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Abstract

In a …nancial market with one riskless asset and n risky assets following

geometric Brownian motions, we solve the problem of a pension fund max-

imizing the expected CRRA utility of its terminal wealth. By considering

a stochastic death time for a subscriber, we solve a unique problem for

both accumulation and decumulation phases. We show that the optimal

asset allocation during these two phases must be di¤erent. In particular,

during the …rst phase the investment in the risky assets should decrease

through time to meet future contractual pension payments while, during

the second phase, the risky investment should increase through time be-

cause of closeness of death time. Our …ndings also suggest that it is not

optimal to manage the two phases separately.
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1 Introduction

In this work we analyse optimal asset allocation by a pension fund which max-

imizes the expected utility of its …nal wealth. Unlike the analyses studying the

problem of a non-actuarial institutional investor (a general framework can be

found in Menoncin, 2002), the case of a pension fund requires the introduction

of two new characteristics: (i) the di¤erent behaviour of the fund wealth dur-

ing the accumulation and the decumulation phases (hereafter, APh and DPh,

respectively), and (ii) the mortality risk. We want to develop a set up aimed

at …nding out how and how much this mortality risk a¤ects the optimal asset

allocation.

The existing literature dealing with the asset allocation problem for a pension

fund, completely neglects the mortality risk and partially takes into account the

problem of distinguishing the accumulation and the decumulation phases. In

particular, Boulier, Huang, and Taillard (2001), and Battocchio and Menoncin

(2002) just deal with the investment problem during the APh while Blake,

Cairns, and Dowd (2000) take into account only the distribution phase. Instead,

the only literature explicitly taking into account the mortality risk problem is

the actuarial literature (see, e.g., Young and Zariphopoulou, 2002a,b for optimal

asset allocation under an exponentially distributed investment horizon).

The only work, at least at our knowledge, which considers both the mor-

tality risk and the di¤erence between the APh and the DPh is the paper by

Charupat and Milevsky (2002). They analyse the interaction between …nancial

risk, mortality risk, and consumption towards the end of the life cycle. Their

main result is that for constant relative risk aversion (CRRA) preferences and

geometric Brownian motion dynamics, the optimal asset allocation during the

DPh is identical to the APh, which is the classical Merton’s (1971) solution.

Nevertheless, they solve two di¤erent problems: (i) they maximize, for the fund

manager, the expected utility of fund terminal wealth during the APh, and (ii)

they …nd, for the consumer-investor, the optimal consumption-portfolio during

the DPh. In their setting it is up to the consumer to choose how to allocate his
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wealth after the accumulation phase.

In this paper, instead, we want to present the case of a pension fund which

manages the investor’s wealth during both phases. Thus, during the APh, the

fund wealth increases because of the contributions paid by the subscriber while,

during the DPh, it decreases because of the pension paid by the fund. Thus,

we suppose there is no choice at the retirement date but to receive a pension

until the death time denoted by ¿ . Here, we suppose ¿ to be stochastic and, in

particular, we …nd a closed form solution to the asset allocation problem when

it is exponentially distributed while we show an approximated solution when it

is distributed according to a Weibull random variable.

Even if we take into account the simple framework after Charupat and

Milevsky (2002) with geometric Brownian motion and a CRRA utility function,

we show that their result is not robust. In fact, after solving a unique problem

for the optimal asset allocation during the whole life of the fund, we …nd two

di¤erent portfolio compositions during the APh and the DPh. More precisely,

we …nd that during the APh the amount of wealth invested in the risky assets

must decrease through time while, after the retirement date, it must (rapidly)

increase.

As we have already highlighted, the risk aversion of the pension fund we take

into account is described by a CRRA utility function. Nevertheless, in order

to take into account the engagement of the fund to provide the subscriber with

a (constant) pension rate, we use the so-called “state-dependent” preferences

(see, e.g. Merton, 1990, Section 6.4). In particular, we suppose that during the

APh the fund can obtain some utility only from the “new” wealth it is able to

create thanks to its investment strategy, without obtaining any utility from the

contributions paid by the subscriber. In fact, these contributions will have to

be paid back to the subscriber as pensions.

For the sake of simplicity, in our model we keep constant the contribution and

the pension rates and we compute a feasibility (equilibrium) condition on them

for making it convenient to subscribe the contract both for a pension fund and

for a worker. This equilibrium condition has already been used in the literature
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about the pension funds (see, e.g. Josa-Fombellida and Rincón-Zapatero, 2001).

Through this work we consider agents trading continuously in a frictionless,

arbitrage-free market. Furthermore, we do not need the hypothesis of complete-

ness for the …nancial market.

The paper is structured as follows. The framework is outlined in Section 2.

First we describe the …nancial market. Then we compute the feasibility condi-

tion on the contribution and pension rates when the death time follows a Weibull

distribution. Eventually we present the state-dependent utility underlying the

…nancial decision problem. In Section 3 we compute the optimal portfolio and

discuss the main practical implications of our results for the management of a

pension fund. Section 4 concludes.

2 The model

We consider a …nancial market where there exist n risky assets and one riskless

asset paying a constant interest rate r , whose dynamics are described by:

dS
n£1

= IS
n£n

µ
¹dt
n£1

+ §0
n£k

dW
k£1

¶
; dG = Grdt;

where IS is a square diagonal matrix containing the elements of vector S and W

is a k¡dimensional Wiener process. Both ¹ and § are supposed to be constant.

The fund wealth process R is then equal to

R = µ0S + µ0G;

where µ and µ0 are the number of risky asset and the number of riskless asset

held, respectively. Its associated SDE is simply:

dR = µ0dS + µ0dG + dµ0 (S + dS) + Gdµ0:

The self-…nancing condition implies that the two last terms must be equated

to zero or, when consumption is considered, must …nance the consumption rate.

In the case of a pension fund, the self-…nancing condition must ensure that the
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changes in portfolio composition (the two last terms) must: (i) be …nanced by

the subscribers’ contributions rate u (t) during the accumulation phase, and (ii)

…nance the pension rate v (t) paid to the subscribers during the decumulation

phase. For the sake of simplicity, in what follows we suppose both u and v to

be constant.

Let T indicate the (deterministic) date at which the subscriber retires, and

let

Á (t) =

8
<
:

1; if t · T;

0; if t > T:

Accordingly, the dynamic budget constraint can be written as

dR = (Rr + w0M + k)dt + w0§0dW; (1)

where1

M ´ (¹ ¡ r1) ; w ´ ISµ;

k = uÁ ¡ v (1 ¡ Á) ; (2)

and 1 is a vector of 1s.

In Charupat and Milevsky (2002) each dollar of new income ‡owing into

the fund (u) is allocated separately and treated as a new problem. Thus, they

completely neglect the role of u during the APh and they solve for u = 0. In

our approach, instead, we treat u as a planned ‡ow which the fund manager

can rely on. Furthermore, as Merton (1990, Section 5.7) underlines, it is not

necessary to treat the new …nancial ‡ows (u) as they could be borrowed against,

since the investor behaves “as if” this would be true.

2.1 The feasibility condition

The constant level of the contribution and the pension rates (u and v respec-

tively) cannot be both freely chosen by the fund. Here, we take into account

the case of a pension fund letting its subscribers choose the (constant) con-

tribution rate (u) they prefer. The (constant) pension rate (v) is accordingly
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chosen. In particular, we know that, at time t = 0, from the point of view of the

subscriber (pension fund), the expected present value of all pensions cannot be

lower (higher) than the expected present value of all payments. Thus, we just

equate the expected present value of pensions and payments by putting

E¿
0

·Z ¿

0
k (s) e¡rsds

¸
= 0:

This condition can be transformed into a condition on the ratio v=u by

substituting the expression for k in (2):

u
v

=
E¿

0
£R ¿

0 e¡rsds
¤

E¿
0

£R ¿
0 Á (s) e¡rsds

¤ ¡ 1:

Now, since we can write
Z ¿

0
e¡rsds =

1 ¡ e¡r¿

r
;

Z ¿

0
Á (s) e¡rsds =

8
<
:

R ¿
0 Á (s) e¡rsds =

R ¿
0 e¡rsds = 1¡e¡r¿

r ; ¿ < T;
R ¿
0 Á (s) e¡rsds =

R T
0 e¡rsds = 1¡e¡rT

r ; ¿ ¸ T;

we have

E¿
0

·Z ¿

0
e¡rsds

¸
=

1
r

¡ 1
r

E¿
0

£
e¡r¿ ¤

;

E¿
0

·Z ¿

0
Á (s) e¡rsds

¸
=

Z T

0

1 ¡ e¡r¿

r
f (¿) d¿ +

Z 1

T

1 ¡ e¡rT

r
f (¿) d¿

=
1
r

P (¿ < T) ¡ 1
r

Z T

0
e¡r¿ f (¿) d¿ +

1 ¡ e¡rT

r
P (¿ ¸ T )

=
1
r

¡ 1
r

Z T

0
e¡r¿ f (¿) d¿ ¡ 1

r
e¡rT P (¿ ¸ T ) ;

and a feasible ratio u=v can …nally be written under the following form where

IA is the indicator function for the event A.

De…nition 1 A pair of contribution and pension rates (u; v) is said to be fea-

sible if

u
v

=
1 ¡ E¿

0 [e¡r¿ ]
1 ¡ E¿

0 [e¡r¿ I¿<T ] ¡ e¡rT P (¿ ¸ T )
¡ 1; u; v > 0: (3)
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Let us remark that the event “death”, happening in ¿ , can sometimes be af-

fected by a series of explanatory variables. In particular, we are referring to the

so-called “proportional hazard rate model” used in statistical analysis of tran-

sition data. Fortunately the form of the feasible ratio u=v remains unchanged,

and we only need to compute the probability and expected values condition-

ally to the realization of the explanatory variables in (3) to accommodate this

situation.

2.1.1 The Weibull distribution

Here, we explicitly compute the feasibility condition (3) by supposing that the

death time ¿ follows the Weibull distribution, whose probability density function

is given by

f (¿) = ®¯ (®¿)¯¡1 e¡(®¿ )¯
;

where ® > 0, ¯ > 0. The case of the exponential distribution turns out to be a

particular case of the Weibull distribution when ¯ = 1. The Weibull distribution

represents one of the most widely used model in survival analysis. The expected

time of death has the following form:2
Z 1

0
¿ f (¿) d¿ =

1
®

¡
µ

1 + ¯
¯

¶
;

whose behaviour is shown in Fig. 1. We see that if parameter ® belongs to

[0:01; 0:04] then the expected death time goes from a value close to 20 to a

value close to 100 years. For the numerical simulations that follow we will

always consider values of ¯ belonging to [1; 2].

[Fig. 1 here]

The probability that ¿ is greater than T is easy to compute:

P (¿ ¸ T) =
Z 1

T
®¯ (®¿)¯¡1 e¡(®¿ )¯

d¿ = e¡(®T )¯
;

while the expected value in the numerator of (3) is as follows:

E¿
0

£
e¡r¿ ¤

=
Z 1

0
e¡r¿®¯ (®¿)¯¡1 e¡(®¿ )¯

d¿ =
Z 1

0
e¡ r

® (¡ ln y)
1
¯ dy;
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where we have used the change of variable y = e¡(®¿ )¯
. Since this integral does

not admit an algebraic solution, we may propose an approximation. Indeed we

know the exact solution for the exponential case, i.e. when ¯ = 1, and we may

then think of approximating the integral via a Taylor expansion around ¯ = 1:

E¿
0

£
e¡r¿ ¤ »= ¯

®
r + ®

+ (¯ ¡ 1)
®

(r + ®)2

µ
r ln

®
r + ®

¡ r° ¡ ®
¶

;

where ° is the Euler constant.3 The …rst term of the above expression obviously

coincides with the explicit solution given by the exponential case. Slightly more

tedious computation are required for E¿
0 [e¡r¿ I¿<T ]:

Z T

0
e¡r¿ f (¿) d¿ »= ¯®

1 ¡ e¡T (r+®)

r + ®
+ (¯ ¡ 1)

®
(r + ®)2

µ
r ln

®
r + ®

¡ r° ¡ ®
¶

+ (¯ ¡ 1)
®

(r + ®)2
e¡(r+®)T

¡
ln (®T )

¡
¡r + r®T + ®2T

¢
+ ®

¢

+ (¯ ¡ 1)
®

(r + ®)2
r

Z ¡T(r+®)

¡1

1
x

exdx:

Note that the integral of the last term can be neglected for su¢ciently high

values of T . Hence, after plugging these closed-form approximations into the

feasible condition (3), we obtain the results presented in Table 1 for several

values of ®, ¯, T and r.

[Table 1 here]

Even if the approximation has been computed for ¯ tending to 1, from

Table 1 we can see that it remains good while ¯ is far from 1. Furthermore,

the approximated values seem to behave quite well even for closer time horizons

(T = 20). Accordingly, we can easily show how the ratio u=v behaves with

respect to the actuarial parameters ® and ¯ just by plotting the graphs of the

approximated ratio. These graphs are shown in Fig. 2, where three di¤erent

values of T and r are chosen. The …rst column of Fig. 2 shows the behaviour of

u=v for T 2 f20; 30;50g, while the second column analyses how u=v changes for

r 2 f0:01; 0:03;0:05g. The values of ® and ¯ belong to [0:012; 0:016] and [1; 2],

respectively.
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[Fig. 2 here]

In particular, we highlight the following results:

1. when the time horizon T is su¢ciently far away, the ratio u=v is decreasing

with respect to both ® and ¯. What changes is just the level of u=v

which inversely depends on the interest rate r. In fact, when the riskless

interest rate increases (decreases) it is easier (more di¢cult) to meet future

payments and the pension fund can ask for a lower (higher) contribution

rate;

2. when the pension horizon T is small, the ratio u=v is still decreasing with

respect to ® and presents a maximum for a given value of ¯. For better

understanding this result, we recall that the hazard function for a Weibull

distribution is given by ®¯ (®¿)¯¡1. So, when the hazard rate increases

(i.e. a near death is more likely) the contribution rate can decrease and

vice-versa. Furthermore, while the hazard function is always increasing in

®,4 it is increasing in ¯ for ¯ < ¡ (ln (®¿))¡1;5

3. the longer the pension horizon T the lower the ratio u=v. In fact, the

pension fund can ask for lower (higher) contribution rates when these

contributions are paid for a long (short) period of time;

4. the shape of u=v is not a¤ected by the changes in r . The interest rate only

a¤ects the level of u=v without altering its behaviour with respect to the

other parameters.

2.2 The objective function

Since a pension fund does not consider any consumption problem, then it is

just supposed to maximize the expected utility of its …nal wealth. Thus, the

optimization problem can be written as

max
w

E¿
0 [U (R (¿) ; ¿)] ;
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subject to the dynamic constraint (1) and where U (²) is an increasing and

concave function. Since the mortality risk is assumed to be independent of the

…nancial risk, we can write the maximization problem as follows:

max
w

E0 [E¿
0 [U (R (¿) ;¿ )]] = max

w
E0

·Z 1

0
f (t)U (R (t) ; t)dt

¸
; (4)

under the same dynamic constraint (1).

Now, we need to de…ne the utility function U (²). The most widely used

utility function in the literature is the CRRA function of the form U (R) = 1
± R± .

Here, we use such a function with a little modi…cation due to the speci…c nature

of the pension fund problem. When the pension fund receives the contributions,

it cannot obtain any utility from them since it will have to pay them back as

pensions. Thus, the argument of the utility function we consider here is the

wealth R diminished by the received contributions (during the accumulation

phase) and augmented by the paid pensions (during the decumulation phase).

In fact, when the pensions are paid, the corresponding amounts of money are

freed and the pension can obtain some utility from them.

Accordingly, we de…ne the utility function as follows:

U (R; t) =
1
±

µ
R (t) ¡

Z t

0
k (s) e¡r(s¡t)ds

¶±

;

where the function k (s) is as in (2). This approach is widely used in the litera-

ture (see Merton, 1990, Section 6.4) and the utility function we have supposed is

known as “state-dependent” utility. In order to have an increasing and concave

utility function the parameter ± must be less than one.
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3 The optimal portfolio

After what we have presented in the previous section, the asset allocation prob-

lem for a pension fund can be written as
8
>>>><
>>>>:

maxw E0

·R 1
0 f (t) 1

±

³
R (t) ¡

R t
0 k (s) e¡r(s¡t)ds

´±
dt

¸
;

with dR = (Rr + w0M + k) dt + w0§0dW;

and R (0) = R0:

(5)

The Hamiltonian for this problem is

H = f (t)
1
±

µ
R (t) ¡

Z t

0
k (s) e¡r (s¡t)ds

¶±

+JR (Rr + w0M + k)+
1
2
JRRw0§0§w;

from which we have the set of …rst order conditions6

@H
@w

= JRM + JRR§0§w = 0 ) w¤ = ¡ JR

JRR
(§0§)¡1 M;

where J (R; t) is the value function solving the maximization problem and the

subscripts indicate the partial derivatives of J. The HJB equation is

0 = Jt + f (t)
1
±

µ
R (t) ¡

Z t

0
k (s) e¡r (s¡t)ds

¶±

+ JR (Rr + k) ¡ 1
2

J 2
R

JRR
»0»;

where » ´ § (§0§)¡1 M . For the value function, we try the form J (R; t) =

g (t) f (t)U (R; t) where g (t) must be determined. So, after substituting this

form into the HJB equation and carrying out some simpli…cations, we obtain

that g (t) must satisfy

@g
@t

+ @f (t)
@t

1
f (t)

g (t) + 1 + r±g (t) + 1
2
g (t) ±

1 ¡ ±
» 0» = 0;

whose boundary condition must guarantee the convergence of J (R; t) when t

tends to in…nity. The precise form of function g (t) is not important for com-

puting the optimal portfolio composition. The inverse of the Arrow-Pratt risk

aversion index computed on J (R; t), in fact, does not depend on g (t). So, we

can …nally write what follows.
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Proposition 2 The optimal portfolio composition solving Problem (5) is given

by

w¤ = w¤
R + w¤

u + w¤
v; (6)

where

w¤
R ´ 1

1 ¡ ±
R (§0§)¡1 M;

w¤
u ´ ¡ 1

1 ¡ ±
u

µZ t

0
Á (s) e¡r(s¡t)ds

¶
(§0§)¡1 M;

w¤
v ´ 1

1 ¡ ±
v

µZ t

0
(1 ¡ Á (s)) e¡r(s¡t)ds

¶
(§0§)¡1 M;

and u and v must verify (3).

The …rst component w¤
R depends on the wealth level but not (explicitly) on

time, w¤
u depends on the contribution rate and w¤

v depends on the pension rate.

We underline that the component we have called w¤
R coincides with Merton’s

portfolio.

It is interesting to stress that the actuarial risk enters the optimal portfolio

via the link that exists between u and v in the feasible condition (3). When

this link is not considered, as in Charupat and Milevsky (2002), the portfolio

composition is independent of the mortality risk.

Furthermore, it is important to stress that the optimal portfolio allocation

in (6) does depend on the wealth level R (t). Thus, it is not optimal to manage

the accumulation and the decumulation phases separately and our model sug-

gests to commit the management of the whole investment period to the same

institutional investor.

The function Á (t) can be eliminated from (6) by considering separately the

two following cases (in both cases w¤
R is the same):

1. t · T , we are in the APh and the components of the optimal portfolio are

w¤
u ´ ¡ 1

1 ¡ ±
u
r

¡
ert ¡ 1

¢
(§0§)¡1 M; (7)

w¤
v ´ 0; (8)
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2. t > T , we are in the DPh and we have

w¤
u ´ ¡ 1

1 ¡ ±
u
r

ert ¡
1 ¡ e¡rT ¢

(§0§)¡1 M; (9)

w¤
v ´ 1

1 ¡ ±
v
r

³
er(t¡T) ¡ 1

´
(§0§)¡1 M: (10)

All stated results can be easily traced back to Merton’s model by putting

u = v = 0. In this case w¤
u = w¤

v = 0. During the accumulation phase (t · T ),

it is easy to check that w¤
u in (7) contains only negative numbers. Indeed

± < 1, §0§ > 0 by construction, M > 0 to preclude arbitrage,7 and ert > 1.

Thus, the optimal portfolio during the accumulation phase contains less risky

assets than the optimal portfolio in the Merton’s case. Furthermore, we can see

that the vector w¤
v contains only positive elements (we recall that during the

decumulation phase t > T ). So, the behaviour of the optimal portfolio can be

summarized as in the following corollary.

Corollary 3 During the accumulation phase (t < T ) the amount of wealth in-

vested in the risky assets decreases through time, while during the decumulation

phase (t > T ) it increases.

The behaviour described in this corollary can be seen in Fig. 3 where we

have plotted the following function which appears in (7)-(8) and (9)-(10):

Â (t) =

8
<
:

¡ u
r (ert ¡ 1) ; if t · T

¡ u
r ert

¡
1 ¡ e¡rT

¢
+ v

r

¡
er(t¡T) ¡ 1

¢
; if t > T

and where we have put T = 30, r = 0:02, and u = 1. While t is lower than

the pension time T , the amount of money invested in the risky assets decreases.

It begins increasing when t becomes higher than T . Furthermore, the higher

the pension rate v, the sharper the increase in the risky pro…le of the optimal

portfolio. The behaviour during the accumulation phase con…rms the results

after Boulier, Huang, and Taillard (2001) and Battocchio and Menoncin (2002).

[Fig. 3 here]
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In the deterministic case, that is to say when the subscriber of the fund

never dies (i.e. ® ! 0), then the feasibility condition becomes v = u
¡
erT ¡ 1

¢

and the optimal portfolio can be written as follows:

w¤ =
1

1 ¡ ±

³
R ¡ u

r

³
er min(t;T ) ¡ 1

´´
(§0§)¡1 M:

In this case, during the accumulation phase (t < T) the optimal portfolio

has the same behaviour as in the case of a “mortal” subscriber. Instead, during

the decumulation phase (t > T) the component w¤
u +w¤

v of the optimal portfolio

becomes constant through time and remains negative. This leads to a di¤erent

behaviour than the one plotted in Fig. 3. In particular, since the subscriber

never dies, we cannot increase the riskiness of the optimal portfolio after the

date T .

4 Conclusion

In this paper we have solved the asset allocation problem for a pension fund.

The structure of the …nancial market is as follows: (i) there are n risky assets,

following geometric Brownian motions, (ii) there exists a riskless asset paying a

constant interest rate, and (iii) the market is not necessarily complete. Further-

more, the fund is supposed to have a state-dependent CRRA utility function.

We analyse the portfolio problem during both the accumulation and the de-

cumulation phases when the death time of the subscriber is a stochastic variable

(following a Weibull distribution). The contribution and the pension rates are

supposed to be constant.

We show that the optimal asset allocation during the accumulation phase

(APh) is di¤erent from the one during the decumulation phase (DPh). In partic-

ular, during the APh the investment in the risky assets should decrease through

time for allowing the fund to guarantee the payment of the (constant) pen-

sion rate during the DPh. Instead, during the second phase when the pension

is paid, the risky investment should increase through time. In fact, since the
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death of the subscriber becomes more and more likely, the remaining wealth can

be invested in riskier and riskier portfolio allocation.

Finally, since the optimal asset allocation depends on the level of fund wealth,

our model suggests that it is not optimal to manage the APh and the DPh

separately. This is in agreement with conventional industry practice.

Notes1We underline that w 2Rn£1 contains the amount of money invested in each risky asset.
2We indicate with ¡(t) the Gamma function having the following form:

¡(t) =
Z 1

0
e¡xxt¡1dx:

3We recall

° = lim
n!1

Ã nX

m=1

1
m
¡ lnn

!
:

4In fact, we have
@
@®

³
®¯ (®¿)¯¡1

´
= ¯2 (®¿)¯¡1 :

5In fact, the derivative
@
@¯

³
®¯ (®¿)¯¡1

´
= ® (®¿)¯¡1 (1 + ¯ ln (®¿))

is positive when ¯ ln (®¿) > ¡1. Now, since ®¿ is generally lower then 1, the inequality

becomes ¯ < ¡ (ln (®¿))¡1.
6The …rst order conditions are necessary and su¢cient because the objective function is

strictly concave in R.
7The returns of the risky assets must be greater than the riskless rate. If this was not true,

all investors would buy the riskless asset.
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Figure 1: Expected time of death for the Weibull distribution
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Figure 2: Feasible ratio u=v j̄ !1
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Figure 3: Behaviour of the function Â (t)

.
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Table 1: Approximation of the feasible ratio

r ® ¯ T u=v u=vj¯!1

0:02 0:01 1:5 50 0:2747 0:2826

0:02 0:01 1:5 30 0:6971 0:7376

0:02 0:01 1:5 20 1:2677 1:4399

0:02 0:01 1:3 50 0:2775 0:2863

0:02 0:01 1:7 50 0:2738 0:2769

0:02 0:01 1:9 50 0:2741 0:2693

0:02 0:005 1:5 50 0:4289 0:4236

0:02 0:008 1:5 50 0:3302 0:3343

0:02 0:02 1:5 50 0:1039 0:1051

0:01 0:01 1:5 50 0:5125 0:5801

0:03 0:01 1:5 50 0:1559 0:1555

0:04 0:01 1:5 50 0:0913 0:0898
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