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Abstract

We implement the finite-difference (FD) solver and the Hull-White (HW) tree for nu-
merical treatment of the pricing problem under the Hull-White interest rate model.
We find that the FD solver is superior to the HW tree.
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1 The Hull-White Interest Rate Model

We consider a simplified version of the Hull-White extension of the Vasicek model.
In this specification, the Q-dynamics of the short rate are given by

dr(t) = (θ(t)− κr(t))dt + σdW (t) (1.1)

where κ and σ are constant and θ(t) is a deterministic function of time.
The spot rate obeys the normal distribution. The parameter θ(t) is chosen with

the purpose to fit the theoretical bond prices to the yield curve observed on the
market. The parameter σ determines the overall level of volatility. The reversion
rate parameter κ determines the relative volatilities of long and short rate. A high
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value of κ causes short-term rate movements to damp out quickly, so long-term
volatility is reduced. If σ is assumed to be a function of time, it is also possible to
fit the current term structure of volatility.

Under arbitrage-free conditions, the value of an interest rate contingent claim
V (r, t) satisfies the following PDE{

Vt + 1
2
σ2Vrr + (θ(t)− κr(t))Vr − rV = 0,

V (r, T ) = Φ(r).
(1.2)

For the bond value we have Φ(r) = B where B is the bond face value. A
European-style option has a payoff Φ(r) = [φ(Z(S, T )B − K)]+ at option expiry
time S, S < T , where binary unit φ = +1 for call and φ = −1 for put, and K is a
strike, Z(S, T ) is a zero coupon bond with maturity date T .

The Hull-White model is appealing and popular because it has analytical solution
for vanilla option values.

In the Hull-White model the bond value is given by

Z(t, T ) = eA(t,T )−B(t,T )r (1.3)

where

B(t, T ) =
1

κ

(
1− e−κ(T−t)

)
,

A(t, T ) = ln

[
Z(0, T )

Z(0, t)

]
+ B(t, T )f(0, t)− σ2B2(t, T )(1− e−2κt)

4κ
,

and f(0, t) is forward rate observed on the market.
The t-value a European-style option is given by

V (t, S, T, K,B) = φ [Z(t, T )BN(d)− Z(t, S)KN(φ(d− δ))] (1.4)

where

δ =
1

κ

(
1− e−κ(T−S)

) √
σ2

2κ
(1− e−2κ(S−t)); d =

1

δ
ln

[
Z(t, T )B

Z(t, S)K

]
+

1

2
δ.

and N(x) is the normal cumulative density function.

2 Finite-Difference Method

We use the standard Crank-Nicolson discretization. To approximate the PDE (1.2),
we construct a grid of size M ×N , V (i, k), where k = 0, ...,M is the time direction
and i = 0, ..., N is the space direction. Both bond and option prices are computed
on the same grid. The bond price at time t = T is subject to the following condition
V (i, 0) = B, i = 0, ..., N , where B is the bond face value. The option price at time
t = S is subject to the following condition

V (i, 0) = max{φ(B(i, t)−K), 0} (2.1)
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where binary unit φ = +1 for call and φ = −1 for put.
This mean that if the pricing model does not have closed-form formulas for the

bond price, we, first of all, need to compute bond price starting from t = T , where
T is the bond maturity, up to t = S, where S is the option expiry. Then we have to
apply initial condition for call price. The latter means to replace the bond values
with option values computed by (2.1) on the same grid. Then we compute option
prices using the grid up to t = 0.

If we want to price American option, we need to construct the full grid containing
the bond prices, B, and the separate grid with option prices, V . Then we have to
apply the initial condition (2.1) at time t = S and apply the following condition at
every time and space step

V (i, k) = max {φ(B(i, k)−K), V (i, k)} (2.2)

We use the following boundary conditions

∂2V

∂r2
= 0 (2.3)

This gives that V k+1
0 = 2V k+1

1 − V k+2
0 and V k+1

N = 2V k+1
N−1 − V N−2

0 .
The condition states that for small and large values of r, the value of contingent

claim changes linearly with the r. The advantage of using these conditions is that
they are universal ones and apply for both bond and option values.

3 The Hull-White Tree

The Hull-White tree enjoys popularity among market practitioners. A detailed
analysis of the tree can be found in the Hull (2000).

The Hull-White tree is a general algorithm for the discrete-time implementation
of diffusion models of the form

dx(t) = (θ(t)− κ(t)x)dt + σ(t)dW. (3.1)

If x = r, we get the Hull-White spot rate model.
The aim is to develop a discrete-time version that has the following properties.

1. It has a recombining trinomial tree structure. This allows changing the direc-
tion of the tree in order to prevent negative interest rates.

2. It converges to the continuous-time model (3.1).

3. It replicates a given initial term structure of interest rates of the type

Z∗(0, T ) = E
[
e−

∫ T
0 x(t)dt

]
. (3.2)
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4 The Hull-White Model via Finite-Differences

We will play special attention to implementation of the Crank-Nicolson method with
time-dependent coefficients for pricing options within the Hull-White model of the
spot rate. Then we will compare results with those obtained by using the Hull-White
trees. The reason for our interest is that FD method is a more general approach
while Hull-White trees can be implemented only for a certain class of interest rate
models and are subject to some stability criterion.

To implement the Hull-White model via FD method, we have to determine
analytically the time-varying long-term mean. The solution is given by [Hull (2000)]

θ(t) =
∂f(0, t)

∂t
+ κf(0, t) +

σ2

2κ
(1− e−κt). (4.1)

The forward rate can be approximated accordingly to its definition as

f(0, tk) ≈
− ln Z(0, tk + ∆t)− ln Z(0, ∆t)

∆t
. (4.2)

The derivative of the instantaneous forward rate w.r.t t can be approximated by

∂f(0, t)

∂t

∣∣∣∣
t=tk

≈ f(0, tk + ∆t)− f(0, tk −∆t)

2∆t
. (4.3)

Since, as a rule, we use discrete term structure, the numerical approximation
of partial derivatives may cause instability of θ. If the yield curve is obtained by
linear interpolation, then f(0, t), ft(t, 0) and thus θ(t) are not well defined at the
nodes of the linear interpolation. As a result, the computed values of θ(t) will have
oscillations near the nodes of the interpolation. This may cause serious problems
for the accuracy of the numerical solutions, as Figure 1 shows. We see, that using
piece-wise linear interpolation leads to oscillations of θ(t). However, spline also leads
to some oscillation of θ(t) for small t. The reason for this may be the surplus of
data points for short maturities.

Figure 1: Calculation of theta using 1) Cubic spline, 2) Linear interpolation.
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5 Numerical Results

In our analysis we use estimated yield curve given in Appendix A and parameters
κ = 0.35 and σ = 0.35. The mean reversion parameter and volatility are rather
higher than usual ones observed on the markets, where κ ≈ 0.01 − 0.1, and σ ≈
0.01−0.05. Taking into account that the smaller are parameters the better should be
numerical results, actual results may turn out to be better. We use piecewise linear
interpolation in the HW tree and cubic spline in the Crank-Nicolson FD method
with rmin = −0.5, rmax = 0.5 and the number of time and space steps set equal to
the number of tree steps in the HW tree.

Table 1 reports pricing absolute errors (analytic price - model price), relative er-
rors (absolute error / analytic price) for European call prices and prices of American
put on bond obtained by using Hull-White model with tree and FD methods. The
option strike is 70 CU and expiry is 5 years. The bond maturity is 10 years and the
face value is 100 CU. Figure 2 shows the corresponding numbers.

NoSteps HW errors % FD errors % HW price FD price
50 0.0814 1.5062% -0.0926 -1.7124% 12.9613 11.9712

100 0.0188 0.3477% -0.0421 -0.7795% 12.0547 12.0093
200 0.0181 0.3346% -0.0190 -0.3508% 11.9372 11.9741
400 0.0073 0.1342% -0.0082 -0.1517% 11.9388 11.9569
500 0.0021 0.0392% -0.0061 -0.1134% 11.9439 11.9535
800 0.0054 0.0997% -0.0031 -0.0568% 11.9412 11.9484

1000 0.0023 0.0429% -0.0021 -0.0383% 11.9453 11.9467
1600 0.0026 0.0477% -0.0006 -0.0106% 11.9443 11.9441
2000 0.0007 0.0136% -0.0001 -0.0015% 11.9468 11.9433

Table 1: Pricing errors of vanilla call and prices of American put.

Figure 2: On the left axis are shown pricing errors of vanilla call. On the right axis
are shown prices of American put.

We see that the FD method converges faster than the HW tree. We also see that
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as the number of nodes goes up, the accuracy of the FD approximation becomes
independent of the number of nodes at a much faster rate than for the HW tree. As
a rule, this is the case for other values of the term structure and option parameters.
We also note that the FD method simultaneously gives us the option price and some
hedge ratios: delta (the derivative wrt r), gamma (the second derivative wrt r), and
theta (the derivative wrt t).

6 Conclusions

In our project we implemented the finite-difference method and the Hull-White tree
algorithm. We found that for Vasicek and CIR models with constant coefficient the
Crank-Nicolson method converges very quickly to analytical solutions. We showed
that for Hull-White spot rate model with the time-dependent long-term mean the
Crank-Nicolson method is, as a rule, superior to the Hull-White tree.
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A Yield Curve and Stripping Data

In Table 2 we give our results of yield curve stripping using market quotes for
EURIBOR (Euro Area Interbank Market Interest Rates) of 02 April, 2002.

Money rates rm Date T Z(t, T ) r(t, T )
t/n 3.3450% 04-04-02 0.0056 0.99981 3.4406%
1m 3.3600% 06-05-02 0.0944 0.99683 3.4039%
2m 3.4000% 04-06-02 0.1750 0.99408 3.4374%
3m 3.4500% 04-07-02 0.2583 0.99117 3.4818%
6m 3.5930% 04-10-02 0.5139 0.98188 3.6082%

Swap rates rs

1y 3.9975% 04-04-03 1.0194 0.96138 3.9171%
2y 4.4700% 05-04-04 2.0389 0.91579 4.3745%
3y 4.7375% 04-04-05 3.0500 0.86967 4.6419%
4y 4.9175% 04-04-06 4.0639 0.82420 4.8237%
5y 5.0525% 04-04-07 5.0778 0.77997 4.9618%
6y 5.1625% 04-04-08 6.0944 0.73713 5.0739%
7y 5.2575% 06-04-09 7.1139 0.69553 5.1748%
8y 5.3325% 05-04-10 8.1250 0.65629 5.2555%
9y 5.3950% 04-04-11 9.1361 0.61896 5.3237%

10y 5.4425% 04-04-12 10.1528 0.58383 5.3741%
11y 5.4850% 04-04-13 11.1667 0.55039 5.4216%

Table 2: The Yield Curve Data and Stripping Results.
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