate (Schapire and
Singer 1998). Given a current classifier one might wish to
improve upon it by adding a new term,f(x), so thatJ(F +
f) < J(F ). Minimizing J(F + f) with respect tof yields
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that

f(x) =
1
2

log
Pw(Y = +1|x)
Pw(Y = −1|x)

wherePw(·) is a weighted probability estimate with weights
w = e−yF (x). Friedman et al. show that repeatedly updating
asF̂ (x) ← F̂ (x) + f(x) is equivalent to theReal AdaBoost
algorithm.

To the statistician, minimizing the exponential bound (1)
seems unnatural since we more often work with maximizing
likelihoods. Friedman et al. (2000) noted that the minimizer
of (1) is the same as the maximizer of the expected Bernoulli
log-likelihood

J(F ) = E`(F ) = E
[
y∗F (x)− log

(
1 + eF (x)

) ∣∣x
]

(2)

wherey∗ = 1
2 (1 + y) ∈ {0, 1}. Furthermore, the exponential

criterion and the Bernoulli log-likelihood are equivalent to a
second order Taylor expansion aroundF = 0. At this point
Friedman et al. take the clear step to produce a boosting algo-
rithm that directly maximizes the Bernoulli log-likelihood (2)
rather than the exponential misclassification bound (1). Simi-
lar to theirReal AdaBoostderivation, given a current classifier
their LogitBoostalgorithm adds new components to further
increase the Bernoulli log-likelihood using Newton steps.

We can select one of many optimization methods to find
an f that increasesJ(F + f), the Bernoulli log-likelihood
shown in (2). Friedman et al. chose to derive a Newton algo-
rithm. Given a current estimate forF (x) the Newton update
for F̂ (x) is

F̂ (x) ← F̂ (x)−
∂

∂f J(F̂ + f)|f=0

∂2

∂f2 J(F̂ + f)|f=0

(3)

= F̂ (x) + Ew

[
y∗ − p(x)

p(x)(1− p(x))
|x

]
(4)

wherew = p(x)(1− p(x)) andp(x) =
1

1 + e−F̂ (x)
(5)

Newton optimization, therefore, tells us to repeatedly substi-
tute weighted expectations to improveF (x). Note that the
weighting in (5) implies that the largest weights pile onto the
difficult to classify observations, those nearp(x) = 1

2 . This
is at least similar in spirit to theAdaBoostalgorithm. Since
we do not know the value of the expectations in (4) we can
approximate them by choosing one of our favorite regression
methods. Substituting a linear model in (4) for the weighted
expectation reduces to the iteratively reweighted least squares
algorithm for fitting linear logistic regression models. Fried-
man et al. use CART (Breiman et al. 1984) in their experi-
mental results and show substantial improvement in accuracy
over a non-boosted CART classifier. Table 1 shows the ef-
fect of boosting on the misclassification rate using five UCI
classification datasets (Merz and Murphy 1998).

CART AdaBoost LogitBoost
Breast 4.5% 4.0% 2.9%
Ion 7.6% 6.8% 7.1%
Glass 40.0% 25.7% 26.6%
Sonar 59.6% 20.2% 20.2%
Waveform 36.4% 19.5% 20.6%

Table 1: Misclassification rates of boosted trees - from Fried-
man, et al (1998)

Computational learning theorists are more eager to claim
boosting’s association with the theory of margins and sup-
port vector machines than with optimization and likelihoods
(Schapire 1999a, Schapire et al. 1998). However, more
of these authors are beginning to discuss the relationship to
statistics (Schapire 1999b, Mason et al. 2000). But once
boosting and likelihood methods become related, the door
opens to many other statistical models. And so the findings of
Friedman, Hastie, and Tibshirani (2000) lead us directly into
methodology for generating boosting algorithms for a large
class of other likelihood based models.

3 Boosting for regression

At the conclusion of their paper, Freund and Schapire (1997)
outline their ideas for applying theAdaBoostalgorithm to re-
gression problems. However, Drucker (1997) first proposed
and tested practical methods for boosting regression. His
ad hocmethod followed the same spirit of theAdaBoostal-
gorithm by repeatedly performing weighted tree regression
followed by upweighting the poorly predicted observations
and downweighting the well predicted ones. Compared with
fitting just one tree, his method seems to be competitive.
Breiman (1999) suggests how one might deal with boost-
ing regression problems with hisarc-gv methodology. He
promised an investigation in the near future but as of yet has
not produced such a study. His more recent work on adaptive
bagging (Breiman 2001), which is quite similar to boosting
ideas, appears to be a very promising direction showing im-
provements in terms of bias and variance. Ridgeway, Madi-
gan, and Richardson (1999) proposed mapping the regression
problem into a classification problem, applying their boosted
näıve Bayes classifier, and transforming the resulting classi-
fier back as a regressor. They showed that this method fits
an additive model but also estimates a transformation of the
response variable. Their empirical results show that it per-
forms similarly to generalized additive models (Hastie and
Tibshirani 1990) and outperforms CART in four simulated
examples but slightly worse on one of the two real datasets
investigated.

Of these works related to boosting for regression prob-
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Initialize F̂ (x) = arg minρ

∑N
i=1 Ψ(yi, ρ).

For t in 1, · · · , T do

1. Compute the negative gradient as the working response

zi = − ∂

∂F (xi)
Ψ(yi, F (xi))|

F (xi)=F̂ (xi)
(6)

2. Fit a regression model,f(x), predictingzi from the co-
variatesxi.

3. Choose a gradient descent step size as

ρ = arg min
ρ

N∑

i=1

Ψ(yi, F̂ (xi) + ρf(xi)) (7)

4. Update the estimate ofF (x) as

F̂ (x) ← F̂ (x) + ρf(x)

Figure 2: Friedman’s Gradient Boost algorithm

lems only Breiman (1999) alludes to involving optimization
of a regression loss function as part of the boosting algorithm.
Friedman (2001) and the companion paper Friedman (1999)
extended the work of Friedman, Hastie, and Tibshirani (2000)
and created the ground work for a new generation of boosting
algorithms. Using the connection between boosting and op-
timization made explicit in Friedman et al. (2000), this new
work proposes the Gradient Boosting Machine.

In any function estimation problem we wish to find a re-
gression function,F̂ (x), that minimizes the expectation of
some loss function,Ψ(y, F ), as shown in (8).

F̂ (x) = arg min
F (x)

Ey,xΨ(y, F (x))

= arg min
F (x)

Ex

[
Ey|xΨ(y, F (x))

∣∣∣x
]

(8)

We will focus on finding estimates ofF (x) such that

F̂ (x) = arg min
F (x)

Ey|x [Ψ(y, F (x))|x] . (9)

Parametric regression models assume thatF (x) consists of a
finite number of parameters,β, and estimates them by select-
ing those values that minimize a loss function (i.e. squared
error loss) over a training sample ofN observations on(y,x)

pairs as in (10).

β̂ = arg min
β

N∑

i=1

Ψ(yi, F (xi; β)) (10)

When we wish to estimateF (x) non-parametrically the task
becomes more difficult. Again we can proceed similarly to
(3) and modify our current estimate ofF (x) by adding a new
functionf(x) in a greedy fashion. LettingFi = F (xi), we
see that we want to decrease theN dimensional function

J(F) =
N∑

i=1

Ψ(yi, F (xi)) =
N∑

i=1

Ψ(yi, Fi). (11)

The negative gradient ofJ(F) indicates the direction of the
locally greatest decrease inJ(F). Gradient descent would
then have us modifyF as

F̂ ← F̂− ρ∇J(F) (12)

whereρ is the size of the step along the direction of great-
est descent. Clearly, this step alone is far from our desired
goal. First, it only fitsF at values ofx for which we have
observations. Second, it does not take into account that ob-
servations with similarx are likely to have similar values of
F (x). Both these problems would have disastrous effects on
generalization error. However, Friedman suggests selecting
a class of functions that use the covariate information to ap-
proximate the gradient. This line of reasoning produces his
Gradient Boosting algorithm shown in figure 2. At each it-
eration the algorithm determines the direction, the gradient,
in which it needs to improve the fit to the data and selects a
particular model from the allowable class of functions that is
most in agreement with the direction.

Figure 3 demonstrates the geometry of the gradient boost-
ing machine. In this case the true regression function,F (x),
is the sinusoidal curve and our current estimate is the constant
line at zero,F̂ (x) = 0. Assuming that we had 100 observa-
tions from some likelihood based model, we can compute the
gradient of the log-likelihood at each of those 100 observa-
tions. The vertical lines indicate the gradient direction that
each of these points would like to move in order to further
increase the associated log-likelihood. Clearly there is ran-
domness, but on average the gradient indicates moves closer
to the trueF (x). Incorporating covariate information we can
approximate the gradient by a one split CART model shown
in figure 3 as the step function. The CART model seems to
capture the general trend of the gradient and makes a move
from F̂ (x) = 0 closer to the trueF (x). This step function
would be the gradient step direction in the function space.

In the case of squared-error loss,Ψ(yi, F (xi)) =∑N
i=1(yi − F (xi))2, this algorithm corresponds exactly to

residual fitting. Friedman also uses this algorithm to develop
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Figure 3: Geometry of the Gradient Boosting Machine

new boosting algorithms for robust regression with least ab-
solute deviation and Huber loss functions (Huber 1964). In
the following section I will extend ideas from theLogitBoost
algorithm and the gradient boosting machine to apply more
directly to likelihood based models.

4 Boosting exponential family and
survival regression

Now having the machinery to extend boosting to likelihood
based models, we can investigate the problem of boosting
exponential family and proportional hazards regression mod-
els. In this section I will show that we can easily generalize
theLogitBoostalgorithm of Friedman, Hastie, and Tibshirani
(2000) to create boosting algorithms for the exponential fam-
ily regression models. These new boosting algorithms are
based on a variant of the Newton-Raphson optimizer known
as Fisher scoring (Fisher 1935). Similarly we can also fit
these models by selecting likelihood based loss functions for
use in Friedman’s gradient boosting machine. Lastly, I will
present results from a boosted Cox model for proportional
hazards regression. Using the gradient framework I will show
that we can create boosting algorithms that can utilize exist-
ing software for fitting the model’s linear counterpart.

4.1 Boosting exponential family
regression

Exponential family regression models are most commonly
used in their linear form as the generalized linear model.

They encompass a large class of methods common to sta-
tistical practice including Gaussian, logistic, and log-linear
regression models. McCullagh and Nelder (1989) set up the
framework for the generalized linear model as follows.

1. Distributional assumption: Y has a distribution in the
exponential family of the form

f(y|θ, φ) = exp
(

yθ − b(θ)
a(φ)

− c(y, φ)
)

(13)

whereb(θ) is the cumulant generating function so that
b′(θ) = E(Y ) = µ.

2. Model for the mean: The conditional mean of the re-
sponse is the modeled functional.

µi = E(Y |xi)

3. Systematic component: The covariates of the regression
problem,x1, x2, · · · , xd, form a linear predictor

ηi =
d∑

j=1

βjxij (14)

4. A link function: The link function is a monotone, dif-
ferentiable function relating the linear predictor to the
response. Wheng is such thatθ = η, it is known as the
canonical link function.

g(µi) = ηi

Boosting the exponential family regression models relaxes
the linear assumption in (14), only assuming that

g(µi) = F (xi1, xi2, . . . , xid). (15)

The boosting algorithm searches in a greedy fashion for a
function F̂ that maximizes the log-likelihood under the as-
sumed model.

EY |x`(θ, φ|y,x) = EY |x

[
yθ − b(θ)

a(φ)

∣∣∣x
]

. (16)

Generalized additive models (Hastie and Tibshirani 1990) are
similar except that they assume thatg(µi) is an additive func-
tion of the predictor variables. Although boosting allows for
more general expansions ofg(µi) than GAM, in practice it
may be reasonable to restrictF to be additive with low order
interactions with an interpretable link function such as the
log-odds for the logistic model.

To derive a boosting algorithm for the general case of ex-
ponential family models letb(θ) be a specific cumulant gen-
erating function andg(µ) be a specific link function relating
the regressor,F (x), to the conditional mean,µ. In the usual
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Initialize F (x) = g(ȳ) for all values ofx.
For t in 1, · · · , T do

1. Compute the working response

zi = (yi − µi)g′(µi).

whereµi = g−1(F (xi)).

2. Fit a regression model,f(x), predictingzi usingxi with
weights

wi =
1

g′(µi)2V (µi)

3. Update the boosted regressor as

F̂ (x) ← F̂ (x) + f(x)

Return the final boosted regressorF̂ (x).

Figure 4: Boosting by Fisher scoring

GLM notationb′′(θ) = a(φ)V (µ) whereV (µ) is known as
the variance function. The derivation proceeds similarly to
that for theLogitBoostalgorithm, the details of which are
available in Ridgeway (1999). Figure 4 shows a boosting al-
gorithm for the exponential family regression models using
Fisher scoring to optimize (16).

We will initialize the estimated regression function to be
a constant across allx. We can start with the constant func-
tion that maximizes (16) and therefore satisfies the equation
b′(θ) = ȳ. Sinceµ = b′(θ) andg(µ) = F (x) then we should
initialize F̂ (x) = g(ȳ) for all values ofx.

When we consider boosting the Bernoulli likelihood with
a canonical link function we haveg(µ) = log µ

1−µ and
V (µ) = µ(1− µ). In this special case the algorithm in figure
4 reduces to theLogitBoostalgorithm. The results in table
1 show that this algorithm is effective in the Bernoulli case.
Friedman (2001) and Friedman (1999) reported extensive ex-
perimentation on regression models with Gaussian and slash
(heavy tailed) error distributions. He concluded that boosting
outperformed MARS (Friedman 1991) in most of the settings
that he considered. Ridgeway (1999) considered Poisson re-
gression on a simulated dataset with a non-linear intensity and
showed that the boosted Poisson model consistently outper-
formed GAM.

Initialize F̂ (x) = 0. For t in 1, · · · , T do

1. Compute the working response.

zi = δi −
N∑

j=1

δjI(ti ≥ tj)
eF̂i

∑N
k=1 I(tk ≥ tj)eF̂k

(17)

2. Construct a regressor,f(x), predictingzi from xi.

3. Fit a linear proportional hazards model to the response
(t, δ) with predictorf(xi), offsetF (xi), and regression
coefficientρ.

4. Update the boosted estimate ofF̂ (x).

F̂ (x) = F̂ (x) + ρf(x) (18)

Figure 5: A boosting algorithm for Cox’s proportional haz-
ards regression model

4.2 Boosting proportional hazards
regression

Statistical methods for survival analysis model data in which
the response variable is a lifetime or failure time (Kalbfleisch
and Prentice 1980). Although these methods are mostly
thought of in the context of survival times of patients in a
medical experiment, they may also apply in other situations
such as the time to failure of a mechanical component or the
time until criminal recidivism. For these problems we simply
wish to estimate the distribution of failure time given covari-
ates. Censoring, the condition of an observation that is yet to
fail at the end of the experiment, complicates the estimation
process. For each subject in the dataset we observeti, the last
inspection time of the subject, andδi, which takes the value 1
if the subject failed at timeti and 0 if it was censored.

Fitting survival models by Cox’s partial likelihood (Cox
1972, Cox 1975) is the most widely used method for lin-
ear proportional hazards regression. Since boosting fits non-
linear regression models we can search forF (x) to maximize
Cox’s log-partial likelihood.

log PL(F |t, δ,x) =
N∑

i=1

δi


F (xi)− log




N∑

j=1

I(tj ≥ ti)eF (xj)





 (19)

The log-partial likelihood takes into account only the order of
the failure and censoring times. Since we have set (19) to be
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Figure 6: Partial log-likelihood for PBC data. The curve indi-
cates the partial log-likelihood for test set data as the number
of boosting iterations increases. The horizontal line indicates
the partial likelihood from the linear Cox model.

the term that we want maximized, we can adapt Friedman’s
gradient boost algorithm to use this as a loss function. In fig-
ure 2 we simply need to setΨ(y, F ) = − log PL(F |t, δ,x),
the negative partial likelihood, and follow the algorithm’s re-
maining steps.

Figure 5 shows an algorithm for fitting a boosted Cox
model using gradient boost. The first step is to compute the
negative gradient as shown in (6). The result is (17). Conve-
niently in our case, computingρ by equation (7) is equivalent
to finding the maximum likelihood estimator for a linear Cox
model wheref(xi) is a linear predictor with regression coef-
ficient ρ andF (xi) is an offset term. We can take advantage
of existing software for fitting linear Cox models for this com-
putation. Terms for which we wish to fit as linear terms may
also enter the model at this stage.

For a real data set example to examine the performance of
boosting Cox’s proportional hazards model, I turn to a clinical
trial for testing the drug DPCA for the treatment of primary
biliary cirrhosis of the liver (PBC). This dataset has been the
subject of several modern data analyses (Fleming and Har-
rington 1991).

I tested this method by comparing the out-of-sample pre-
dictive performance of the linear Cox model to the Cox model
boosted by gradient ascent. To judge the out-of-sample pre-
dictive performance of the two models, I fit each model on
half of the observations, reserving the rest for a test set. I
used CART with only one split as the base regressor so that
the estimate only captured the main additive effects. Figure 6

shows the value of the log-likelihood on the test cases as the
algorithm proceeds. Particularly we see that after many iter-
ations the boosted estimate surpasses the linear Cox model.
Subsequently the boosted version continues to improve at a
diminishing rate of return. Even though the competition be-
tween a linear and non-linear procedure is not entirely fair,
this experiment does show that the data carry enough infor-
mation to support non-linear inference and that boosting can
extract that information.

4.3 Improvements on boosting

I have shown so far that boosting is a valuable regression tool.
The algorithms’ modular structures expose themselves to fur-
ther improvements. All of the algorithms consist of an update
stage of the form

F̂ (x) ← F̂ (x) + Ew

[
z(y, F̂ (x))|x

]
. (20)

We have already seen that different models lead to different
functional forms forz(y, F̂ (x)) within this framework. We
can also estimate the conditional expectation by the regres-
sion method of our choice, planes, smoothers, and trees for
example. These are not the limits of the possible variations.
Controlling the learning rate : Earlier work believed that
boosting performed especially well in terms of generalization
error because it achieved “slow learning”. Breiman (1999)
theorizes that the success of boosting algorithms depends on
its ability to “skate around the inner rim [of the training error
surface] instead of slogging to the bottom”. If slow learning
is an important ingredient than we can introduce a learning
rate parameterλ ∈ (0, 1] to control the rate. In the update
step of any boosting algorithm we can useλ to dampen the
proposed move.

F̂ (x) ← F̂ (x) + λEw

[
z(y, F̂ (x))|x

]
. (21)

This modification has been related to shrinkage (Friedman
2001) and to smoothness (Ridgeway 1999).
Variance reduction: Breiman (1996) introduced bagging
(bootstrapaggregating) as a variance reduction method for
unstable regression and classification models. With weak the-
oretical arguments and substantial empirical ones he shows
that bootstrapping simulates an endless stream of new data
adequately enough so that averaging reduces prediction vari-
ance. Friedman (1999), inspired by Breiman (2001), pro-
posed the stochastic gradient boosting algorithm that simply
samples uniformly without replacement from the dataset be-
fore estimating the expectation in (20). He found that this
additional step greatly improved performance.
Scalability to massive datasets: Subsampling for variance
reduction has a beneficial side-effect. On each iteration the
regression procedure need consider only a small fraction of
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Figure 7: Boosted estimates of the main effects of the PBC data. The curve is the boosted estimate of the function and the line
is the estimate from the linear model

the dataset. Great performance is still obtainable subsampling
20% in several situations. When the boosting algorithm in-
volves observation weights, trimming the observations with
small weights can further reduce the size of the dataset in-
spected each time.
Robust regression: Robust regression procedures are less
sensitive to outliers. Friedman (2001) develops an en-
tire boosting algorithm for least absolute deviation and M-
regression. In (20) we can substitute a robust expectation that
would keep the entire process of boosting estimation from
being attracted to outlying observations.
Interpretation : In his work on MARS, Friedman (1991)
noted that certain function approximation methods are de-
composable in terms of a “functional ANOVA decomposi-
tion” as

F (x) =
∑

j

fj(xj) +
∑

jk

fjk(xj , xk) + · · · . (22)

Friedman et al. (2000) note that this applies directly to boost-
ing trees. One split decision trees depend on only one vari-
able and fall into the first term of (22). Trees with splits on
two different predictors fall into the second term of (22) and
so on. By restricting the depth of the trees produced on each
boosting iteration we can control the order of approximation.
When the approximation is restricted to a first order we can

also produce plots ofxj versusfj(xj) to demonstrate how
changes inxj might affect changes in the response variable.

Figure 7 shows the boosted estimates along with those
based on the linear model for the PBC dataset. Every vari-
able shows evidence of either a threshold effect, a saturation
effect, or both. Simple linear models clearly can never cap-
ture threshold and saturation effects. Although in the region
where most of the data points are concentrated, for most of
the variables the underlying regressor is nearly linear. For this
reason the linear model performs reasonably well. However,
for a patient with a more extreme value for any of the six vari-
ables the boosted model is far superior. Even though most ap-
plications of survival models are not concerned with survival
prediction but rather estimation of effects, when effects depart
substantially from linearity, as in the PBC dataset, accurately
understanding the predictors as well as survival prediction de-
pends on a non-linear estimation procedure like boosting.

For the PBC results in figures 6 and 7 I set a small learning
rateλ = 0.00001, a subsampling fraction of 10%, and fit one
split CART models at each of 70,000 iterations.
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5 Discussion

Researchers have proposed techniques like bagging (Breiman
1996), Bayesian model averaging (Madigan et al. 1996,
Hoeting et al. 1999), stacking (Wolpert 1992), and bump-
ing (Tibshirani and Knight 1995) showing that their meth-
ods solved problems associated with dependence on one se-
lected model. At its first introduction computational learn-
ing theorists believed that boosting also fit in this class since
it built several models on different weightings of the dataset
and merged them together. When boosting simple base clas-
sifiers, predictive performance on many of the classic bench-
mark datasets increased. Researchers believed these results
implied that boosting was now the best of this class of algo-
rithms.

Research, including this work, is now showing that boost-
ing represents a new class of learning algorithms that Fried-
man correctly named “gradient machines”. As all the exten-
sions described here show, boosting iteratively fits some form
of the residual, regions of the sample space where the model’s
predictions are missing the target data. This being the case the
original class of model mixing procedures are not in compe-
tition with boosting but rather can coexist inside or outside a
boosting algorithm. That is, one could average across boosted
estimates or perform bagging and bumping within a boost-
ing iteration. The future of regression may hold new hybrid
methods that are robust, have low bias and variance, and ade-
quately account for model uncertainty.
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