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Abstract: Weighted kernel-density estimates (wKDE) are broadly used in
many statistical areas, for instant, density estimation under right-censoring.
However, bandwidth selection could be a problem by reweighting the ker-
nels. In this paper, we investigate the methods of bandwidth selection for
wKDE. Three mean integrated squared error based bandwidth selection
methods are introduced. The least-squares cross-validation method, the
adaptive weight kernel density estimator and boundary problems are also
studied. Monte Carlo simulations were conducted to demonstrate the per-
formance of the proposed bandwidth selection methods. Finally, the perfor-
mance of wKDE is illustrated via an application to biased sampling problem
and a real data application.

Keywords and phrases: Biased Sampling, Informative Censoring, Right
Censoring.

1. Introduction

Kernel-type density estimators are widely used due to their simple forms and
smoothness. In survival analysis, weighted kernel estimation is an important
method of estimating the density of the survival times and the hazard function
for censoring data[11]. Let X1, X2, . . .Xn be a set of data. A general class of
density estimators can be defined as reweighted weight function estimators,

f̂(x) =
n

∑

i=1

w(Xi)W (x, Xi), (1)

where W (.) is a weight function, which is usually taken to be a (symmetric)
density function, and w(.) is a re-weighting function which can be adjusted to
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control the roles of different data points in the sample. If we take

W (x, y) =
1

h
K

(

y − x

h

)

= Kh(y − x) and w(x) =
1

n
,

we get a standard kernel density estimator,

f̂(x) =

n
∑

i=1

1

nh
K

(

x − Xi

h

)

=

n
∑

i=1

1

n
Kh(x − Xi), (2)

where K(.) is a kernel function and h is the bandwidth which controls the
smooth of the estimate. Often the re-weighting function w(.) is required to be
non-negative and sum up to 1. It can be a function of X itself and/or a vector
of covariates. For example, Gisbert used a function of the population of each
country to reweight the kernel density estimate of per capita GDP[8]. Marron
and Padgett used a weighting function s, which is defined to be the jump sizes at
X of the product-limit (PL) estimator by Kaplan and Meier[10], to correct the
random right-censoring bias (MP estimator hereafter)[15]. In the MP estimator,
s is a function of both X and the censoring variable ∆, which is defined to be

∆(Xi) =

{

0, if Xi is censored,
1, if Xi is not censored.

Thus, the bias induced by the random right-censoring can be corrected by the
following MP estimator,

f̂mp(x) =

n
∑

i=1

siKh(x − Xi). (3)

Throughout this paper, the following general form of weighted kernel density
estimator will be used,

f̂(x) =

n
∑

i=1

w(Xi, Zi)Kh(x − Xi), (4)

where Z is the covariate(s). We simply choose K(.) to be a Gaussian kernel. For
computational considerations, the Epanechnikov kernel can be used for large
samples. Literature shows that there is very little to choose between various
kernels on the basis of mean integrated square error. In this study, will focus
on data with small or moderate sizes, so computation burden will not be a big
issue.

The bandwidth selection problem has been well studied and documented for
the unweighted kernel density estimation. In Section 2 we will discuss the band-
width selection problem for wKDE. Two rough estimators and a plug-in estima-
tor of the optimal bandwidth are proposed. The least-squares cross-validation
method will also be discussed to refine the three estimates from Section 2 and
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to automatically select the bandwidth. The adaptive wKDE and the boundary
problem will be discussed in Session 3 and Section 4 respectively. The perfor-
mance of the proposed methods will be illustrated via simulation studies in
Section 5. Section 6 consists of two applications: an application of estimating
densities from biased sampling by wKDE and a real data application showing
how to estimate from survival data subject to informative censoring. Section 7
concludes the paper with a brief summary.

2. Bandwidth Selection

2.1. Two rough approaches

Bandwidth selection is one of the most important issues in kernel density es-
timation. In this paper, we consider selecting bandwidths based on the mean
integrated squared error (MISE) criteria. The MISE criteria was first proposed
by Rosenblatt[20] and has been widely used for automatic bandwidth selection.

The MISE of f̂ can be decomposed into a sum of an integrated square bias term
and an integrated variance term as below,

MISE(f̂) =

∫

{Ef̂(x) − f(x)}2dx +

∫

varf̂(x)dx. (5)

If we take equal weights for all data points such that w(.) = 1/n in (4), the
optimal bandwidth minimizing the MISE is

hopt = k
−2/5
2

{
∫

K(t)2dt

}1/5 {
∫

f ′′(x)2dx

}−1/5

n−1/5, (6)

where k2 =
∫

t2K(t)dt [24]. However, with unequal weights, the expectation of

f̂(x) for each x is

Ef̂(x) =
∑

E [w(Xi, Zi)Kh(x − Xi)] . (7)

The bias in (5), Ef̂(x) − f(x), can be rewritten as

biash(x) =

∫

w(y, z)
n

h
K

(

x − y

h

)

f(y)dy − f(x)

y=x−ht
=

∫

nw(x − ht, z)K(t)f(x − ht)dt − f(x)

=

∫

K(t)[n · w(x − ht, z)f(x) − f(x)]dt (8)

−nhf ′(x)

∫

w(x − ht, z)tK(t)dt

+
nh2

2
f ′′(x)

∫

t2w(x − ht, z)K(t)dt

+O(h3).
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If w(.) 6= 1/n, n · w(x − ht, z)f(x) − f(x) 6= 0, and the first term to the right
hand side (RHS) of (8) won’t be zero. Also, although the Gaussian kernel is used
such that

∫

tK(t)dt = 0, after the Taylor series expansion, the integral part in
the second term to the RHS of (8) won’t be zero either, even if w(.) is free of

Z. Therefore, we can not rewrite the bias of f̂ in form of the sum of a term of
order h2 and higher order terms as in [29, 24].

An easy and rough approximation is to expand and view the weighted sample
as an new unweighted sample. For instance, let X = {X1, X2, . . . , Xn} be the
observed survival data with random right-censoring. If Xi is censored, the true
survival time of the ith individual is Ti ≥ Xi. Thus, we can view the censored
survival data as a data set consists of observed event times and latented true
survival times, with the same size and all data points have equal weights. Thus,
we can continue to use hopt in (6) to select the optimal bandwidth. We can find
that k2 and K(t) in (6) do not depend on the data. If n is kept unchanged,
we need only figure out how to compute

∫

f ′′2 based on the weighted sample
in computing hopt. For complete weighted data, n may be hard to determine,
we will leave this problem for future studies. With additional assumptions, we
propose the following two rough approach of hopt.

Rough approach 1: In the same spirit of Parzen (1962) and Silverman
(1986), we use a normal reference density to compute

∫

f ′′2 and approximate
the optimal bandwidth roughly by

hn = 0.9An−1/5, (9)

where
A = min(sw, IQRw/1.34),

where sw and IQRw are the sample standard deviation and sample inter-quartile
range. We compute the weighted sample mean and sample variance by

µw =
n

∑

i=1

w(Xi, Zi)Xi,

s2
w =

n
∑

i=1

w(Xi, Zi)(Xi − µw)2.

Let X(1), X(2), . . . X(n) be the order statistics of X1, X2, . . . , Xn and w1, w2, . . . .wn

be the corresponding weights of the order statistics. We find two integers q1 and
q2 such that

q1
∑

i=1

wi ≤ .25 and

q1+1
∑

i=1

wi > .25,

q2
∑

i=1

wi ≤ .75 and

q2+1
∑

i=1

wi > .75.
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Let

p1 = .25 −
q1

∑

i=1

wi and p2 = .75 −
q2

∑

i=1

wi.

Based on the weighted sample, we can compute the first and third quartiles and
IQRw by

Q1w = X(q1) + p1(X(q1+1) − X(q1)),

Q3w = X(q2) + p2(X(q2+1) − X(q2)),

and
IQRw = Q3w − Q1w.

Rough approach 2: In survival data analysis, the exponential reference
density is widely used in estimating

∫

f ′′2. Let

f(x) = 1/λ · exp(−x/λ),

We have
∫

f ′′(x)2dx =
1

λ6

∫

e−2x/λdx =
1

2λ5
. (10)

Plug-in (10) to (6), we get

hopt = π−1/10λn−1/5 = .892λn−1/5. (11)

The coefficient in (11) is close to 0.9 as in (9). We then get another rough
estimate of the optimal bandwidth, he, by keeping the form of (9),

he = 0.9Bn−1/5, (12)

where
B = min(λ̂, IQRw/1.34),

and λ can be estimated by a maximum likelihood estimate λ̂ =
∑

Xi/
∑

∆i for

the right-censored data and λ̂ = X̄ for the complete data.

2.2. Plug-in estimator

For complete equal weighted data, in stead of using normal or exponential
reference densities, a plug-in method can be used to automatically select the
bandwidth by estimating

∫

f ′′2 in (6) with another kernel based estimate as in
[18, 22]. However, for weighted samples or incomplete data such as the right-
censored data, we won’t be able to get a close form of the bandwidth h by
minimizing the first two terms of the usual asymptotic expansion of its mean
integrated squared error,

AMISE(h) = (h)−1R(K) + h4σ4
kR(f ′′)/4.
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So the direct plug-in method won’t work here. Even we can view the right-
censored data as a data set of the same size with invisible data points, we will
have trouble to compute the ŜD(.) and T̂D(.) in Sheather and Jones (1991)
(page 689) [22].

In this study, we compute hp by using the direct plug-in method bandwidth
selector for un-weighted data and plug-in it to (4). The performance of hn and
he will be compared to hp in Section 5. Simulation results show that hp works
well for right-censored data although the plug-in method does not applicable
for weighted samples.

2.3. Least-squares cross-validation

To select the bandwidth completely automatically, we apply the least-squares
cross-validation (LSCV) method after we computed the bandwidth by (9) or
(12). The LSCV optimal bandwidth will be found by finding an h in the nearby
regions of the rough estimate(s) that minimizes the intergrated square error

(ISE) of f̂ ,

ISE(f̂) =

∫

(f̂ − f)2 =

∫

f̂2 − 2

∫

f̂f +

∫

f2. (13)

Note that the third term to the right-hand-side does not depend on the data.
So minimizing ISE in (13) is equivalent to minimizing the sum of the first two

terms. The first term can be computed by using f̂ in (4). For simplicity, we
denote w(Xi, Zi) as wi and we have

∫

f̂(x)2dx =

∫

∑

i

wi

h
K

(

x − Xi

h

)

×
∑

j

wj

h
K

(

x − Xj

h

)

dx

t=x/h
=

1

h

∑

i

∑

j

wiwj

∫

K

(

Xi

h
− t

)

K

(

t − Xj

h

)

dt.

The integral part is convolution of the kernel with itself. Due to the fact that the
convolution of two Gaussians is another Gaussian, by elementary manipulations,
we obtain

∫

f̂(x)2dx =
1√
2h

∑

i

∑

j

wiwjK

(

Xi − Xj√
2h

)

=
∑

i

∑

j

wiwjK√
2h(Xi − Xj).

The second term in (13) can be estimated by −2/n
∑

f̂−i(Xi), where f̂−i is
a Jackknife estimate which is constructed based on the data set by leaving the
i-th point out of computing,

f̂−i(x) =

∑

j 6=i wjKh(x − Xj)
∑

j 6=i wj
. (14)
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We can further simplify the second term by,

1

n

∑

i

f̂−i(Xi) =
1

n

∑

i

[

∑

j 6=i wjKh(x − Xj)
∑

j 6=i wj
.

]

=
1

n

∑

i

[

f̂(Xi) − wiKh(0)
∑

j 6=i wj

]

=
1

n

∑

i

[

f̂(Xi) − wi/
√

2π
∑

j 6=i wj

]

.

If all weights sum up to 1, we can compute
∑

j 6=i wj by 1 − wi. However, for
censored survival data, the weights may not necessary be sum up to one. Here
we simply leave the denominator as is.

Thus, the LSCV optimal bandwidth, hlscv, can be found by minimizing

∑

i

∑

j

wiwjK√
2h (Xi − Xj) −

2

n

∑

i

[

f̂(Xi) − wi/
√

2π

1 − wi

]

. (15)

Algorithm 2.1 To find hlscv, we do the following grid search,

Step 1: First search on [hl, hu], where hl = 0.25h and hu = 1.5h, and h
is computed by either (9) or (12).
Step 2: Second, expand the searching as below:

a. If the minimum occurred at the left edge, let h′
u = hl + δ and h′

l =
0.2h′

u and repeat the grid search in Step 1 over [h′
l, h

′
u]. The δ is an

increment in each step of searching. It should not be too small when
the sample size is reasonably large due to that it will tremendously
slow down the algorithm.

b. If the minimum occurred at the right edge, let h′
l = hu − δ and h′

u =
5h′

l and repeat the grid search in Step 1.

c. If the minimum occurred not at the edge, let h′
l = (hl + hmin)/2 and

h′
u = (hu + hmin)/2 and repeat the grid search in Step 1.

Step 3: Repeat Step 1 and Step 2 for k times.

When we expand the searching in Step 2, we prefer that the new searching
range, [h′

l, h
′
u], has a small overlap with the old one, [hl, hu], in case that hlscv

stays within [hl, hl + ǫ] or [hu − ǫ, hu] for small ǫ. As for how to select k, it
depends on the value of δ. We suggest a large k such as 5 or 6 and a large δ,
say, δ = (hu − hl)/20. We need also take the sample size into consideration. If
the sample size is large, the optimal bandwidth tends to be small and we will
prefer to adjust the coefficients in Step 2a and Step 2b such that the searching
will be focused on the left side of the intervals; otherwise, on the right side.
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3. Adaptive Weighted Kernel Density Estimator

One of the drawbacks of using a fixed bandwidth over the whole range of the
sample data is that for long-tailed distributions that either the details where
the data are dense will be masked or spurious noise will show in the tails.
For weighted samples, the shape of the estimated density will be greatly af-
fected by the weighting function. For example, the MP estimator will correct
the estimation bias in the following way: (1) all censored survival times will fi-
nally be excluded from constructing the density estimate. (2) starting from the
smallest observed time, the weight of a censored data point ti will be equally
re-distributed to the data points with t > ti. As a result, the largest uncensored
data point will gain more weight from the censored data points and could cause
bump at the right tail of the estimated density.

To illustrate the above assertion, we assume the true survival times are

16, 17, 19, 20, 21, 22, 24, 25, 28, 35.

A standard kernel density estimate was computed based on the above data by
using the Gaussian kernel and the bandwidth was selected with the direct plug-
in method (built-in R package KernSmooth 2.22 [27]). The estimated curve was
shown as the solid curve in Figure 1. Now, if the 9th observation (T = 28) was

10 15 20 25 30 35 40

0.
00

0.
02

0.
04

0.
06

Time

D
en

si
tie

s

true
KDE
wKDE

Fig 1. Density estimate of righted-censored data

censored and the censored value is, say, X = 26. The estimated density curve by
the MP estimator shows an obvious bimodal pattern (dash-dotted curve). The
dashed curve in Figure 1 is the estimated density curve by using the standard
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kernel density estimator as in (2), which treats the censored time as the true
survival time. If the survival times follow distributions with long tails such as
exponential or Weibull distribution, the uncensored observations in regions near
the right tail will gain extra weights from the censored data points with small
values and more likely spurious noise will show up in the estimated density
curve. Following the idea of the conventional adaptive kernel estimator from
[24], we propose an adaptive weighted kernel density estimator (awKDE). The
key idea of the adaptive method is to use shorter bandwidth in regions where
the data are dense and use wider bandwidth in regions with sparse data.

Algorithm 3.1 The following algorithm shows how to construct the adaptive
esimates:

Step 1: Find a pilot estimate f̂ by (4) with bandwidth hn, he or hp.
Step 2: Define local bandwidth factor λi by

λi = {f̂(Xi)/g}−α, (16)

where
log g = n−1

∑

log f̂(Xi)

and the sensitivity parameter α satisfies 0 ≤ α ≤ 1.
Step 3: Define the adaptive kernel estimate f̃ by

f̃(t) =
n

∑

i=1

w(Xi, Zi)
1

hλi
K

(

t − Xi

hλi

)

. (17)

Literature shows that the pilot estimate in Step 1 is not that crucial[4, 1, 24].
The performance of the awKDE and the choice of α will be studied via Monte-
Carlo method in Section 5.

4. Boundary Problem

It is often the case that the natural domain of definition of a density to be
estimated is an interval bounded on one or two sides. In [8], the per capita
GDP mentioned above are measurements of positive quantities. In survival data
analysis, the survival times will never be negative. There could also exist an
upper bound in some other cases.

If there are not many observations near zero, one possible solution is to
calculate the estimate as if there is no restriction and then set f̂(x) to zero for
negative x. Normalizing can also be done to ensure the estimate integrate to
unity. Another remedy is to do the log-transformation to the data on the half-
line and compute the estimate, then transform back to the original scale. This
method could be useful, but the smoothness could be a potential problem: the
smoothness is guaranteed for the transformed data by selecting an appropriate
bandwidth, but not for the data at the original scale. Sun and Wang[25] showed
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that the transformation based kernel density estimate sometimes is less smooth
for the transformation Xt = g(X) = Xθ+1, where θ > 0.

Asymmetric kernels, such as inverse Gaussian, reciprocal inverse Gaussian
and gamma-type kernels, were also considered to eliminate the difficulty of the
kernel density estimation around the origin for censored data[5, 21, 13]. Muller
and Wang (1994) defined a class of boundary kernels and proposed to reduce
the boundary effects by using boundary kernels in the boundary regions and
varying bandwidth under minimum mean squared errors criteria[17].

In this study, the reflection method and replication method is adopted to
solve the boundary problem[3]. By adding reflections of all points in the data,

we get a new data set {X1,−X1, X2,−X2, · · ·Xn,−Xn}. Let f̂ ′ be the kernel
density estimate constructed based on the new data set. We can show that the
density of the original data set can be computed by

f̂(x) =

{

2f̂ ′(x), for x ≥ 0,
0, for x < 0.

Of course we need not reflect all data points. Because a point stays 4σ away from
x will contribute very little to the density at x, we reflect points Xi ∈ [0, 4h)
for i = 1, 2, . . . , n. The new weighted density estimator can be rewritten as

f̂(x) =
n

∑

i=1

w(Xi, Zi) [Kh(x − Xi) + Kh(x + Xi) · I0≤x<4h] , (18)

where I(.) is an indication function.

5. Simulation

Simulation results will be presented in two parts. In part 1, we will illustrate
the performance of hlscv and the adaptive bandwidths. In part 2, we will show
the performance of hn, he and hp.

5.1. Part 1: LSCV and awKDE

Expereients were done to illustrate the performance of hlscv and the adaptive
bandwidth. The following algorithm was used.

Step 1: draw a random sample from the targeted population;
Step 2: compute hn and hp based on the sample;
Step 3: search hlscv based on hn;
Step 4: compute the wKDEs with hn, hp and hlscv respectively and the
corresponding L1 distances.
Step 5: take sensitivity parameter α = 0.3, 0.4, 0.5, 0.6, 0.7 and compute
the pilot estimates of f by wKDE with hn, hlscv and hp respectively;
compute the corresponding L1 distances.
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We used two different population distributions: N(13, 32) and Weibull(2, 1) and
took different sample sizes n = 20, 30, 50, 100, 300. For each pair of n and f , the
above procedure was repeated for 10000 times and the mean and standard error
of the L1 distances were computed.

5.1.1. Complete Data

Simple random samples were drawn from N(13, 32). All data points in the sam-
ples were equally weighted, under which all wKDE estimates reduce to the
standard kernel density estimate.

Table 1 shows the simulation results. The two values to the left are the mean

Table 1

Complete data from Normal distribution

Size hp awKDE hn awKDE hlscv awKDE
20 .274 .277 .281 .288 .320 .315

(e-3) 1.143 1.180 1.111 1.142 1.611 1.664
30 .235 .236 .232 .238 .273 .267

(e-3) .923 .955 .866 .892 1.276 1.335
50 .194 .193 .192 .197 .225 .219

(e-3) .729 .746 .676 .692 .997 1.054
100 .148 .147 .147 .151 .170 .166
(e-3) .523 .528 .484 .492 .710 .754
300 .097 .095 .097 .099 .108 .105
(e-3) .306 .298 .282 .281 .403 .425

L1 distance of the wKDE by using either hp or hn or hlscv respectively (top)
and its standard error (bottom). While the values to the right are those of the
awKDE by using the corresponding bandwidth estimates. For each setting, only
the best result for different α is displayed. In all cases, simulation results suggest
α = 0.3.

From Table 1, we find that the mean L1 distances and the standard errors
decrease as n increases. The performance of hn and hp is similar: both outper-
form hlscv. The awKDE improves the estimate for hlscv. For hn and hp, the
awKDE does not improve the estimates. It improves the estimate for hp a little
bit when n is large, and makes the estimate worse for hn.

5.1.2. Incomplete Data

We drew random samples from both N(13, 32) and Weibull(2, 1), with 30% of
the data points randomly right-censored. The weighting function w(.) is taken
to be the jump sizes of the Kaplan-Meier estimator as MP estimator. Simulation
results are listed in Table 2 and Table 3. The sample sizes in the two tables are
the sizes of the original data before censoring. We took larger sample sizes such
that we had approximately the same amount of uncensored data points, as in
Table 1, in computing the kernel density estimates. We can find that hlscv does
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Table 2

Incomplete data from Normal population

Size hp awKDE hn awKDE hlscv awKDE
30 .269 .271 .265 .272 .312 .306

(e-3) 1.112 1.156 1.048 1.084 1.535 1.593
40 .240 .242 .239 .245 .278 .272

(e-3) .964 1.005 .908 .942 1.320 1.382
70 .197 .198 .196 .202 .226 .221

(e-3) .742 .763 .694 .716 1.004 1.055
140 .156 .155 .156 .160 .177 .173
(e-3) .551 .563 .517 .530 .717 .759
300 .120 .121 .121 .125 .134 .132
(e-3) .394 .399 .374 .379 .491 .522

Table 3

Incomplete data from Weibull population

Size hp awKDE hn awKDE hlscv awKDE
30 .297 .301 .296 .302 .413 .414

(e-3) 1.149 1.190 1.124 1.158 1.134 1.324
40 .269 .272 .268 .273 .398 .397

(e-3) .993 1.025 .985 1.011 1.298 1.262
70 .230 .231 .229 .232 .373 .371

(e-3) .797 .811 .790 .800 1.266 1.212
140 .194 .194 .193 .194 .353 .347
(e-3) .606 .609 .603 .605 1.339 1.280
300 .168 .168 .166 .167 .330 .323
(e-3) .465 .460 .462 .459 1.471 1.413

not work as well as hn and hp for data from both populations. The adaptive
method improves the estimate with hlscv, but not those with hp and hn.

Remarks: (a) The hlscv does not work well. This is consistent to the conclu-
sion in [2], where Altman and Léger suggested plug-in estimator instead of using
leave-one-out or leave-some-out method to seek optimal bandwidth. For right-
censored data, the reweighting scheme will compromise the sparseness of data
at the right tail and the adaptive method won’t work as well as expected. (b)
The rough approach hn outperforms the other two methods (in some settings,
its performance is very similar to hp).

5.2. Part 2: Performance of hn, he and hp

In this part, we studied the performance of hn, he and hp by comparing with
an existing estimator by Kuhn and Padgett (1997, KP estimator hereafter)[12].
The KP estimator is an estimator proposed for survival data subject to random
right-censoring which selects the bandwidth locally by minimizing a mean ab-
solute error, which is supposed to be more nature than the mean squared error
criteria [6]. The optimal bandwidth used by KP estimator is

hkp(x) =

{

4α2f(x)R(K)

nµ2
2f

′′(x)2H∗(x)

}1/5

, (19)
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where α = 0.4809489. When a Gaussian kernel is used, we have R(K) =
(2
√

π)−1 and µ2
2 = 1. The censoring survival function, H∗(x), is estimated

by the product-limit (PL) estimator, H∗(x) = 1 − Ĥ(x), where

Ĥ(x) =











1, 0 ≤ x ≤ X(1),
∏k−1

i=1

(

n−i
n−i+1

)1−∆i

, X(k−1) < x ≤ X(k), k = 2, · · · , n,

0, x > X(n).

Here X(1), · · · , X(n) are the order statistics of X1, · · · , Xn. An exponential refer-
ence density, fR(x) = λ−1 exp(−x/λ), is preferred, where λ is estimated by the
maximum likelihood estimate

λ̂ =

∑n
i=1 Xi

∑n
i=1 ∆i

.

Thus we have

hkp(x) = 0.7644174 · λ̂H∗(x)−1/5ex/5λ̂n−1/5 (20)

and we can express the KP estimate by

f̂kp(x) =

n
∑

i=1

∆i

nH∗(Xi)
Khkp(Xi)

(

x − Xi

hkp(Xi)

)

. (21)

Random samples were drawn from three different distributions: (a) normal
distribution with mean 13 and variance 9, (b) exponential distribution with
mean 1, and (c) Weibull distribution with shape parameter 2 and scale param-
eter 1. For each sample, approximately 30% of the data points were randomly
right-censored. Based on the censored data together with the censoring informa-
tion (∆), we estimated the density by wKDE with different bandwidths hn, he,
hp and hkp respectively. The L1 distances were computed and shown in Table 4
through Table 6 together with the corresponding standard errors.

Table 4

N(13, 32)

Size hkp hn he hp

30 .741 .283 .276 .267
(e-3) .590 1.076 1.105 1.095
50 .710 .234 .230 .224

(e-3) .501 .828 .845 .887
100 .654 .180 .178 .175
(e-3) .381 .601 .607 .665
200 .586 .143 .142 .139
(e-3) .284 .442 .445 .492

From Table 4, it can be found that hn, he and hp all work well for censored
data from the normal population, while hp outperforms the other three methods.
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Table 5

Exponential(1)

Size hkp hn he hp

30 .263 .335 .334 .382
(e-3) 1.200 1.287 1.291 1.207
50 .243 .301 .301 .345

(e-3) 1.004 1.032 1.037 .941
100 .223 .264 .264 .302
(e-3) .793 .777 .779 .704
200 .207 .236 .237 .267
(e-3) .614 .592 .590 .532

Table 6

Weibull(2,1)

Size hkp hn he hp

30 .344 .299 .296 .289
(e-3) .843 1.128 1.142 1.104
50 .321 .257 .257 .251

(e-3) .740 .905 .919 .890
100 .284 .212 .213 .210
(e-3) .603 .676 .688 .676
200 .248 .181 .182 .180
(e-3) .476 .524 .531 .524

The estimator hn has a relatively larger mean L1 distances and the smallest
standard errors. The KP estimator does not work well. This may be due to the
fact that we used a normal density while KP estimator assume an exponential
reference density. Though, the performance of he was not affected much because
we took the minimum of sw and IQRw/1.34 in (12). As shown in Table 5,
when f is actually an exponential p.d.f., the KP estimator outperforms the
other three methods as expected. This is not surprising because it uses more
(correct) information than the others. The performance of hn and he are alike,
both outperform hp. In Table 6, when a Weibull population was used, hp is the
winner. Both hn and he also work well. When n increases, their performance
becomes very similar.

6. Applications

6.1. Density Estimation from Biased Sampling

The wKDE can be used to estimate the densities based on biased samples. In
biased sampling, if whether an element with X = x will be observed depends
on its true value x, we obtain a biased sample. Let’s assume that Xi = xi, will
be sampled with probability b(xi). Let f(x) be the population density, we can
show that the density of the biased sample is a weighted version of f(x),

fs(x) = b(x)f(x)/κ, (22)
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where κ is a normalizing constant such that

κ =

∫

b(x)f(x)dx.

Both b(.) and f(.) in (22) are non-parametrically identifiable if two or more
random samples with overlaps are available [28]. However, based on just one
sample, we need further restrictions on either b(.) or f(.) or both to ensure the
identifiability[26, 7]. Throughout this paper, we assume b(.) and further w(.) to
be parametrically known.

We can estimate fs(x) by a standard kernel density estimator as in (2) and
therefore obtain a natural estimate of f(x),

f̂b(x) = κf̂s(x)/b(x) =
κ

n · b(x)

n
∑

i=1

Kh(x − Xi). (23)

Wu (1997) proposed to estimate f(x) for s-dimension data by a kernel density
estimator [30]. We simply take s = 1 and get its univariate version estimate,

f̂wu(x) = κ′
n

∑

i=1

b−1(Xi)Kh(x − Xi), (24)

where κ′ = 1/
∑

b(Xi).

Which estimate is better, f̂b(x) or f̂wu(x)? In (23), if the biasing function b(x)
is coarse or not continuous, the estimate in (23) may also be coarse. While in
(24), the estimate is smooth. A Monte Carlo study was carried out to compare
their performance in density estimation based on biased samples. We first drew a
random sample, X , of size 200 from a targeted population; second, we mimicked
the biased sampling scheme by keeping observation X = x in the data set with
probability b(x); finally, we computed f̂b and f̂wu based on the biased samples.

To evaluate the performance, the L1 distance between f and f̂ is computed,

L̂1(f, f̂) =

∫

|f̂ − f | ≈
m

∑

i=1

|f̂(yi) − f(yi)| · di, (25)

where 0 ≤ y1 < y2 < . . . < ym and di = (yi+1 − yi−1)/2 for i = 2, 3, . . . , m − 1
and d1 = y2 − y1, dm = ym − ym−1.

We took two targeted populations: (a) Weibull distribution with shape pa-
rameter 2 and scale parameter 1; and (b) normal distribution with mean 10
and standard deviation 2. Two different biasing function were used for biased
sampling,

b1(x) ∝ x

b2(x) =























0.2 if x ≤ µ − 1.2σ,
0.4 if µ − 1.2σ < x ≤ µ − 0.4σ,
0.6 if µ − 0.4σ < x ≤ µ + 0.4σ,
0.8 if µ + 0.4σ < x ≤ µ + 1.2σ,
1.0 if x > µ + 1.2σ.
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We repeated the above procedure for 10000 times for each setting and approx-
imate the mean L1 distance and the standard error. The results are shown in
Table 7. We find in all the four scenarios, f̂wu outperforms f̂b.

Table 7

Performance of wKDE and KDE for biased samples

N(10,2) Weibull(2,1)

b(.) f̂ mean se mean se

b1(.) f̂b .130 4.37e-4 .167 6.51e-4

f̂wu .127 4.33e-4 .150 6.41e-4

b2(.) f̂b .194 4.43e-4 .221 5.80e-4

f̂wu .145 5.36e-4 .167 5.76e-4

In Figure 2, the Weibull distribution was used in plot (a) and (c), and the
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Fig 2. Kernel density estimate of length biased data

normal distribution was used in plot (b) and (d). In Figure 2, the solid curves
show the true density curves of f . The dashed curves and dotted curves represent
the estimated density curves by f̂wu and f̂b respectively. In plot (a) and (b), we

find that when b(x) is smooth, both f̂b and f̂wu are smooth. The two estimators

work similarly well except that f̂b has a boundary problem due to that b(x) → 0
when x → 0. The results in Table 7 also demostrate that the difference between
the two mean L1-distances of f̂b and f̂wu is not very large. However, in plot (c)
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and (d), we can find that when the biasing function is a step function, f̂wu is

still smooth, but f̂b is not. The difference between the two mean L1-distances
also becomes larger. In conclusion, f̂wu has better performance than f̂b.

6.2. Density Estimation from Informative Censoring

In a clinical trial by the Eastern Cooperative Oncology Group, the survival times
of 61 patients with inoperable carcinoma of the lung, progressions of which are
usually associated with shortened residual lifetime, who were treated with the
drug cyclophosphamide were collected [14]. Among the 61 patients, 33 died and
their survival times were observed and listed in Table 8. Table 9 lists the other
28 censored observations representing patients whose treatment was terminated,
at the times indicated, because of the appearance of metastatic disease or a
significant increase in the size of their primary lesion. The eventually failure
times of the 28 censored patients were also collected (in parentheses) by a follow-
up study. These 28 failure times were contaminated due to that those patients
received other therapies thought to be more beneficial than cyclophosphamide
after they were removed from the study and their ultimate survival times are
possibly slightly better than what they would have been if they were kept on
study and continued on cyclophosphamide.

Table 8

Observed deaths

0.43, 2.86, 3.14, 3.14, 3.43, 3.43, 3.71, 3.86, 6.14, 6.86, 9.00, 9.43, 10.71, 10.86, 11.14, 13.00,
14.43, 15.71, 18.43, 18.57, 20.71, 29.14, 29.71, 40.57, 48.57, 49.43, 53.86, 61.86, 66.57, 68.71,

68.96, 72.86, 72.86

Table 9

Observed Censored times (ultimate survival times)

0.14(3.00), 0.14(12.43), 0.29(1.14), 0.43(17.14), 0.57(4.43), 0.57(5.43), 1.86(12.14),
3.00(7.86), 3.00(13.86), 3.29(10.57), 3.29(34.43), 6.00(7.86), 6.00(38.00), 6.14(9.29),

8.17(20.43), 10.57(25.00), 11.86(17.29), 15.57(51.57), 16.57(45.00), 17.29(24.14),
18.71(29.43), 21.29(26.71), 23.86(29.00), 26.00(53.86), 27.57(49.71), 32.14(63.86),

33.14(99.00), 47.29(48.71)

Let T be the true survival times, T c be the censored times and T u be the
ultimate survival times. We compute the observed residual lifetime of the 28
patients by T r = T u −T c. The T rs contain the carry-over effects by treatments
other than cyclophosphamide. Plot (a) of Figure 3 shows the relationship be-
tween log(T r/T c) and T c. The point marked with “X” is a potential outlier and
we leave it out. A smoothed curve was fitted to the data shown in plot (a) by
the following model,

log(T r1/T c) = S(T c) + ǫ, (26)

where S(.) is a smooth function to be estimated. The fitted curve (solid line)
shows a curvilinear pattern: the ratio of T r and T c was large for removed patients
who stayed in the system for either shorter or longer period of times. The upper
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Fig 3. Lung data

and lower dotted curves were added at 2 standard errors above and below the
estimate of the smooth. Plot (b) gives a scatter plot of T r on T c. A least squares
line was added to the plot by fitting a simple linear regression model,

T r2 = β0 + β1T
c + ǫ. (27)

The slope was computed to be β1 = .4662, which is significantly different from
zero with p-value= 0.03478. Two potential outliers were marked and excluded
from computation. From the above two plots, we can see there do exist some
relationship pattern between T r and T c.

Although T̂ r can not be used to replace the true residual times, it could pro-
vide useful information about the true survival times. This type of information
can be used to adjust the weighting function in wKDE to improve the estimate.
Due to that the other therapies were thought to be more beneficial than cy-
clophosphamide, it is reasonable for us to believe that a removed patient was
more likely to die no later than the observed ultimate survival time, T ≤ T u.
In stead of reassigning the weight belongs to a censored data point Xi equally
to all points thereafter, we can assign its weight to all points fall between T c

i

and T c
i + T̂ r

i . If no observation lies inside the above range, we assign the weight
of Ti to the observation which stays the closest to the upper boundary. The
MP estimator will not work because we know that the true residual times were
less likely to be larger than T u − T c. In this study, the two T̂ r’s by (26) and
(27) lead to exactly the same kernel density estimate, which is shown as the
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solid curve in Figure 4 (labeled as “lm/gam”). In Figure 4, the dashed curve is
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Fig 4. Density estimates

the estimated density curve by taking T r = 0, where all removed patients were
assumed to die right after T c given no other therapies were provided. While the
dotted curve is the one by assuming the residual times are exactly the ultimate
observed survival times. The dash-dotted curve was estimated by assuming ran-
dom right censoring and computed by MP estimator. The survival functions
were also computed and plotted in figure 5 based on the above different esti-
mates of f . Obviously, the MP estimate is too optimistic and under-estimates
the risk (dash-dotted curve). The dashed curve provides an estimate of the sur-
vival function by assuming the dropout patients die right after the censored
times. It over-estimates the risk and seems to be too pessimistic. By reassigning
the weights to points in a neighborhood of the censored data points, we obtain
the survival function as the solid curve in figure 5. This curve is very close to
the one by assuming the true survival times are the ultimate survival times.

7. Summary

In summary, the two rough approaches and the plug-in method work well in
bandwidth selection for wKDE. If the target distribution is a exponential-like
distribution, the KP estimator is also a good choice. The LSCV method and the
adaptive estimator won’t improve the estimate for wKDE. For large samples,
Fourier transform or fast Fourier transform and kernels such as Epanechnikov
kernel can be considered, which could remarkably improve the computational
speed [16, 23, 9].
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By choosing an appropriate weighting function, the wKDE can be used to
robustly and efficiently estimate the densities from survival data subject to ran-
dom censoring. The situation for data subject to informative censoring is much
complicated, because the it’s hard to model the sampling scheme. A possible
solution is try to classify the censored data points into several categories and use
the prior information we have to define different weight-redistribution schemes,
and finally apply wKDE to estimate the density. Alternatively, instead of as-
signing weights to values after the censoring times equally or only to points in
certain neighborhoods, we can also consider impute the censored times and re-
assign weights to points in the nearby regions. When covariates are available, a
parametric model or quantile regression could be more efficient. Further studies
will be carried out and the results will be presented in another research paper.

All algorithms have been implemented in R and C, and are available on
request.
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