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Abstract. This paper presents an exposition and synthesis of the theory and some applications

of the so-called “indirect” method of inference. These ideas have been exploited in the field of

econometrics, but less so in other fields such as biostatistics and epidemiology. In the indirect

method, statistical inference is based on an intermediate statistic, which typically follows an

asymptotic normal distribution, but is not necessarily a consistent estimator of the parameter

of interest. This intermediate statistic can be a naive estimator based on a convenient but

misspecified model, a sample moment, or a solution to an estimating equation. We review a

procedure of indirect inference based on generalized method of moments, which involves adjust-

ing the naive estimator to be consistent and asymptotically normal. The objective function of

this procedure is shown to be interpretable as an ‘indirect likelihood’ based on the intermediate

statistic. Many properties of the ordinary likelihood function can be extended to this indirect

likelihood. This method is often more convenient computationally than maximum likelihood

estimation when handling such model complexities as random effects and measurement error,

for example; and it can also serve as a basis for robust inference and model selection, with less

stringent assumptions on the data generating mechanism. Many familiar estimation techniques

can be viewed as examples of this approach. We describe applications to measurement error,

omitted covariates, and recurrent events. A data set concerning prevention of mammary tumors

in rats is analyzed using a Poisson regression model with overdispersion. A second data set

from an epidemiological study is analyzed using a logistic regression model with mismeasured

covariates. A third data set of exam scores is used to illustrate robust covariance selection in

graphical models.
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1. INTRODUCTION

Methods of “indirect inference” have been developed and used in the field of econometrics

where they have proved valuable for parameter estimation in highly complex models. However,

it is not widely recognized that similar ideas are extant generally in a number of other statistical

methods and applications, and there they have not been exploited as such to the fullest extent.

This article was motivated by our experience in analyzing repeated events data for the

NPC trial (Clark et al. 1996). The results reported there were quite controversial, suggesting

substantial health benefits from long term daily supplementation with a nutritional dose of

selenium, an antioxident. Early on, it was recognized that the subject population was hetero-

geneous and that there were sources of variability and biases not accounted for by standard

statistical analyses — these included covariate measurement error, omitted covariates, missing

data and overdispersion. However the data set, being large and complex, did not lend itself well

to statistical methods that required complicated computations. Instead, convenient available

statistical software was used that was based on fairly straightforward (non-linear) regression

models. The outputted results based on these naive models were then examined in the light of

known and putative deviations from the model and inferences adjusted accordingly. The details

of this case study were described in Jiang, Turnbull and Clark (1999).

This is an example of a general approach, termed indirect inference (Gouriéroux, Monfort

and Renault, 1993), which was motivated by complex dynamic financial models. Here maxi-

mum likelihood (ML) estimates are difficult to obtain despite modern algorithms and computing

power, due to the presence of many latent variables and high dimensional integrals. Another

consideration in these applications is the desire to obtain estimates that are robust to misspec-

ification of the underlying model.

1.1 Indirect Inference

Suppose we have a data set consisting of n independent units. The essential ingredients of

the indirect approach are as follows.

1. There is a hypothesized true model M for data generation, with distribution P (θ) which

depends on an unknown parameter θ of interest which is of dimension p.

2. One first computes an intermediate or auxiliary statistic ŝ = Ψ(P (n)) of dimension q ≥ p
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which is a functional of the empirical distribution function P (n), say.

3. A bridge (or binding) relation s = Ψ(P (θ)) is defined.

The unknown quantity s is called the auxiliary parameter.

4. With the auxiliary estimate ŝ replacing s, the bridge relation above is used to compute an

adjusted estimate θ̂(ŝ) for θ.

The goals to be achieved in this approach include the following. We would like the estima-

tor θ̂(ŝ) to be

A. robust to model M misspecification, in the sense that θ̂(ŝ) remains a consistent estimator

of θ under a larger class of models M that includes M.

B. relatively easy to compute;

In order to attain these two goals, we will base our inference on the auxiliary statistic ŝ which

may not be sufficient under model M. Therefore, a third goal is that the estimator θ̂(ŝ) has

C. high efficiency under M.

The starting point is the choice of an intermediate statistic ŝ. This can be chosen as some set

of sample moments, or the solution of some estimating equations, or the ML estimator (MLE)

based on some convenient model M′, say, termed the auxiliary (or naive) model. If the last, then

the model M′ is a simpler but misspecified or partially misspecified model. The choice of an

intermediate statistic ŝ is not necessarily unique; however in any given situation there is often a

natural one to use. The theory of properties of estimators obtained from misspecified likelihoods

goes back at least as far as Cox (1962), Berk (1966) and Huber (1967) and is summarized in

the comprehensive monograph by White (1994). The use of ŝ (based on an auxiliary model M′)

in indirect inference about θ (under model M) appears recently in the field of econometrics to

treat complex time series and dynamic models, see, e.g., Gouriéroux et al. (1993) and Gallant

and Tauchen (1996, 1999); as well as in the field of biostatistics to treat regression models with

random effects and measurement error, see e.g., Kuk (1995), Turnbull, Jiang and Clark (1997),

and Jiang et al. (1999).

The econometric applications of the indirect approach have been primarily motivated by

Goal B; for example, to perform inference for financial data based on stochastic differential

equation or stochastic volatility models, where the usual maximum likelihood-based approach
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is intractable. See, e.g., Matyas (1999, Ch. 10), or Carrasco and Florens (2002), for reviews. In

contrast, the goal of robustness as described in Goal A has been an important consideration in

recent biostatistical applications — e.g. see Lawless and Nadeau (1995) and further references

in Section 2.5. Recent work (Genton and Ronchetti 2003) has shown how indirect inference

procedures can also be made robust in the sense of stability in the presence of outliers. Both

senses of robustness will be discussed further in Section 2.5.

1.2 Method of Moments as Indirect Inference

The method of moments can be formulated as indirect inference. Consider an intermediate

statistic ŝ = Ψ(Fn) = (X,S2, . . .)T . with components that contain some sample moments such

as the mean X and the variance S2, etc. Then the bridge equation is s = s(θ) = Ψ(Fθ) =

(µ(θ), σ2(θ), . . .)T with components of population moments, i.e. mean µ(θ), variance σ2(θ),

etc. The vector of q population moments is the auxiliary parameter s.

In the usual method of moments (MM), dim(s) = q = p = dim(θ), we solve ŝ = s(θ̂) for

θ̂, the MM estimator. (We assume the solution is uniquely defined.) If q > p, Then we can

instead take θ̂ as

θ̂ = arg min
θ
{ŝ− s(θ)}T v−1{ŝ− s(θ)},

where v is a positive definite matrix, such as a sample estimate of the asymptotic variance

(avar) of ŝ. This is an example of the generalized method of moments (GMM), — Hansen 1982.

In the simulated method of moments (SMM) (McFadden 1989, Pakes and Pollard 1989), the

moments s(θ) are too difficult to compute analytically. Instead s(θ) is evaluated as a function

of θ by Monte Carlo simulation.

Now, the full GMM method is a very broad approach to estimation which includes max-

imum likelihood, estimating equations, least squares, two-stage least squares and many other

estimation procedures as special cases (see e.g. Imbens 2002). Since the indirect method is

also a unifying framework for estimation procedures, it is not surprising that there is a strong

connection between it and GMM. This connection is described further in Section 2.7.

1.3 Three Pedagogic Examples

The steps involved in the indirect method are illustrated in the following simple pedagogic
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examples. In fact, in all three of these examples, the adjusted estimators can be viewed as MM

estimators; however, it is instructive to consider them in the indirect inference framework of

Section 1.1.

Example 1: Exponential observations with censoring.

Consider lifetimes {T1, . . . , Tn}, which are independent and identically distributed (i.i.d.) ac-

cording to an exponential distribution with mean θ. The data are subject to Type I single cen-

soring after fixed time c. Thus the observed data are {Y1, . . . , Yn}, where Yi = min(Ti, c), (i =

1, . . . , n). We consider indirect inference based on the intermediate statistic ŝ = Y . This choice

can be considered either as the basis for an MM estimator or as the MLE for a misspecified

model M′ in which the presence of censoring has been ignored. The naive estimator Y in fact

consistently estimates not θ but the “naive” or auxiliary parameter

s = θ [1− exp(−c/θ)], (1)

the expectation of Y . The equation (1) is an example of what we have termed a “bridge

relation”. We can see the obvious effect of the misspecification, namely that ŝ underestimates

θ. However a consistent estimate θ̂ of θ as n→∞ can be obtained by solving (1) for θ with s

replaced by ŝ = Y . (Note that this is not the MLE of θ which is nY /[
∑n
i=1 I(Yi < c)].) In the

later sections we will see how to obtain the standard error for the adjusted estimate θ̂.

Example 2: Zero-truncated Poisson data.

The zero-truncated Poisson distribution { exp(−θ)
1−exp(−θ)

θy

y! ; y = 1, 2, . . . } is a model for positive

count data – the number of articles by an author, for example. Suppose Y1, . . . , Yn is an

i.i.d. sample from this distribution. Suppose however that the zero truncation is overlooked

and the standard Poisson likelihood
∏n
i=1{exp(−θ)θyi/yi!} is used. The naive estimator ŝ = Y

is consistently estimating E(ŝ) = s = θ/[1− exp(−θ)]. This is the “bridge relation” and, with

ŝ in place of s, can be inverted to obtain a consistent estimator θ̂ of θ. In this case, it coincides

with the MLE based on the true likelihood and is asymptotically efficient.

Example 3: Multinomial genetic data. Dempster, Laird and Rubin (1977, Sec.1) fit some phe-

notype data of Rao (1973, p.369) to a genetic linkage model of Fisher (1946, p.303). The sample

consists of n = 197 progeny which are distributed multinomially into four phenotypic categories

according to probabilities from an intercross model M of the genotypes AB/ab × AB/ab:

(1
2 + 1

4θ,
1
4(1− θ), 1

4(1− θ), 1
4θ) for some θ ∈ [0, 1]. The corresponding observed counts are

y = (y1, y2, y3, y4) = (125, 18, 20, 34).
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For the first step, we define an intermediate statistic as a naive estimate of θ from a “convenient”

but misspecified model M′ in which it is wrongly assumed that y is drawn from a four-category

multinomial distribution with probabilities (1
2s,

1
2(1− s), 1

2(1− s), 1
2s). This corresponds to a

backcross of the genotypes AB/ab × ab/ab. The naive model is convenient because the naive

MLE is simply calculated as ŝ = (y1 + y4)/n = (125 + 34)/197 = 0.8071. In the second step we

derive a ‘bridge relation’ which relates the “naive parameter” s (large sample limit of ŝ) to the

true parameter θ. Here the bridge relation is s = (1 + θ)/2 since, under the true model, this is

the almost sure limit of ŝ as n → ∞. The third step is to invert the bridge relation to obtain

the adjusted estimate θ̂ = 2ŝ− 1 = (y1 + y4 − y2 − y3)/n = 0.6142. Of course, in this case, the

maximum likelihood estimate based on the true model, θ̂ML say, can be computed explicitly as

θ̂ML = (y1 − 2y2 − 2y3 − y4 +
√

(y1 − 2y2 − 2y3 − y4)2 + 8ny4)/(2n) = 0.6268,

which can be obtained directly from solving the score equation. Alternatively, the EM algorithm

can be used as in Dempster et al. (1977, Sec.1). The MLE θ̂ML is biased, unlike the adjusted

estimator θ̂, but has smaller variance than θ̂. We have Var θ̂ = 4 Var ŝ = 4s(1 − s)/n, which

can be estimated as 4ŝ(1 − ŝ)/n = 0.0032. This compares with Var θ̂ML = 0.0026, obtained

from the sample Fisher information. The asymptotic efficiency of θ̂ relative to θ̂ML, is therefore

estimated to be 0.0026/0.0032 = 0.81. The loss of efficiency is due to model misspecification; ŝ

is not sufficient under model M.

When θ̂ is not efficient, a general method for obtaining an asymptotically fully efficient esti-

mator θ̃ is via a one-step Newton-Raphson correction or “efficientization” e.g. see Le Cam (1956),

White (1994, page 137) or Lehmann and Casella (1998, p.454). Specifically, since θ̂ is consistent

and asymptotically normal, the estimator

θ̃ = θ̂ − {∂θ̂S(θ̂)}−1S(θ̂) , (2)

where S(·) is the true score function, is asymptotically the same as the ML estimate, and hence

achieves full efficiency. For complicated likelihoods, the one-step efficientization method, which

requires the evaluation of S(θ̂) and ∂θ̂S(θ̂) only once, can greatly reduce the computational

effort compared to that for θ̂ML. In our genetic linkage example the true log-likelihood function

is

L = Y1 log(
1
2

+
θ

4
) + (Y2 + Y3) log(

1
4
− θ

4
) + Y4 log(

θ

4
).

First and second order derivatives of L can easily be evaluated, leading to the following one-step
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correction estimator:

θ̃ = θ̂ +
Y1(2 + θ̂)−1 − (Y2 + Y3)(1− θ̂)−1 + Y4θ̂

−1

Y1(2 + θ̂)−2 + (Y2 + Y3)(1− θ̂)−2 + Y4θ̂−2
= 0.6271.

This estimate is closer to the MLE θ̂ML = 0.6268 and has the same asymptotic variance of

0.0026, Thus we have obtained a consistent and asymptotically efficient estimate.

Another way to increase efficiency is to incorporate more information into the intermediate

statistics. For example, all information of data is incorporated if we instead define intermediate

statistic ŝ = (y1/n, y2/n, y3/n)T [the last cell frequency is determined by (1 − ŝ1 − ŝ2 − ŝ3)].

Here q = dim(ŝ) = 3 > 1 = p = dim(θ). The new bridge relation is s = s(θ) = (1
2 + 1

4θ,
1
4(1 −

θ), 1
4(1− θ)). If we use the generalized method of moments and choose v to be an estimate of

the asymptotic variance ˆvar(ŝ) of ŝ with the jkth element being (ŝjδjk − ŝj ŝk)/n (δjk is the

Kronecker’s delta), then the adjusted estimate is θ̂ = arg minθ{ŝ − s(θ)}T v−1{ŝ − s(θ)}. This

expression yields

θ̂ =
(
Y −1

1 + Y −1
2 + Y −1

3 + Y −1
4

)−1 (−2Y −1
1 + Y −1

2 + Y −1
3

)
= 0.6264,

which is closer to the ML estimator. Later, in Proposition 1(ii), we will show that the asymptotic

variance of θ̂ can be estimated by ˆvar(θ̂) = 2(∂2
θH)−1|θ=θ̂, where ∂2

θH is the Hessian of the

objective function H = {ŝ− s(θ)}T v−1{ŝ− s(θ)}. In this example, upon evaluation, we obtain:

v̂ar(θ̂) =
16
n2

(
Y −1

1 + Y −1
2 + Y −1

3 + Y −1
4

)−1
= 0.0029.

The avar estimate now is very close to that of the ML estimator. In fact, here θ̂ is fully efficient

because now it is based on an intermediate statistic ŝ that is sufficient under model M. The

difference of the avar estimates arises because of the finite sample size. One should note that

the method here is the minimum chi-square approach of Ferguson (1958) recast in terms of the

indirect method.

1.4 Outline of the paper

The approach described has been used in a variety of statistical problems but has not really

been exploited on a systematic basis, with the exception of the considerable work in the field

of econometrics. The present paper is intended to provide a synthesis of a number of different

ideas from different fields, illustrating them with examples from various applications (in fields

other than econometrics).
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Our unifying concept is inference using the framework of an approximate likelihood based

on the intermediate statistic (the indirect likelihood), instead of one based on the full data. The

current paper may be viewed as an attempt to extend an analysis based on “complete data plus

a complete probability model” to an asymptotic analysis based on “some compressed data ŝ plus

a model for its asymptotic mean”. This extension allows flexibility for a spectrum of trade-offs

between robustness and efficiency. Often, a more compressed intermediate statistic leads to a

lower efficiency under model M but produces a consistent ‘indirect likelihood estimator’ that

relies on less assumptions about M. This indirect approach offers the following advantages:

1. Ease of computation. The indirect method is often computationally simpler or more

convenient (e.g., ŝ can often can be computed with a standard software, if it is based on

a standard auxiliary model M′).

2. Informativeness on the effect of model misspecification. When ŝ is a ‘naive estimate’ ob-

tained from a naive model M′ neglecting certain model complexity, the current approach

is very informative on the effect of model misspecification — the bridge relation s = s(θ)

provides a dynamic correspondence between M′ and M. In fact such a relation is of cen-

tral importance in, e.g., errors-in-variable regression, where such a relation is sometimes

termed an ‘attenuation relation’ (see e.g., Carroll, Ruppert and Stefanski 1995, Chapter

2), which tells how regression slope can be underestimated when neglecting the measure-

ment error in a predictor.

3. Robustness. We will see that the validity of the inference based on an intermediate statistic

essentially relies on the correct specification of its asymptotic mean. This is often a less

demanding assumption than the correct specification of a full probability model, which

would be generally needed for a direct likelihood inference to be valid. Therefore the infer-

ential result based on the adjusted estimate θ̂ often remains valid despite some departure

of the data generation mechanism from the hypothesized true model M. Another, perhaps

more traditional, sense of robustness is that of protection against outliers. It is possible

to make indirect inference procedures resistant to outliers. Both senses of robustness are

further discussed in Sec. 2.5.

In Section 2 we summarize the theory, integrating literature from different fields. In Sec-

tion 3, we present some applications of the bridge relation in assessing the robustness and
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sensitivity of an unadjusted naive estimator regarding model misspecification (when M is mis-

specified as M′). Examples include Poisson estimation, omitted covariates, measurement error,

missing data. Section 4 includes three analyses : a carcinogenicity data set is modelled by

a Poisson regression model with random effects (over-dispersion); an epidemiological data set

concerns a mismeasured covariate; a well-known multivariate data set of mathematics exam

scores illustrates robust model selection. In the Conclusion, we list some more statistical proce-

dures that can be recast as examples of indirect inference, including importance sampling and

applications to gene mapping.

2. THEORY

2.1 Auxiliary Statistic

Under the hypothesized true model M, we suppose that the observed data W come from

n subjects or units, independently generated by a probability distribution P (θ), which depends

on an unknown p-dimensional parameter θ. It is desired to make inferences concerning θ.

The indirect method starts with an auxiliary or intermediate statistic ŝ = ŝ(W), which

can be generated by the method of moments, least squares (LS), or a likelihood analysis based

on a convenient misspecified model M′, for example. Most such intermediate statistics can be

defined implicitly as a solution, s = ŝ, of a (q-dimensional) estimating equation of the form

G(W, s) = 0, say. [Clearly this includes any statistic ŝ = ŝ(W) that has an explicit expression

as a special case, by taking G = s − ŝ(W).] The estimating equation could be the normal

equation from a LS analysis, the score equation based on some likelihood function, or the

zero-gradient condition for a generalized method of moments analysis.

Note that ŝ is typically asymptotically normal (AN) and
√
n-consistent for estimating some

s = s(θ), the auxiliary parameter. [See, for example, White (1994, Theorem 6.4, p.92) for the

case when G is a score function based on a naive/misspecified likelihood.] In our exposition,

the theory of indirect inference methods will be based on this AN property for the intermediate

statistic ŝ alone, noting that this property can hold even if the complete original model P (θ)

for the data W is invalid. Our “intermediate model” is now

n1/2{ŝ− s(θ)} D−→ N(0, ν). (3)
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Here ŝ and s(θ) are of dimension q, where the auxiliary parameter s = s(θ) is the asymptotic

mean of ŝ. (When ŝ is based on a ‘naive model’ M′, we sometimes alternatively term s as

a naive parameter.) Also, n−1ν = var(ŝ) is the q × q asymptotic variance (“avar”) of ŝ. In

general, the avar of ŝ has a sandwich form

var(ŝ) = n−1ν = (E∂sG)−1var(G)(E∂sG)−T |s=s(θ). (4)

Here we use superscripts T for transpose, −T for inverse and transpose. The derivative matrix

is defined by [∂sG]jk = ∂skGj , j, k = 1, . . . , q and G = (G1, . . . , Gq)T , s = (s1, . . . , sq)T .

2.2 The Bridge Equation

Note that, as an asymptotic mean of ŝ, s(θ) is not unique — s(θ) + o(n−1/2) would do as

well. We usually choose a version of s(θ) which does not depend on n, if available. Alternatively

we may use the actual expectation s(θ) = EW|θŝ . Now s(θ), the consistent limit of ŝ, is not

equal to the true parameter θ in general and not even necessarily equal in dimension. For

problems with model misspecification, the naive parameter s(θ) establishes a mapping which

plays a central role in bias correction and is referred to as the binding function (Gouriéroux et

al. 1993) or bridge relation (Turnbull et al. 1997, Jiang et al. 1999), because it relates what

the naive model really estimates to the true parameter.

Now we turn to the problem of deriving s(θ) in two cases.

A. When the naive estimator ŝ = ŝ(W) has an explicit expression, it is sometimes possible to

use the law of large numbers to find its limit directly, as in the examples of Section 1.

B. More commonly, ŝ does not have an explicit expression. When ŝ maximizes an objective

function, its large sample limit may be obtained from maximizing the limit of the objective

function. When ŝ is implicitly defined as a solution of an estimating equationG(W, s) = 0,

and G(W, s) converges in probability to EW|θG(W, s) = F (θ, s), say, as n→∞, we can

find the naive parameter s(θ) by looking for the solution s = s0(θ), say, of the equation

F (θ, s) = 0, and take s(θ) = s0(θ).

Note that [A] is a special case of [B] with G(W, s) = s− ŝ(W).

More generally, ŝ = ŝ(W) is defined as a procedure which maps the data vector to <q, and

ŝ is asymptotically normal. Then s(θ), being an asymptotic mean of ŝ, can be computed by
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EW|θŝ(W). If necessary, this expectation, as a function of θ, can be estimated by a Monte

Carlo method: Simulate W(k), k = 1, . . . ,m, i.i.d. W|θ; and use s(θ) ≈ m−1∑m
k=1 ŝ(W

(k)).

For examples, see McFadden (1989), Pakes and Pollard (1989), and Kuk (1995).

2.3 The Adjusted Estimator and the Indirect Likelihood

We now consider inference for the parameter θ under model M based on the intermediate

statistic ŝ. From the assumed AN approximation (3) of ŝ, we define an indirect likelihood

L = L(θ|ŝ) ≡ |2πv|−1/2 exp(−H/2), where H = H(θ, ŝ) = {ŝ − s(θ)}T v−1{ŝ − s(θ)}, v is (a

sample estimate of) the avar of ŝ, and |·| denotes determinant. More generally, when ŝ is defined

implicitly as the solution to an equation of the formG(W, s) = 0, in the definition of the indirect

likelihood L, H is defined by H(θ, ŝ) = F (θ, ŝ)T v−1F (θ, ŝ), with F (θ, s) ≡ EW|θG(W, s). Here

v is (a sample estimate of) the avar of F (θ, ŝ), which can be evaluated by the delta method (e.g.

Bickel and Doksum 2001, Sec 5.3), and found to be the same as var(G) evaluated at s = s(θ)

(the auxiliary parameter).

We then define the adjusted estimator (or the indirect MLE) θ̂ to be the maximizer of

L, or the minimizer of H. This maximizer of L bears properties that are analogous to the

usual MLE, under mild regularity conditions. The most important condition is the correct

specification of the bridge relation s = s(θ), or implicitly of F (θ, s) = 0, for the asymptotic

mean s of the intermediate statistic. These results are summarized in the following proposition.

We will outline the proof in the explicit form. The proof in the implicit form is similar and is

actually asymptotically equivalent, after applying the implicit function theorem to the partial

derivatives on F .

PROPOSITION 1. (Analogy of the adjusted estimator to the MLE). Suppose

(a)
√
n{ŝ− s(θ)} D→ N(0, ν),

(b) ν is positive definite and symmetric and nv
p→ ν,

(c) s(·) is second order continuously differentiable in a neighborhood of θ and the derivative

matrix s′ is full rank at θ. [In the implicit form, this condition involves the following: F

is bivariate continuously-differentiable to the second order in a neighborhood of (θ, s(θ)),

∂sF and ∂θF are full-rank at (θ, s(θ)), and F takes value zero at (θ, s(θ)).]

Then we have the following:
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(i) (Indirect Score Function). The asymptotic mean and variance of the indirect likelihood score

function satisfies the usual relations E(∂θ logL) = 0 and var(∂θ logL) +E(∂2
θ logL) = 0.

(ii) (Asymptotic Normality). There exists a closed ball Θ centered at the true parameter θ, in

which there is a measurable adjusted estimator θ̂ such that θ̂ = arg maxθ∈Θ logL and
√
n(θ̂ − θ) D→ N{0, (s′(θ)T ν−1s′(θ))−1}.

Alternatively, θ̂ is AN with mean θ, and with avar estimated by −(∂2
θ logL)−1 or 2(∂2

θH)−1,

where consistent estimates are substituted for parameter values.

(iii) (Tests). Likelihood-ratio statistics based on the indirect likelihood for testing simple and

composite null hypotheses have the usual asymptotic χ2 distributions. E.g., Under H0:

θ = θ0, 2 logL(θ̂)− 2 logL(θ0) D→ χ2
dim θ.

(iv) (Efficiency I). The adjusted estimator has smallest avar among all consistent asymptoti-

cally normal (CAN) estimators f(ŝ) of θ, which are constructed from the naive estimator

ŝ by continuously differentiable mappings f .

Proof:

For (i): From assumption (a), we note that n−1∂θ logL = −0.5n−1∂θH = s′(θ)T ν−1{ŝ −
s(θ)} + op(n−1/2) and −n−1∂2

θ logL = s′(θ)T ν−1s′(θ) + Op(n−1/2). Then n−1/2∂θ logL D→
N{0, s′(θ)T ν−1s′(θ)} and −n−1∂2

θ logL
p→ s′(θ)T ν−1s′(θ). In this sense the asymptotic mean of

n−1/2∂θ logL is zero, and the asymptotic variance n−1var(∂θ logL) and the asymptotic mean

of −n−1∂2
θ logL are both equal to s′(θ)T ν−1s′(θ).

For (ii): The AN result is proved by using a usual linear approximation and using the

results in (i). The validity of the linear approximation depends on the consistency of θ̂ and a

zero-gradient condition, which are justified below.

By conditions (a), (b), (c), we can choose a closed ball Θ centered at the true parameter

θ, such that supt∈Θ |n−1H(t, ŝ) − h(t)| p→ 0 and the limiting criterion function h(t) = {s(θ) −
s(t)}T ν−1{s(θ)− s(t)} has a unique minimum t = θ located in the interior of Θ. Therefore the

minimizer θ̂ = arg mint∈Θ n
−1H(t, ŝ)

p→ θ and satisfies a zero-gradient condition ∂tH(t, ŝ)|t=θ̂ =

0 = ∂ logL(θ̂) with probability tending to one. Now we expand this zero-gradient condition

around θ̂ ≈ θ and use the just-established consistency of θ̂ to characterize the remainder. We

obtain θ̂ − θ = −{∂2
θ logL(θ)}−1∂θ logL(θ) + op(n−1/2). Applying the results obtained in the

proof of (i) and applying Slutsky’s Theorem, we obtain θ̂−θ = {s′(θ)T ν−1s′(θ)}−1s′(θ)T ν−1{ŝ−
s(θ)}+ op(n−1/2), from which the AN result of (ii) follows.
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For (iii): Since the AN result (ii) for the parameter estimates has been established, the

standard treatment in likelihood-based inference (e.g., Sen and Singer 1993, Section 5.6) can

be applied, based on a second order Taylor expansion. This results in the the limiting χ2

distribution of the likelihood-ratio statistics.

For (iv): The delta method can be applied to derive n var(f(ŝ)) = f ′(s)νf ′(s)T , while result

(ii) gives n var(θ̂) = (s′(θ)T ν−1s′(θ))−1. The consistency of f(ŝ) as an estimator of θ implies

that f(s(θ)) = θ for all θ, implying the constraint f ′(s)s′(θ) = I, which in turn implies that a

positive semi-definite matrix

(f ′ − (s′T ν−1s′)−1s′T ν−1)ν(f ′ − (s′T ν−1s′)−1s′T ν−1)T = f ′(s)νf ′(s)T − (s′(θ)T ν−1s′(θ))−1.

This last equation shows that n var(f(ŝ)) is never less than n var(θ̂) in the matrix sense. 2

This proposition represents a summary of results that have appeared in varying forms and

generality and tailored for various applications. For example, (iv) is a stronger version and

synthesis of various optimality results in existing literature, e.g., optimal quadratic criterion

function in indirect inference (Gouriéroux et al. 1993, Prop. 4); optimal linear combination of

moment conditions in GMM (Hansen 1982, Theorem 3.2; McCullagh and Nelder 1989, p.341);

the method of linear forms (Ferguson 1958, Theorem 2); and the regular best AN estimates

that are functions of sample averages (Chiang 1956, Theorem 3).

Recognizing that the maximization of L is the same as minimizing H, we can often view

the method of minimum χ2 or GMM as likelihood inference based on an intermediate statistic.

For example: in the simulated method of moments and indirect inference, either the explicit

(McFadden 1989, Pakes and Pollard 1989, Gouriéroux et al. 1993, Newey and McFadden 1994)

or the implicit form (Gallant and Tauchen 1996, 1999; Gallant and Long 1997) of the GMM

criterion function H is used, and applied to econometric and financial problems. Applications

of GMM in the settings of generalized estimating equations from biostatistics is discussed in

Qu, Lindsay and Li (2000).

In a special case when the dimension of the intermediate statistic (q) equals that (p) of

the parameter θ, and s(·) is a diffeomorphism on the parameter space Θ of θ, maximization

of L is equivalent to the bias correction θ̂ = s−1(ŝ) (from solving F (θ, ŝ) = 0), which is AN

and consistent for θ. See, e.g., Kuk (1995); Turnbull et al. (1997) and Jiang et al. (1999) for

biostatistical applications. In fact, when ŝ is itself already asymptotically unbiased, the above

adjustment procedure can still be used for removing small-sample bias of order O(1/n), by
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solving for θ̂ from ŝ− EW|θŝ(W) = 0 (MacKinnon and Smith, 1998).

When q < p, there are more unknown true parameters than ‘naive parameters’. In this case

the bridge relation is many-to-one and does not in general permit the construction of adjusted

estimates. It is mainly of interest for investigating the effects of misspecification when the naive

estimators are constructed under misspecified models — see Section 3.3, for example. However,

in such situations it may be possible to construct consistent estimates for a subset of true param-

eters, which may be of interest. In other situations, some components of the higher-dimensional

true parameter are known or can be estimated from other outside data sources. This enables

the other components to be consistently estimated by inverting the bridge relation. Examples

of this kind arising from errors-in-variables regression models are given in Sections 3.2 and 4.2.

2.4 Efficiency of the Adjusted Estimator

In general, the intermediate statistic ŝ is not a sufficient statistic of θ under the true model

M and the ‘indirect MLE’ θ̂ based on the ‘intermediate data’ ŝ is not as efficient as the MLE θ̂ML

based on the complete data W. However, Cox (1983) and Jiang et al. (1999) provide examples

of situations when the efficiencies of θ̂ are quite high for some parameter components–see also

the example of Section 4.1.

Proposition 1(iv) has already given our first result concerning the efficiency of θ̂. Further

results on the efficiency of θ̂ under model M are summarized in the following two propositions.

Proposition 2 provides necessary and sufficient condition for the entire vector of θ̂ [parts (i) or

(ii)] or some of its components [part (ii)] to be as efficient as the MLE. Proposition 3 provides

a geometric view of the relative efficiency and avars for the three consistent and asymptotic

normal (CAN) estimators considered in this paper, with their avars decreasingly ordered: f(ŝ)

(any CAN estimator of θ smoothly constructed from the intermediate data ŝ), θ̂ (indirect MLE

based on ŝ), and θ̂ML (MLE based on the complete data W). The results in Propositions 2

and 3 have appeared in different forms in the literature. For example, part of the geometry is in

Hausman (1978, Lemma 2.1); result (ii) of Proposition 2 can be recognized as a consequence of

the Hájek-Le Cam convolution theorem (Hájek 1970); result (i) is used in the efficient method

of moments [e.g., Gallant and Tauchen (1996, 1999) and Gallant and Long (1997)] for choice

of auxiliary models to achieve full or approximate efficiency in indirect inference.

Some notation and background knowledge for the propositions are the following. Let the

15



intermediate statistic ŝ be defined in a general implicit form G(W, ŝ) = 0. Denote the indirect

likelihood based on the intermediate data ŝ as L(θ|ŝ) and the likelihood based on the complete

data as L(θ|W), which are maximized by the indirect MLE θ̂ and the MLE θ̂ML, respectively.

We will adopt the following notation. Two order n−1/2 quantities are said to be asymptotically

equal (≈) when their difference is of a lower order; and are said to be orthogonal (⊥) to each

other if their covariance elements have a lower order than n−1. All function or derivative values

are evaluated at the asymptotic limits θ and/or s(θ) (for s). For a generic column vector v,

v⊗2 denotes vvT . Subscripts of F will denote partial derivatives, e.g., Fθ = {∂θF (θ, s)}|s=s(θ).

PROPOSITION 2. (Efficiency II). Assume that the usual regularity conditions hold so that

θ̂ and θ̂ML are both AN. (Assume, e.g., conditions in Proposition 1 for the AN of θ̂, and the

conditions in Sen and Singer 1993, Section 5.2 for the AN of the MLE θ̂ML.)

Denote the score function as S = ∂θ logL(θ|W) and the indirect score function as T =

∂θ logL(θ|ŝ). Then we have the following:

(i) The difference of the ‘information’ matrices satisfies

var(S)− var(T ) = var(θ̂ML)−1 − var(θ̂)−1 = inf
p× q matrix C

var(S − CG) = var(S − T ).

(ii) The difference of avar matrices satisfies

var(θ̂)− var(θ̂ML) = E{(ETT T )−1T − (ESST )−1S}⊗2.

Therefore, for any direction vector a, aT θ̂ is efficient for estimating aT θ iff the standardized

score functions for the true likelihood and the indirect likelihood are asymptotically equal at θ,

when projected onto a.

Proof:

Note that θ̂ML − θ ≈ −{E∂2
θ logL(θ|W)}−1∂θ logL(θ|W) ≈ (ESST )−1S.

On the other hand, from the linear approximation and the results about the indirect score

function in Proposition 1, we have θ̂ − θ ≈ −{E∂2
θ logL(θ|ŝ)}−1∂θ logL(θ|ŝ) ≈ E(TT T )−1T .

These relations imply that var(θ̂) = var(T )−1 and var(θ̂M ) = var(S)−1 as used in (i).

For (i): We first derive a relationship between the indirect score function T and the esti-

mating function G. By taking the derivative ∂θ logL(θ|ŝ) = ∂θ{−F (θ, ŝ)T (var G)−1F (θ, ŝ)/2}
and a linear approximation in (ŝ− s), we obtain T ≈ −F Tθ E(GGT )−1Fs(ŝ− s)
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≈ −E(GST )TE(GGT )−1{G(W, ŝ)−G(W, s)} = E(GST )TE(GGT )−1G(W, s), noting thatG(W, ŝ) =

0 and that E(GST ) = Fθ (an identity derivable assuming the interchangeability of the derivative

and the integration). Then the indirect score T is asymptotically equivalent to the projection

of the direct score function (S) on to the span of the estimating function G. Then (S−T ) ⊥ T
and it follows that (i) is a direct consequence of Pythagoras’ theorem.

For (ii): Note that θ̂ML − θ ≈ (ESST )−1S and θ̂ − θ ≈ E(TT T )−1T . Also, note that

{E(TT T )−1T − (ESST )−1S} ⊥ (ESST )−1S is a consequence of (S − T ) ⊥ T . Now (ii) follows

from Pythagoras’ theorem. 2

Result (i) is used by Gallant and Tauchen (1996, 1999) and Gallant and Long (1997) for the

choice of the auxiliary model M′ (a “score generator”) that generates a “naive score function”

G(W, s) to which the intermediate statistic ŝ is a root, in order to guarantee full or approximate

efficiency in indirect inference. Gallant and Tauchen (1996) show that θ̂ is fully efficient if the

auxiliary model M′ includes the true model M as a submodel by a smooth reparameterization.

They claim high efficiency can be achieved if the auxiliary model can well approximate the true

model. They propose the use of flexible families of auxiliary models, such as semi-nonparametric

models and neural network models to generate G and ŝ.

Some geometric relations are established from the proof of the above proposition. The or-

thogonality argument in the proof of (ii) essentially says (θ̂− θ̂ML) ⊥ (θ̂ML− θ). When similar

arguments are applied to the situation of comparing θ̂ with any CAN estimate f(ŝ) smoothly

constructed from ŝ in Proposition 1(iv), we arrive at the following results summarizing the

geometric relations among f(ŝ), θ̂ and θ̂ML, where we assume standard regularity conditions

as in Proposition 2.

PROPOSITION 3. (Geometry). θ̂ML− θ, θ̂− θ̂ML and f(ŝ)− θ̂ are mutually orthogonal. (See

Figure 1) The following Pythagoras-type result holds and summarizes the efficiency results

geometrically:

E{f(ŝ)− θ}⊗2 ≈ E{f(ŝ)− θ̂}⊗2 + E(θ̂ − θ)⊗2

≈ E{f(ŝ)− θ̂}⊗2 + E(θ̂ − θ̂ML)⊗2 +E(θ̂ML − θ)⊗2.

[Figure 1 about here.]
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2.5 Robustness of the Adjusted Estimator

In the indirect approach, with the freedom of choosing what aspect of data information to be

incorporated via the intermediate statistic, the inferential results can sometimes be made robust

against certain departures from the hypothesized true model M, possibly at the cost of losing

some efficiency when the true model is indeed M. The asymptotic properties of inferential

procedures based on the indirect likelihood remain valid as long as the asymptotic mean of

the intermediate statistic is correctly specified. In comparison, properties of the MLE usually

depend on the correct specification of a full probability model. Thus inferences based on indirect

likelihood are typically more robust to model misspecification. [This type of robustness has been

considered by many authors, e.g. Box and Tiao (1973, Sec 3.2), Foutz and Srivastava (1977),

Kent (1982).] It is typical to take robustness into consideration when choosing an intermediate

statistic. For example, when one is only willing to assume a mean model for a response, then

an intermediate statistic that is linear in the response variable is often used. Further such

examples are illustrated in Sections 3 and 4.

The ‘robustness’ discussed above refers to the consistency of estimators under violations of

certain assumptions on the distribution of data. This sense of ‘robustness’ has been the focus

of many recent works in biostatistics. For example, the Poisson process estimation is termed

‘robust’ in Lawless and Nadeau (1995) since the consistency holds regardless of the assumptions

on higher order moments and correlations of the recurrent events. The GEE (generalized

estimating equations, Liang and Zeger 1986) allows consistency regardless of the assumptions

on higher order moments or correlation structures of longitudinal data. The ‘marginal method’

of Wei, Lin and Weissfield (1989) is a popular method of achieving consistent estimation without

modeling the dependence structure for multiple events in survival analysis.

Another sense of ‘robustness’ refers to estimators that are resistant to outliers or gross errors

(e.g. Huber 1964, Hampel 1968). Indirect inference procedures can also be made robust against

outliers. A sequence of recent articles (Genton and de Luna 2000, de Luna and Genton 2001,

2002, Genton and Ronchetti 2003) investigate the robustness of indirect inference in this sense

of protecting against outliers and describe many applications.

The key to robustness in the sense of resistance to outliers lies in the influence function (IF)

of the estimator. Let b̂ be a
√
n-consistent estimator of parameter b based on n i.i.d. copies of

data W = (W1, . . . ,Wn). Then the IF is defined such that b̂−b = n−1∑n
i=1 IF (Wi)+op(n−1/2).
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One can often compute IF via the Gateaux differential (Hampel et al. 1986, p.84). Note that

supw |IF (w)| shows how much one outlying observation can influence the value of b̂. Therefore

the robustness of a consistent b̂ against outliers can be characterized by a bounded IF (·).
Note that a bounded IF prevents a large loss of asymptotic efficiency under perturbations of

the distributions assumed for Wi’s (e.g., gross error), since the asymptotic variance var(b̂) =

n−1var{IF (Wi)} will be bounded if IF (·) is, whatever distribution Wi actually follows. For

more discussion on the general notion of influence function and robust estimation, see Bickel

(1988) and Reid (1988).

Genton and de Luna (2000, Theorem 1) present the key fact relating the influence function

IFθ of the indirect estimator θ̂ to the influence function IFs of the auxiliary estimator ŝ:

IFθ(w) = {s′(θ)T ν−1s′(θ)}−1s′(θ)T ν−1IFs(w). (5)

This result follows from the relation θ̂−θ = {s′(θ)T ν−1s′(θ)}−1s′(θ)T ν−1{ŝ−s(θ)}+op(n−1/2),

derived in the proof of Proposition 1(ii). Therefore, θ̂ will have bounded influence and be

resistant to outliers, if a robust auxiliary statistic ŝ, having bounded influence, was used in

the first place. (For the generalized method of moments procedure, there are parallel results

relating the influence function and the moment conditions — e.g. see Ronchetti and Trojani

2001.)

Relations between various norms of IFθ(·) and IFs(·) are then derived from (5). Additional

variation due to simulated approximation of s(θ) are accounted for in Genton and Ronchetti

(2003). These ideas are applied in Genton and de Luna (2000), de Luna and Genton (2001,

2002), and Genton and Ronchetti (2003), to a variety of problems including stochastic differ-

ential equations models, time series and spatial data.

For one example in Genton and Ronchetti (2003), the assumed model M is the stochastic

differential equation (geometric Brownian motion with drift). The auxiliary model M′ is based

on a crude Euler discretization. The auxiliary estimators computed as ŝml, the maximum like-

lihood estimators under M′, or ŝr, the robust estimators under M′ after using the ‘Huberized’

estimating functions that have bounded influence. Indirect inference based on adjusting these

auxiliary estimators then generate (respective) estimators θ̂ml and θ̂r that are both consistent

under M. However, as might be expected, simulation experiments reported by Genton and

Ronchetti (2003) show that generally, in their applications, when there is gross error contami-

nation on the assumed model M, θ̂ml, obtained from adjusting the ‘naive’ MLE, behaves poorly;

but the estimator θ̂r, obtained from adjusting a robustified auxiliary estimator, still behaves
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very well in terms of bias and variability.

2.6 Model Selection

Since the leading order properties of the criterion function H(·) are completely determined

by its quadratic approximation around θ̂, which is analytically simpler, in this section we will

denote by H(θ, ŝ) the quadratic function H(θ̂, ŝ) + 2−1(θ − θ̂)T∂2
θH(θ̂, ŝ)(θ − θ̂). For model

selection, we can continue the process of the analogy and construct a Bayesian information

criterion (BIC, Schwarz, 1978) based on the indirect likelihood L(θ|ŝ) ∝ exp(−H/2). Suppose

that a sub-model M of the original saturated model claims that θ lies in a dM (≤ p) dimensional

sub-manifold ΘM of the original parameter space (Θ, say). (Note that θ̂ is the minimizer of H

in the original parameter space.) The BIC criterion function −2 supθ∈ΘM logL(θ|ŝ) + dM log n

is, up to a constant of M , equal to the Bayesian cost C(M) ≡ infθ∈ΘM H(θ, ŝ) + dM log n. For

a set Φ (called the scope) of candidate model M ’s, the BIC (based on the intermediate statistic

ŝ) chooses M̂ = arg minM∈ΦC(M). This choice M̂ enjoys the desirable frequentist property of

consistency, when a single parameter (θ0, say) is the true parameter based on which the data

are generated. A true model in this case is a model which proposes a parameter space ΘM that

contains the true parameter.

PROPOSITION 4. (Consistency of BIC). Assume the conditions hold for the AN result in

Proposition 1 (ii), then, with probability tending to one as the sample size n increases, M̂

chooses a simplest true model (with lowest dM ) in the search scope Φ. If there is no true

model in Φ, then M̂ converges in probability to a model in Φ that is closest to the true

parameter θ0, i.e. with smallest distance d(θ0,ΘM ) ≡ infθ∈ΘM (θ − θ0)T ν−1
θ (θ − θ0), where

νθ = plimn→∞{n var(θ̂)}.
This consistency result is easily proved by noting that infθ∈ΘM [H(θ, ŝ) − H(θ̂, ŝ)] is posi-

tive and of order n when θ0 is outside ΘM , and of order 1 when θ0 ∈ ΘM . These imply that

asymptotically a true model is favored against a false model; when true models (M ’s for which

θ0 ∈ ΘM ) are compared, the complexity penalty dominates and a simplest model will be cho-

sen. When all models in Φ are false, the behavior of the leading term of C(M) is essentially

nd(θ0,ΘM ), and the closest false model will be chosen. 2

Continuing the Bayesian approach, conditional on the intermediate statistic ŝ, we define
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the posterior probability of a model and of the Bayes factor (BF) for comparing two models.

Suppose, under model M , θ can be parameterized as θ = θ(φM ) where φM lies in a dM

dimensional manifold ΦM . Then we can write P (ŝ|M) =
∫
ΦM

P (ŝ|θ(φM ))P (φM |M)dφM , where

P (φM |M) is a prior for the parameter φM .

The posterior conditional on ŝ is defined as P (M |ŝ) = P (ŝ|M)P (M)/P (ŝ), and the Bayes

factor BF12 for two models M1, M2 is defined by BF12 = P (ŝ|M1)/P (ŝ|M2).

The following results are straightforward applications of the Laplace approximation (e.g.,

Draper, 1995, eqn. 11)

−2 logP (ŝ|M) = dM log(n)− 2 sup
tM

logP (ŝ|θ(tM )) +O(1).

and of the normal approximation −2 logP (ŝ|θ) = H(θ, ŝ) + log |2πv̂ar(ŝ)| coming from (3).

PROPOSITION 5. (Indirect posterior for a model and the Bayes Factor).

(i) −2 logP (ŝ|M) = C(M) + log |2π ˆvar(ŝ)|+O(1) and

−2 logP (M |ŝ) = −2 logP (ŝ|M)− 2 logP (M) + 2 logP (ŝ).

(ii) −2 logBF12 = C(M1)− C(M2) +O(1);

and if −2 log{P (M1)/P (M2)} = O(1), then −2 log{P (M1|ŝ)/P (M2|ŝ)} = −2 logBF12 +

O(1).

(iii) Let M̂ = arg minM∈ΦC(M). Suppose −2 log{P (M1)/P (M2)} = O(1) for all M1, M2 in

Φ. Then M̂ = arg maxM∈Φ logQ(M |ŝ) where logQ(M |ŝ) = logP (M |ŝ) +O(1).

Roughly speaking, the above proposition implies that models with small Bayesian costs

tend to have high leading order posterior probability. Together with the previous proposition,

it implies that it may be desirable to report the models in the searching scope that have the

smallest costs. We propose to report M̂ , as well as models that have C(M) ≤ C(M̂) + 6, which

corresponds roughly to reporting models with leading order posterior probability at least 0.05

times that of M̂ . We give an application of graphical model selection in Section 4.3.

2.7 Generalized method of Moments and Indirect Inference

The generalized method of moments (GMM) is an extremely general method of estima-

tion encompassing most well-known procedures such as maximum likelihood, least squares,

M-estimation, instrumental variables, two-stage least squares, etc. – e.g. see Imbens (2002). It
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is defined as follows (e.g. Matyas, Chapter 1). Suppose the observed data W consist of n i.i.d.

copies (W1, . . . ,Wn) of W from n units. Suppose also that under our model M, Eθ[h(W, θ)] = 0

for all θ. Here h ∈ <q and the q equations, Eθ[h(W, θ)] = 0 are called the moment conditions.

Define the sample analog hn(θ) = n−1∑n
i=1 h(Wi, θ). The GMM estimator of θ is then defined

as

θ̂GMM = arg min
θ
hn(θ)TAnhn(θ) (6)

where An is a positive definite “weight” matrix.

In Sections 2.1 and 2.3, we saw that indirect inference (II) was essentially a two-step pro-

cedure. In the first ‘auxiliary step’, we obtain an intermediate statistic ŝn, which can often be

defined implicitly from a set of q estimating equations G(W, s) = 0. The indirect estimator θ̂II

is then obtained in the second ‘adjustment step’ as

θ̂II = arg min
θ
F (θ, ŝn)T v−1F (θ, ŝn),

where F (θ, s) = EW|θG(W, s) and v is a sample estimate of the avar of F (θ, ŝ). This includes

the explicit case when F (θ, ŝn) = ŝn − s(θ).
In the definition of θ̂GMM , we may identify An = v−1 and hn(θ) = F (θ, ŝn). The moment

conditions for this choice are satisfied approximately because E{F (θ, ŝn)|θ} ≈ F{θ, E(ŝn|θ)} ≈
F{θ, s(θ)} = 0. These approximate equalities become exact if we interpret the E operator to

denote the asymptotic mean. Thus the ‘adjustment step’ of indirect inference can be considered

as a GMM procedure where the moment conditions are asymptotically satisfied.

Conversely it can be argued that GMM is a special example of the complete 2-step procedure

of indirect inference. Suppose we take the intermediate statistic ŝn as a GMM estimator ŝGMM

based on some auxiliary model M′, we can then go on to obtain an adjusted estimator θ̂II under

a true model M, as described in Section 2.3. This possibility has been suggested by Carrasco

and Florens (2002) above their equation (15). GMM becomes the same as indirect inference

when the bridge relation is trivial, so that θ̂II = ŝGMM even after the adjustment. This will

happen if ŝGMM was obtained from a moment condition hn(θ) that is correctly specified even

under the true model M, i.e., E{hn(θ)|θ} = 0 under (both M’ and) M.

Although closely connected, the indirect inference approach, with its emphasis on an aux-

iliary (or intermediate) statistic and an indirect likelihood function, gives a viewpoint that is

somewhat different from the GMM approach. This viewpoint has been a productive one, lead-

ing to contributions in various application areas, especially econometrics.
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3. APPLICATIONS OF BRIDGE RELATIONS

Often the auxiliary statistic ŝ is constructed as a “naive” estimator of θ based on a simplified

or naive model M′. The bridge relation of Section 1.1 can be viewed as an expression for the

large sample limit of this naive estimator in terms of the true parameter. The relation is then

useful for assessing how sensitive or robust a naive analysis is against potential model misspec-

ification. If the bridge relation is the trivial one (i.e. s = θ), the naive estimator obtained from

M′ remains consistent for θ even when the true model is M instead of M′. This demonstrates

certain robustness (of the naive estimator). See examples in Sec 3.1 and 3.3. A number of

estimating procedures can be considered in this perspective, which are also classifiable as the

pseudo-maximum likelihood methods in econometrics (Gouriéroux and Monfort, 1993; Broze

and Gouriéroux, 1998). Nontrivial bridge relations (biased naive estimates) reveal the effect

of misspecification and are useful for sensitivity analysis and bias correction. See examples in

Sec 3.2, 3.4.

3.1 Poisson Process Estimation For Recurrent Events

For i = 1, . . . , n suppose {Wi(t), t ≥ 0} are n independent realizations of a point process

(not necessarily Poisson) with respective multiplicative intensity functions fi(β)λ(t), where

fi(β) = ex
T
i β, say, and xi denotes a vector of covariates for the ith process. Here the true

parameter is θ = (β, {λ(t)}), with λ(t) representing the nonparametric baseline intensity. It

was shown in Lawless and Nadeau (1995) that naively assuming a model M′ in which the Wi(t)

follows a Poisson process but with a correct specification of the intensity function leads to a

consistent naive estimator ŝ = (β̂, {λ̂(t)}) for the true parameter (β, {λ(t)}). (The consistency

of the naive estimator is characterized by a trivial bridge relation s ≡ plimn→∞ŝ = θ.) Here β̂

is the Cox (1972) partial likelihood estimate and λ̂(t) is a discrete intensity estimate for {λ̂(t)}
that corresponds to the Nelson Aalen estimate of the cumulative intensity (see Andersen et al.

1993, Sec.VII.2.1). Jiang et al. (1999) give an application based on an overdispersed Poisson

process model, where the overdispersion is caused by frailties (or random effects) that follow a

gamma distribution. They show that the naive estimator β̂ from ŝ not only remains consistent

but can also retain high efficiency relative to the MLE.
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3.2 Measurement Error Problems

The main goal is to study the relationship between the response Y and the (true) covariate

X, when only an error-contaminated version Z of X is observed. The regression model of

interest is the one relating Y and the true covariate X, which may be described by a condi-

tional distribution pY |X(y|x; θ), involving some unknown parameter(s) θ. It is desired to make

inferences concerning θ. A common simplification assumes that Z is a ‘surrogate’ of X, in the

sense that Y is independent of the surrogate Z when conditioning on the true X.

Let (Yi, Xi, Zi), i = 1, . . . , n be i.i.d. copies of (Y,X,Z) where Xi’s are unobserved. The

observed data consist of pairs Wi = (Yi, Zi), i = 1, . . . , n.

If we denote pY |X,Z , pX|Z , pZ as the pdf’s of (Yi|Xi, Zi), (Xi|Zi) and Zi, respectively, we

have that the true likelihood based on the observed data {(Yi, Zi)} is
∏n
i=1

(∫
pYi|x,Zipx|ZipZidx

)
,

involving integration over unobserved Xi values. The maximization of the likelihood can be

difficult computationally and there is unlikely to be any standard software available to be of

aid. On the other hand, if we adopt a model M′ that simply ignores the covariate measurement

error and treats Zi as Xi for each i, we are led to a naive regression analysis for which standard

software will very likely be available. A naive estimator ŝ then is simply constructed by ne-

glecting the measurement errors in Zi, and maximizing the naive likelihood
∏n
i=1 pY |X(Yi|Zi; s).

The general method of Section 2 is to try to find a large sample limit ŝ→ s(θ) and then obtain

the adjusted estimator θ̂ by solving ŝ = s(θ) for θ.

For a simple example, consider the case when the conditional distribution of Yi given Xi is

N(θXi, σ
2
ε ), i.e. simple linear regression through the origin with homoscedastic normal errors. A

structural model of normal additive measurement error structure is assumed, that is Zi = Xi+Ui

where Xi and Ui are independent normal with variances σ2
X and σ2

U , respectively. Then the

naive MLE or naive least-squares estimator is ŝ =
∑
YiZi/

∑
Z2
i , and ŝ → s(θ) almost surely,

where

s(θ) =
EYiZi
EZ2

i

=
EXiZi
EZ2

i

θ =
EX2

i

EZ2
i

θ =
σ2
X

σ2
X + σ2

U

θ.

Note that |s| < |θ|, which is called the “attenuation” phenomenon: the magnitude of the “naive”

slope estimate | ŝ | underestimates | θ |. This is a common feature when measurement error

is ignored in analyzing regression models (Fuller, 1987, p.3). By solving ŝ = s(θ), a consistent

adjusted estimator is easily found to be θ̂ = σ2
X+σ2

U

σ2
X

ŝ. Of course, this adjustment assumes that

the measurement error parameters σ2
X and σ2

U are known. In practice, they will not be and
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σX , σU should be considered part of the parameter vector θ. We are in the situation discussed

at the end of Section 2.3 where dim(θ) > dim(s). However σX , σU can sometimes be estimated

from a second or “validation” data set in which pairs (Xk, Zk), k = 1, . . . ,m can be observed

directly (Carroll et al. 1995, p.12). These estimates can then be plugged into the formula for θ̂.

The uncertainty resulting from the fact that the measurement error parameters are not known

but estimated can be incorporated into an estimate of var θ̂ by the method of “propagation of

errors” (see Taylor 1997, eqn. (3.4) and Jiang et al. 1999, Appendix B). Alternatively, instead

of using a validation study, σ2
Z = σ2

X + σ2
U can be estimated from the sample variance of the

observed Z values and σ2
U treated as a tuning parameter for a sensitivity analysis.

In the presence of covariate measurement error, similar explicit formulae relating naive

regression parameters and the true parameters are established in Jiang (1996) for Poisson,

exponential and logistic regression models, in Turnbull et al. (1997) for negative binomial

regression models, and in Jiang et al. (1999) for semi-parametric Poisson process regression

models. In these papers it is assumed that the distribution of Xi conditional on Zi follows a

normal linear model. In the following, we introduce a method which does not require parametric

assumptions on the distribution of (Xi, Zi). In addition, only the first moment is specified for

the parametric model of Yi given Xi. This provides an example where the bias correction

is robust, in the sense that the consistency of the adjusted estimator depends on the correct

specification of the mean function E(Yi|Xi) instead of a complete probability model. We also

generalize the notion of a naive covariate Zi to be a general surrogate of Xi. The dimensions

of Zi and Xi can differ. It is only assumed that E(Yi|Xi, Zi) = E(Yi|Xi), which corresponds to

the assumption of non-differential measurement error (Carroll et al., 1995, p.16).

Let Y,X,Z be three random vectors of dimensions dy, dx, dz, respectively. Assume a “non-

differential” mean model E(Y |X,Z) = µ(X, θ) where θ is a p × 1 parameter. Suppose we

observe a main data set W = (Yi, Zi)ni=1 being an i.i.d. realization of (Y, Z), as well as an

independent “validation” data set V = (Xj , Zj)mj=1 being an i.i.d. realization of (X,Z). The

problem is to perform valid inference on θ based on the observed data sets.

Suppose we start with a naive q × 1 estimator ŝ (q ≥ p), which solves a q × 1 linear

estimating equation of the form G(W, s) = n−1∑n
1 h(Zi, s){Yi − m(Zi, s)} = 0, h(q×dy) and

m(dy×1) being fixed smooth functions. Typically, ŝ is AN but not consistent for θ. We could

then use the methods from Section 2 to adjust ŝ to obtain a consistent estimator θ̂, for example,

by maximizing the indirect likelihood L(θ|ŝ) in the implicit form; or, when dim(ŝ) = dim(θ),
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by solving F (θ, ŝ) = 0, where F (θ, s) is the expectation of the estimating function G.

Here, the function F (θ, s) = EW|θG(W, s) can be computed by noting that EW|θG(W, s) =

EX,Zh(Z, s){µ(X, θ) − m(Z, s)}, by first taking the conditional mean given X,Z and using

the “non-differential” assumption. Then, the expectation EX,Z can be approximated by the

sample average based on the validation data V. Consequently, F is estimated by F ∗(θ, s) =

m−1∑m
1 f(Vj ; θ, s), where f(Vj ; θ, s) = h(Zj , s){µ(Xj , θ) − m(Zj , s)} and Vj = (XT

j , Z
T
j )T .

Using F ∗ to approximate F inflates the avar of the final estimator θ∗(ŝ). Jiang and Turnbull

(2003) show that the avar can be estimated, in the limit of proportionally large n and m, based

on a sample estimate of

var θ∗(ŝ) = (Ḟθ)−1(m−1EffT + n−1EggT )(Ḟθ)−T |s=s(θ), (7)

where f = f(Vk; θ, s) and g = g(Wi, s) = h(Zi, s){Yi −m(Zi, s)}. In Section 4.2, we will use an

epidemiological data set to illustrate the methodology described here.

3.3 Omitted Covariates

Gail, Wieand and Piantadosi (1984) consider the effect of omitting covariates in randomized

clinical trials. Their method can be put into the formalism of establishing bridge relations.

Consider a special example where W = (W1, . . . ,Wn) are iid, Wi = (Yi, Zi, Oi), and Yi is

the response following Yi|Zi, Oi ∼ Poisson(eα+Ziβ+Oiγ) under model M. Here Zi is a treatment

assignment variable, taking value 0 or 1 with equal probability and is assumed to be independent

of Oi, another covariate. The true parameter is θ = (α, β, γ)T , and β is the regression coefficient

for the treatment effect, which is of primary interest. Now consider a naive or simplified

regression model M′ where the presence of the covariate Oi is ignored, i.e. it is assumed that

Yi|Zi ∼ Poisson(ea+Zib). The (naive) parameter in this model is s = (a, b)T . Note that this

is again a situation where there are fewer naive parameters than true parameters. The naive

estimator ŝ = (â, b̂)T maximizes the naive likelihood
∏n
i=1(ea+Zib)Yie−ea+Zib/Yi! which neglects

the covariate Oi. Therefore ŝ satisfies the naive score equation

G(W, s) = n−1
n∑

i=1

(1, Zi)T (Yi − ea+Zib) = 0;

and its large sample limit s = s(θ) satisfies EG(W, s) = 0, or E(1, Zi)T (Yi− ea+Zib) = 0. Using

E(Yi|Zi) = E(eα+Ziβ+Oiγ |Zi) = eα+Ziβ(EeOiγ), we obtain

E(1, Zi)T (e(α+logEeOiγ)+Ziβ − ea+Zib) = 0.
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Hence

a = α+ logEeOiγ and b = β,

establishing the bridge relation s = s(θ) between θ = (α, β, γ)T and s = (a, b)T . In this situ-

ation, neglecting the covariate Oi still leaves the treatment effect estimator b̂ from ŝ = (â, b̂)T

consistent, since b = β. In a similar manner, Gail et al. (1984) considered other regression

models, e.g., logistic and exponential regression models, with various link functions, and pre-

sented a list of results on how the treatment effect estimator behaves in randomized clinical

trials when covariates are omitted.

3.4 Missing Data

Rotnitzky and Wypij (1994) considered the bias of estimating equation methods (MLE and

GEE) with missing data, when all available cases are used and the missing data mechanism

is ignored, in the situation when the data may not be missing at random (Heckman 1976,

Little 1994). The bias is obtained from examining the limit of the estimating equation and its

solution — similar to finding the bridge relation s = s(θ) from F (θ, s) = EW|θG(W, s) = 0 in

Section 2.2.

Jiang (1996) considers the bridge relation for finding the effect of neglecting incomplete cases

in analysis of multivariate normal data. Assume that the complete data consist of r×1 random

vectors Yi, i = 1, . . . , n which are iid. Associated with each subject there is a binary indicator

Mi which takes value 1 if and only if all components of Yi are observed. Denote Y c
j , j = 1, . . . , nc

as the subsample where Mj ’s are 1. A naive likelihood analysis is based on the complete cases

and the multivariate normal assumption Y c
j
iid∼ N(m,S), where the naive parameter s contains

all components of m and S. Therefore we take as our intermediate statistic:

ŝ = arg max
s

nc∏

j=1

{
1√

det(2πS)
e−

1
2

(Y cj −m)TS−1(Y cj −m)

}
.

In fact ŝ estimates s = (m,S) where m = EY c
j = E(Yi|Mi = 1) and S = var Y c

j = var(Yi|Mi =

1), which may be calculated according to different models of the missing mechanism. In a

normal selection model (see Little 1994), for example, Yi ∼ N(µ,Σ) and Mi|Yi follows a probit

regression model P (Mi = 1|Yi) = Φ(α + βTYi), where Φ is the cdf of the standard normal
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distribution. For this model, the pdf of Yi|Mi = 1 is

PY |M=1(x) =
Φ(α+ βTx)φµ,Σ(x)∫
Φ(α+ βT y)φµ,Σ(y)dy

=
Φ(α0 + βT (x− µ))φ0,Σ(x− µ)∫

Φ(α0 + βT η)φ0,Σ(η)dη
,

where φµ,Σ is the probability density for multivariate normal random variable with mean µ and

variance Σ, and α0 = α + βTµ. Note that when β = 0, PY |M=1 = φµ,Σ = PY , which leads

to the MCAR model (missing completely at random). In that case, the bridge relations are

trivial: m = µ and S = Σ, implying that ignoring incomplete cases leads to consistent naive

MLEs. This suggests that, for small β, we can perform a Taylor expansion when evaluating

E(Yi|Mi = 1) and var(Yi|Mi = 1). Upon neglecting terms of order o(β2) (or o(βTΣβ)), this

leads to approximate bridge relations:

m = E(Yi|Mi = 1) = µ+ Φ(α0)−1φ(α0)Σβ (8)

and S = var(Yi|Mi = 1) = Σ− α0Φ(α0)−1φ(α0)(Σβ)(Σβ)T ,

where φ is the standard normal pdf. In fact, an exact formula for m is available, namely:

m = µ+ (Φ(ξ))−1φ(ξ)(1 + βTΣβ)−1/2Σβ,

where ξ ≡ (1 + βTΣβ)−1/2(α+ βTµ) — see Jiang (1996, eqn. 4.59).

We note that in general the bias of the naive mean estimator is determined by the sign of

Σβ; and the naive variance estimator is typically biased downwards, i.e., [S]kk < [Σ]kk for each

k, (1 ≤ k ≤ r) provided α0 = α+βTµ > 0 (meaning that a majority of the cases are complete).

The bridge relations in (8) can be used to reduce the bias caused by the naive analysis that

neglects incomplete cases, provided that the missing data parameter (α, βT ) can be estimated,

perhaps from other studies, where missing data are tracked down with additional effort.

Alternatively, if such a data set does not exist, but the MAR assumption (missing at random

— see Little (1994), Eqn.9 p.473) is reasonable, we could estimate (α, β) from the original data

set. There we assume that the missingness Mi is only dependent on the complete components

of Yi which are observed for all subjects. For example in the bivariate normal incomplete data

situation, suppose Yi = (Yi(1), Yi(2))T and the first component, Yi(1), say, is always observed,

but the second component Yi(2) is sometimes missing, when Mi = 0. In the MAR model, we

write β = (β(1), β(2))T and may assume β(2) = 0. Hence (α, βT(1)) can be obtained by performing

a probit regression of Mi’s on the Yi(1)’s, i = 1, ..., n, which are all available in the original data

set. Of course the uncertainty in estimating (α, βT(1)) must be incorporated in the asymptotic
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variance of the adjusted estimates for (µ,Σ). This can be done by a sensitivity analysis, or

alternatively by use “propagation of errors” method (Taylor 1997, eqn. (3.4) and Jiang et al.

1999). Here we are more interested in assessing the effect of dropping incomplete cases in the

complete case naive analysis. Notice that the MAR assumption does not ensure that the com-

plete case analysis will give a consistent answer for estimating µ, since Σβ is not necessarily

zero even if β(2) is assumed to be zero.

4. THREE DATA SETS

We illustrate the ideas of indirect inference procedures with analyses of three data sets. The

first two use estimates from a naive model M′ as intermediate statistics as in the examples of

Section 3. The third concerns model selection and uses sample moments.

4.1 Poisson Regression With Overdispersion: Animal Carcinogenicity Data

We use carcinogenicity data presented by Gail, Santner and Brown (1980) from an exper-

iment conducted by Thompson et al. (1978) to illustrate our method for treating a Poisson

regression model with random effects (overdispersion). Forty-eight female rats who remained

tumor-free after sixty days of pre-treatment of a prevention drug (retinyl acetate) were random-

ized with equal probability into two groups. In Group 1 they continued to receive treatment

(Z = 1), in Group 2 they received placebo (Z = 0). All rats were followed for an additional

122 days and palpated for mammary tumors twice a week. The objective of the study was to

estimate the effect of the preventive treatment (Z) on number of tumors (Y ) diagnosed.

In the model, given Z and ε, Y is assumed to be Poisson with mean eα+Zβ+ε. Here Z is

observed but ε represents an unobserved random effect assumed normal with zero mean and

constant variance σ2, independent of Z. This unobserved random effect or “unexplained het-

erogeneity” could be caused by omitted covariates. We observe n iid pairs of Wi = (Yi, Zi), i =

1, . . . , n. The likelihood for the observed data involves integration over ε and is difficult to

compute. We start with an auxiliary statistic ŝ = (â, b̂, t̂2)T , where (â, b̂) are the regression

coefficient estimates maximizing a naive log-likelihood R =
∑n

1{Yi(a + Zib) − ea+Zib}, and

t̂2 = n−1∑n
i=1 Y

2
i is the sample second moment. Here the naive parameter is s = (a, b, t2), the

true parameter is θ = (α, β, σ2). The use of the naive log-likelihood R corresponds to estimat-

ing the regression coefficients by neglecting the random effect ε. The second sample moment
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is included in the intermediate statistic to provide information for estimation of the variance

parameter. Therefore ŝ is solved from the estimating equation G(W, s) = 0, where (formally)

G = (n−1∂aR, n
−1∂bR, t̂

2 − t2)T . The solution can be computed easily. For the rat carcino-

genicity data we obtain the naive estimates â = 1.7984; b̂ = −0.8230; t̂2 = 31.875. To obtain

the adjusted estimates θ̂ = (α̂, β̂, σ̂2), we must derive the bridge equation which comes from the

large sample limit of ŝ = (â, b̂, t̂2). Here, this limit is the solution of F (θ, s) = EW|θG(W, s) = 0,

which can be explicitly solved to obtain s = s(θ). This yields bridge equations: a = α+ σ2/2,

b = β and t2 = 1
2(1+eβ)eα+ 1

2
σ2

+ 1
2(1+e2β)e2(α+σ2). These equations are inverted to obtain the

adjusted estimator θ̂ = (α̂, β̂, σ̂2). Thus β̂ = b̂, and α̂ = â− σ̂2/2 where σ̂2 = log
{

2t̂2−eâ(1+eb̂)

e2â(1+e2b̂)

}
.

For the rat data, this leads to adjusted estimates α̂ = 1.6808(0.1589); β̂ = −0.8230(0.1968);

σ̂ = 0.4850(0.1274). The estimated standard errors shown in parentheses are obtained from the

sandwich formula (4) and the delta method.

Alternatively, the MLE of θ = (α, β, σ2) can be found by a somewhat tedious iterative

numerical maximization of the true likelihood which involves numerical integration over the

distribution of ε. These estimates are: α̂ML = 1.6717 (0.1560); β̂ML = −0.8125 (0.2078);

σ̂ML = 0.5034 (0.0859). For the MLEs, the estimated standard errors are based on the inverse

of the Fisher information matrix, evaluated at the corresponding estimate values.

The estimated standard errors suggest that the efficiency of the estimation of the treatment

effect parameter β is high here in this example. Related results (Cox, 1983; Jiang et al, 1999)

show that such high efficiency is achievable if the overdispersion is small, or if the follow-up

times are about the same across different subjects. Also it should be noted that the adjusted

estimator β̂ is robust, in the sense that it remains consistent, essentially as long as the mean

function E(Y |Z, ε) is correctly specified and ε and Z are independent. (Its standard error

estimate from the sandwich formula is also model-independent and robust.) In particular, the

consistency property does not depend on the specification of a complete probability model,

namely that Y is Poisson and ε is normal.

Our approach, although formulated from the different perspective of using naive model

plus method of moments, is intimately related to the work of Breslow (1990) based on quasi-

likelihood and method of moments. Breslow used a different linear combination of Yi’s based

on quasi-likelihood (Wedderburn, 1974; McCullagh and Nelder, 1989), which enjoy general

efficiency properties among linear estimating equations. However, (i) our approach can be in-

terpreted as basing inference on the simple moments
∑
Yi,

∑
ziYi and

∑
Y 2
i (which can be
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easily seen from writing out the naive score equations), and (ii) our approach shows clearly, by

the use of bridge relations, the sensitivity and robustness of parameter estimates to the omission

of over-dispersion in modeling. Also note that here we used a log-normal distribution to model

the random effects and the variance parameter also enters the mean model (unconditional on

ε), whereas Breslow (1990) focused on the examples such as ones with gamma multiplicative

random effects in which the mean model does not change. For the only comparable parameter

β (the treatment effect), the Breslow method (from his equations (1), (2) and (7)) gives exactly

the same answer as our adjusted analysis: β̂Breslow = −0.8230(0.1968). This is because, for this

special two-group design, both methods essentially use the log(frequency ratio) to estimate the

treatment effect.

4.2 Logistic Regression With Measurement Error: Indoor Air Pollution Data

We consider data from Florey et al. (1979) on the prevalence of respiratory illness in re-

lation to nitrogen dioxide (NO2) exposure among primary school children in Middlesborough,

England. Whittemore and Keller (1988) have analyzed this data set using a logistic regression

where the NO2 exposure variable is considered a covariate that is subject to measurement er-

ror. They used estimates based on modifying those resulting from a naive logistic regression

model, but our method differs from theirs in that (i) it does not involve a small measurement

error approximation; (ii) no parametric assumption is made concerning the measurement er-

ror distribution; and (iii) adjustment is made for the effect of measurement errors both from

the imperfection of measurement method, and from the incomplete knowledge of (grouped)

measured data.

The study population consists of 103 primary school children and each child was classified

into one of three exposure categories of the nitrogen dioxide (NO2) concentration in the child’s

bedroom, which is a surrogate for personal exposure to NO2. The response variable Y is 1 if a

child has prevalent respiratory disease, and 0 otherwise. A logistic regression model is assumed

in which log{EY/(1−EY )} = α+βX where X is the personal exposure to NO2. An imperfect

measurement method for X is to use Z̃, the bedroom level of NO2, as a surrogate of the personal

exposure. However, the values of Z̃ are reported by Florey et al. (1979) only in three categories,

namely less than 20 parts per billion (ppb), between 20 to 39 ppb, or exceeding 40 ppb. Since

the individual levels are not published, Whittemore and Keller (1988, Section 6) used a further
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surrogate Z of Z̃ to perform the logistic regression analysis, where they coded Z = 10 if Z̃ < 20

ppb; Z = 30 if Z̃ ∈ [20, 40) ppb; and Z = 60 if Z̃ ≥ 40 ppb. Table 1 is a recasting of Table 1

of Whittemore and Keller (1988) which summarizes the data.

[Tables 1 and 2 about here.]

Estimates and standard errors for the parameters α and β based on naive logistic regression

analysis of Y on Z are displayed in the first row of Table 2 and agree with those of line 1 of

Whittemore and Keller (1988, Table 3). However two problems exist. First, bedroom level (Z̃)

of NO2 is only a surrogate for personal exposure (X), due to limitation of the measurement

method. Second, the variable Z used in the analysis is only a coded version of bedroom exposure

Z̃ caused by the grouping of this variable.

We proceed in a manner analogous to that outlined in Section 3.2. The data set W consists

of n = 103 iid pairs {(Yi, Zi)}, (1 ≤ i ≤ n). The naive estimator ŝ = (â, b̂) is obtained from the

logistic regression of the Yi’s on the Zi’s , maximizing the naive likelihood
∏n
i=1 p

Yi
i (1−pi)1−Yi in

which the true covariate Xi is replaced by the surrogate Zi. Thus the naive estimator ŝ = (â, b̂)T

satisfies the naive score equation G ≡ n−1∑n
1 (1, Zi)T (Yi− pi) = 0, where pi = H(a+ bZi), and

H(u) = exp(u)/[1 + exp(u)]. Its large-sample limit s = (a, b) satisfies the limit of the naive

score equation F (θ, s) = EW|θG = 0, or E
[
(1, Z)T {Y −H(a+ bZ)}

]
= 0. Note that Y is

assumed to satisfy a logistic regression model on X (personal NO2 exposure) instead of on Z,

i.e., E(Y |X) = H(α+ βX). We also assume that Z is a “non-differential” surrogate of X (see

Sec. 3.2), so that E(Y |X,Z) = E(Y |X). Then we obtain

F (θ, s) = E
[
(1, Z)T {H(α+ βX)−H(a+ bZ)}

]
= 0. (9)

This obviously is a special example of the situation discussed at the end of Section 3.2, with

the mean functions µ() and m() being both logit-linear, and the naive estimator ŝ having the

same dimension as that of the true parameter θ = (α, β). (Alternatively, we may regard the

true parameter also including the joint distribution (X,Z), which will be approximated in some

sense by use of a validation data set.)

The development in Section 3.2 suggests we approximate F in (9) by F ∗, where the ex-

pectation on X and Z is approximated by a sample average based on a validation data set.

We will consider a validation study (Leaderer et al., 1986) also considered by Whittemore and

Keller (1988). Leaderer et al. (1986) discussed a data set relating personal NO2 exposure (X) to
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bedroom NO2 concentration (Z̃) for 23 adults in New Haven, Connecticut. As in Whittemore

and Keller (1988), we assume the validation data applicable to the English school children.

In Leaderer et al. (1986), the data of X vs Z̃ were not published at the individual level; but

their Figure 7 displays a scatter plot of X vs house average NO2 level for the 23 subjects. In

order to illustrate our method, we simulated two validation data sets of size m = 23 and 230,

respectively, as follows. First, we simulated a data set of 23 independent (X, Z̃)’s to have the

same “shape” of the distribution as their Figure 7. (We rescaled their data in Figure 7 to satisfy

the published regression fit X = 4.48 + .76Z̃ and V ar(X|Z̃) = 81.14.) From this simulated

data set we grouped and coded the Z̃-values, to obtain m = 23 pairs (Xk, Zk), k = 1, . . . , 23,

which form the first validation data set. Then a second (larger) validation data set (m = 230)

is obtained from sampling the first validation data set with replacement.

Following Section 3.2 we approximate F in (9) by F ∗ constructed from the validation sample

(Xk, Zk), k = 1, . . . ,m, with m = 23 or 230, that is

F ∗(θ, s) = m−1
m∑

k=1

(1, Zk)T {H(α+ βXk)−H(a+ bZk)} .

Using the naive MLE ŝ = (â, b̂) (from line 1 of Table 2 consistent adjusted estimates θ∗(ŝ) =

(α∗, β∗) are obtained by solving F ∗(θ, ŝ) = 0; their values are listed in the 4th and 6th rows of

Table 2. The standard errors (in parentheses) incorporate the sampling error from the validation

data through use of (7), where Vk = (Xk, Zk) and f(Vk; θ, s) = (1, Zk)T {H(α + βXk)−H(a+

bZk)} for k = 1, . . . ,m.

For comparison, we have included results from some alternative methods for treating covari-

ate measurement error in logistic regression. In the second row of Table 2, we have included the

parameter estimates resulting from the approximation method of Whittemore and Keller (1988)

(WK), which were listed in Table 3 of their paper. In the third and 5th rows, we list the result

from applying the method of Rosner, Spiegelman and Willett (1990) (RSW) based on regression

calibration (Carroll et al., 1995, Chap.3). Here a standard analysis is performed but using the

regression of X on Z, in place of Z, the regression being based on estimates from the validation

data sets. The method of Rosner et al. (1990) also provides a first order correction to the bias,

valid if the disease probability is small (Rosner et al., 1990, Appendix 1), or if the effect of

measurement error is “small” (see Carroll et al., 1995, p.65), which requires βT var(X|Z)β to

be small.

Our approach gives point estimates similar to the ones from Whittemore and Keller (1988),
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but our s.e.’s are larger. It is noted, however, that the results in the second row by Whittemore

and Keller (1988) are obtained by treating Z (the coded values) as the true bedroom NO2 level

Z̃, and the s.e.’s are obtained neglecting the sampling variation from the validation data. Our

results are more comparable to the ones from the rows of RSW, where the variation from the

validation data has been incorporated using the delta method (Rosner et al., 1990), and the

coded values of Z have been used both in the naive logistic analysis of the main data, and in

the linear regression of the validation data.

Our estimates of the “slope” β are larger than those obtained from the RSW method, show-

ing that a correction based on regression calibration is not enough, probably due to a nonlinear

bridge relation between b and β implied by (9). In the special case when the distribution of X

given Z is modeled as a normal linear regression in Z, this nonlinearity feature can be seen in

the approximation formula (3.24) of Carroll et al. (1995) — see also Fig. 4.1 of Jiang (1996).

However, our Z-values are lower than the ones obtained from the RSW method, due to an infla-

tion of variance which more than compensates for the inflation of the parameter estimate. This

is probably not related to the extra variation from the validation data, since in our approach as

well as in the RSW approach, the s.e.’s change little (less than 10%) when the variation from

the validation data is neglected, for example, by removing the first summand in our eqn. (7),

or the second summand of (A4) of Rosner et al. (1990). The nonproportional increase in s.e.

is more likely due to the nonlinearity of the bridge relation between b and β (see Jiang, 1996,

eqn. 4.35).

Comparing the results derived from the two validation data sets, we see that the results

are very similar despite the 10 times increase in m. This is not surprising, since (i) from the

previous paragraph we see that the changes in s.e. can be small even if we take m to be ∞;

(ii) this insensitivity probably is due to the small size of b̂n (0.024). Point (ii) is easiest to

understand by looking at avar(β∗nm) = avar(λ̂−1
m b̂n), the avar of the adjusted estimator using

the anti-attenuation formula (i.e., the RSW approach). It is apparent from the delta method

that, if b̂n is very small, the precision of λ̂m (or the validation sample size m) is not very relevant

to avar(β∗nm).

In summary, our proposed adjustment method does not require the modeling of the valida-

tion data, in contrast to WK and RSW, which both make use a linear regression of X given Z.

Second, the validity of our procedure is not restricted to the special cases of small measurement

error (WK) or small disease probability (RSW).
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4.3 Robust Covariance Selection: Mathematics Examination Marks Data

For continuous multivariate data, graphical models are attractive tools for summarizing

visually the conditional irrelevance relationship among the variables. However, most existing

techniques for model selection depend on a complete probability model of the data such as joint

normality. In the following example, an approach based on joint normality may be questionable

due to the skewness and multimodality of some of the variables. On the other hand, the proposed

indirect method can be used to produce inferential results that are robust against non-normality.

Whittaker (1990, Example 6.7.1) illustrated the graphical Gaussian model (or the covari-

ance selection model) using a data set of the examination marks of n = 88 students in the

five mathematics subjects mechanics, vectors, algebra, analysis and statistics, representable as

n =88 i.i.d. copies of a five-dimensional random vector X = (Xj); j = 1, . . . , 5. The data set

comes from Mardia, Kent and Bibby (1979) and is displayed in full in Table 1.1.1 of Whit-

taker (1990). Based on the matrix of partial correlations (Table 3 below), a butterfly graph

(see Whittaker (p.181) or Model 6 of Figure 2 below) representing the conditional indepen-

dence relations among the five variables was shown to be an “excellent fit to the data”, using

a goodness-of-fit deviance test based on a multivariate normal model for the responses. By

examining the histograms of the five variables (see Figure 3), it can be seen that some of the

variables can exhibit left-skewness (analysis) and bi-modality (mechanics). Because it is unclear

how much the non-normality affects the inferential results, it is desirable to investigate a robust

method for selecting the graphical models for the structure of partial correlations. Note that

the essential Markov properties of the graphs are preserved when we consider the weaker prop-

erty of conditional irrelevance (see Dawid 1998, p.149), i.e. zero partial correlation, rather than

the stronger property of conditional independence of the random variables. In such a graphical

representation, a pair of vertices representing two random variables are disconnected if and only

if the partial correlation of these two variables is zero given the rest of random variables. The

concept of zero partial correlation is distribution free (for example, not dependent on a normal

assumption on the vector X), and a corresponding distribution free test is desirable, as well as

a robust method for selecting graphical models for the structure of partial correlations.

[Table 3 and Figures 2 and 3 about here.]

For such a distribution robust treatment, we consider inference based on the intermediate
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statistics ŝ composed of the (5 + 15) first and second order sample moments n−1∑n
i=1Xij and

n−1∑n
i=1XijXij′ (1 ≤ j ≤ j′ ≤ 5), and using the objective functionH = {ŝ− E(ŝ|θ)}T v−1{ŝ− E(ŝ|θ)}

— see Section 2.6. Here the true parameter includes the five mean parameters µ = (µ1, . . . , µ5),

as well as the elements of the symmetric concentration matrix Γ = var(X)−1. The weight v is

chosen as a sample estimate of the variance matrix of ŝ: (v)lk = n−1∑n
i=1(Wil−W̄.l)(Wik−W̄.k);

W̄.l = n−1∑n
i=1Wil; where Wi is the 20-dimensional concatenated vector of Xij ’s and XijXij′ ’s

for 1 ≤ j ≤ j′ ≤ 5 for each i (1 ≤ i ≤ 88). This function H is minimized at zero by the satu-

rated (or unrestricted) model with the same estimated means and concentration parameters as

the MLEs derived using a multivariate normal specification for the distribution of X. When a

subset of partial correlation parameters in θ are constrained to be zero, the minimum value for

H of zero can no longer be achieved. For example, for the butterfly graph chosen by Whittaker

for this data (Figure 2 Model 6), the concentration matrix has a block structure with elements

corresponding to the index pairs {mech-anal, mech-stat, vect-anal, vect-stat} constrained to be

zero. The minimized H under this model equals 1.38 on 4 degrees-of-freedom and the goodness

of fit is excellent (a similar deviance statistic of 0.895 is reported by Whittaker 1990, p.182, but

is based on the normal model of X).

Rather than using subjective judgment based on the observed concentration matrix, we

may select a graphical model by considering a BIC analysis using the methods of Section 2.6

based on the intermediate statistic, namely the first and second-order sample moments. The

selection process involves computing the Bayesian cost C(M) for all the models M in the entire

searching scope Φ represented by the 210 = 1, 024 different graphs. For ease of illustration we

consider a reduced random scope Φr with just ten models, M1, . . . ,M10 say, where model Mk

allows only those partial correlations with the k largest observed absolute values to be non-zero

and restricts the remaining 10− k off-diagonal entries in the concentration matrix to be zero.

Thus M10 is the saturated model and, from Table 3, we see that the butterfly graphical model

is M6. (In general, it can be shown that such a (much) reduced scope, based on ordering of the

magnitudes of the partial correlations, will contain the simplest true model and the one with

lowest Bayesian cost almost surely in the large sample limit.)

[Figure 4 about here.]

In Figure 4, the Bayesian cost C(M) is plotted for each of the ten models in Φr. The

shape of the graph here appears to indicate that the Bayesian cost criterion penalizes over-

parametrization “less” than omission of true non-zero partial correlations. The best model
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Model 6 (k = 6) corresponds to the butterfly model of Whittaker (1990, Figure 1.1.2), but is

here chosen in a (somewhat) automated way. Model 6 suggests that {mechanics, vector} marks

and the {analysis, statistics} marks are linearly related primarily through the algebra mark.

The Bayesian costs also suggest some close competing models M4, M5, M7, which all have

corresponding leading order a posteriori model probabilities at least 0.05 times that of Model

M6, as characterized by a Bayesian cost exceeding that of Model M6 by no more than 6 (as

represented by the dashed horizontal line in Figure 4). The corresponding graphical models of

M4, M5, M6, M7, representing the conditional linear irrelevance characterized by zero partial

correlations, together with the Bayesian cost of each are shown in Figure 2. Of course the

Bayesian cost can be converted to the scale of posterior model probability. For example, with

about 52% of the posterior probability of the favored butterfly model M6, model M7 addition-

ally proposes some residual linear relation between students’ marks in the vector subject and

analysis subject even after controlling the algebra subject mark. The models M5 and M4 on

the other hand, are only about 19% and 10% as likely as model M6, respectively, based on the

intermediate statistics of first and second-order sample moments.

5. CONCLUSION

A number of further applications of the indirect method are discussed in Jiang and Turnbull

(2003). These include:

• The method of moment generating functions (mgf) (e.g., Quandt and Ramsey 1978,

Schmidt 1982) can be regarded as indirect inference based on the intermediate statistic

composed of some sample mgf values.

• Optimal linear combination of several consistent estimators (e.g., Serfling, 1980, p.127) can

be regarded as the indirect inference based on an intermediate statistic with components

including all those consistent estimators.

• The approximate relationship between the maximum likelihood estimates (MLE) under

the reduced model and the extended model (e.g., equations (5), (6) of Cox and Wermuth

1990) can be derived from indirect inference based on an intermediate statistic (the MLE

from the extended model).
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• The importance sampling estimator of a target distribution can be regarded as the indirect

estimator based on an intermediate statistic that is the empirical cdf based on simulated

data from the instrumental (“naive”) distribution.

• The method of least squares can be regarded as indirect inference based on the MLE from

a naive regression model assuming independent normal errors with equal variances.

• The method of Gaussian estimation (e.g., Whittle 1961, Crowder 1985, 2001, Hand and

Crowder 1999, Chap.7) can be regarded as indirect inference based on the MLE from a

naive regression model assuming normal errors that may be correlated and have unequal

variances.

There are other applications that are formally different but similar in spirit to the indirect

approach that we discuss in this paper. For example:

• Several papers concerning gene mapping (e.g., Wright and Kong 1997, Sen 1998) study

inference based on intermediate statistics generated from a “naive” single-gene normal

QTL (quantitative trait locus) model, when the “true model” can include non-normality

of phenotypic effect and polygenic traits.

• Some methods of nonparametric estimation of additive regression functions are built on

marginal integration (e.g., Newey 1994, Hengartner and Sperlich 2002) or minimum L2-

distance treatment (e.g., Mammen, Linton and Nielsen 1999) of an ‘intermediate statistic’,

which is a full-dimensional local polynomial regression smoother.
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TABLE 1

Number of children with or without respiratory disease by bedroom NO2 levels

from Whittemore and Keller (1988)

Z = 10 Z = 30 Z = 60 Total

cases (Y = 1) 21 20 15 56

controls (Y = 0) 27 14 6 47

Total 48 34 21 103

Notes: Y=1 indicates existence of respiratory illness, 0 otherwise. Z = 10 if bedroom NO2 exposure

is under 20 ppb, Z = 30 if NO2 exposure is between 20 and 39 ppb, Z = 60 if NO2 exposure exceeds

40 ppb.

TABLE 2

Logistic regression coefficients for respiratory illness versus personal NO2 exposure

α (standard error) Z-value β (standard error) Z-value

Naive -.4536 (.3490) -1.299 .0240 (.0112) 2.138

WKm=23 -.5563 (.3691) -1.507 .0296 (.0125) 2.368

RSWm=23 NA* NA* .0264 (.0133) 1.983

Adjustedm=23 -.5659 (.4472) -1.265 .0304 (.0188) 1.617

RSWm=230 NA* NA* .0270 (.0127) 2.124

Adjustedm=230 -.6383 (.4758) -1.342 .0314 (.0186) 1.688

Note: The row labeled “Naive” gives the results obtained in a logistic regression using Z as the predictor

and neglecting the presence of measurement error. The row labeled WK contains the results obtained

by the modified method of Whittemore and Keller (1988).

The rows labeled RSW contain the results obtained by the method of Rosner et al. (1990). ( *: RSW

did not provide a method for adjusting the intercept estimate. However, in case-control studies, as here,

the intercept parameter is not of particular relevance.)

The rows labeled “Adjusted” are obtained using the method described here.

47



TABLE 3

Mathematics marks data: The sample partial correlation matrix

mech 1.0

vect 0.33 1.0

alg 0.23 0.28 1.0

anal 0.00 0.08 0.43 1.0

stat 0.02 0.02 0.36 0.25 1.0

mech vect alg anal stat
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based on  s

 

θ

  ML

θ
all CAN estimates

θ
f(s)

all CAN estiamtes 

FIG. 1. Geometry of efficiency results. Note: θ is the true parameter, θ̂ML is the MLE; θ̂ the

optimal adjusted estimator based on ŝ; f(ŝ) any CAN estimator smoothly constructed from the

intermediate statistic. The plane represents all CAN estimators constructed from the full data

set; the line across θ̂ and f(ŝ) represents all CAN estimators constructed from the

intermediate statistic ŝ. The geometry uses the covariance as the matrix of inner products,

and the variance as the matrix of norms, and is accurate up to order n−1/2. The closer a

point to θ, the less asymptotic variation. The distance from θ to the plane goes to zero as the

size of data increases.
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FIG. 2. Mathematics marks data: Some robust graphical models with small Bayesian costs

(C= −2∗BIC+const)
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FIG. 3. Histograms of mathematics examination marks
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FIG. 4. Mathematics marks data: Bayesian cost versus number of free partial correlation

parameters in model
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