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Summary

In this paper, we focus on uncertainty issues on disabled lives survival probabilities of LTC insurance

policyholders and its consequences on solvency capital requirement. Among the risks affecting long-term

care portfolios, special attention is addressed to the table risk, i.e. the risk of unanticipated aggregate

mortality, arising from the uncertainty in modeling LTC claimants survival law. The table risk can be

thought as the risk of systematic deviations referring not only to a parameter risk but, as well, to any

other sources leading to a misinterpretation of the life table resulting for example from an evolution

of medical techniques or a change in rules of acceptance. In fine, the idea is to introduce the risk of

systematic deviations arising from the uncertainty on the disabled lives death probabilities directly. We

analyze the consequences of an error of appreciation on the disabled lives survival probabilities in terms

of level of reserves and describe a framework in an Own Risk and Solvency Assessment perspective to

measure the gap between the risk profile from the standard formula to the risk analysis specific to the

organism.

Keywords. Own Risk and Solvency Assessment, Solvency Capital Requirement, Long-term care insurance, Risk

of systematic deviations, Table risk, Semi-parametric model.

Résumé

Dans cet article, on s’intéresse à un modèle permettant de prendre en compte l’incertitude sur la

loi de survie d’individus dépendants et les conséquences sur le besoin en fonds propres dans le cadre

du dispositif Solvabilité II. Parmi les risques affectant les portefeuilles d’assurance dépendance, une

attention particulière est adressée au risque de table, à savoir le risque de mortalité totale imprévue

résultant de l’incertitude dans la modélisation de la loi de maintien en dépendance. Le risque de table

peut être considéré comme le risque de déviations systématiques. Il intègre le risque d’estimation mais

aussi a priori d’autres sources potentielles de méconnaissance de la table résultant par exemple d’une

évolution des techniques médicales ou des règles d’acceptation. In fine, l’idée est d’introduire le risque

systématique associé à l’aléa sur les probabilités de décès des dépendants directement. Nous analysons

les conséquences d’une erreur d’appréciation sur les durées de maintien en termes de niveau de provisions

et on décrit un cadre utilisable dans une logique ORSA pour mesurer l’écart entre le profil de risque issu

de la formule standard et celui issu d’une analyse des risques spécifiques à l’entité.

Mots-clés. ORSA, SCR, Assurance dépendance, Risque de déviations systématiques, Risque de table, Modèle

semi-paramétrique.
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1 Introduction

The important change in Solvency II is the general reform of assessment of the insurer solvency. The
solvency is not only a matter of equity, but a meaningful process of accountability in which the insurer
must monitor its activities through an adapted system of management and risk control. The ORSA
(Own Risk and Solvency Assessment) carries the key issues of the reform of Solvency II. It is the set of
processes that contribute to the regular assessment of the overall internal solvency of the company as
an integral part of the business strategy and taking into account the specific risk profile of the insurer.
This identification of the specific risk profile of the company is the cornerstone of an effective governance.
The ORSA allows to shift from a logic of retrospective risks control to a logic of steering by monitoring
the risks which incorporates the solvency. By identifying factors that may affect the current and future
solvency, the ORSA offers the opportunity to the insurer to respond promptly and effectively to the
economic context.

The need for a sound assessment of a LTC (Long-Term Care) insurer’s risk profile suggests a com-
prehensive approach to the liabilities of this particular life insurance business. LTC insurance is a range
of financial services allowing the person to cope with his or her loss of mobility and autonomy in his
or her activity of daily living. The French insurance market for LTC is the second largest worldwide
market with around 3 millions policyholders and a growth rate of 15% per year, see Kessler (2008) for a
study on the french LTC insurance market. The public coverage of LTC is derived not only from a long
french tradition of intervention concerning social assistance, but also from the great diversity of actors
and sources of financing, see Courbage and Roudaut (2011). In addition private insurance has developed.

Most of the actuarial publications on this topic focus on the construction of models of projected benefits,
see Gauzère et al. (1999) and Deléglise et al. (2009) and the assessment of transition probabilities to model
the life-history of LTC patients, see Czado and Rudolph (2002) and Helms et al. (2005).
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In contrast, in our study, we have no exogenous information about the LTC insured population, in terms
of gender, place, or level of care. We observe only the aggregated exposition and number of deaths over
two dimensions. These are the age of occurrence of the disability and the duration of the disability. Hence,
LTC claimants belong only to one state of severeness (heavy claimants). The pricing and reserving as
well as the management of LTC portfolios are very sensitive to the choice of the mortality table adopted.
In addition, the construction of such table is a difficult exercise, see Tomas and Planchet (2013).

In this article, we analyze the consequences of uncertainty on the disabled lives survival probabilities
of LTC insurance policyholders in terms of level of reserves. We describe a framework, in an ORSA
perspective, to measure the gap between the risk profile from the standard formula to a risk analysis
specific to the insurer. The mortality law as well as the disability law are assumed to be known. The
model could also be applied to the disabilities but it is not the subject to this article. It would lead to
a more complex notation and would show no major complications in assessing the basic equation of the
variance of the insurer’s liabilities.

The article is organized as follow. Section 2 has still an introductory purpose and makes precise the
notation used in the following. In Section 3, the risk of random fluctuations is briefly sketched. The
table risk and an application to the computation of the SCR (Solvency Capital Requirement) are then
addressed. Section 4 presents the numerical application. Finally, some remarks in Section 5 conclude the
paper.

2 Notation and reserves valuation

2.1 Notation

We consider a LTC insured population of n individuals. For a policyholder aged x at the time of
computation, we note Υx the time before the person losses his or her mobility and autonomy, i.e. the
time of occurrence of the disability. In other words, Υx is the random variable such that the disability
appears at age x + Υx. The law of Υx is known from the mortality law of the policyholders and the
disability law. More precisely, the probabilities, ρx+t, defining the law of Υx are

ρx+t = P
[
Υx = t

]
= %x

t−1∏
υ=0

(
1− qins

x+υ

)(
1− %x+υ

)
,

where %x denotes the probabilities defining the disability law at age x and qins
x the probabilities of death

derived from the regulatory market table.

We assume only one state of severeness, the heavy claimant, and recovery is excluded. The mortality of
LTC claimants is analyzed over both age of occurrence of the disability x+ Υx, which is an explanatory
variable, and duration of the disability (or seniority) denoted by u, which is the duration variable.

We represent by Tu
(
x + Υx

)
the remaining disabled lifetime of a policyholder when the disability

occurred at age x+ Υx with the duration of the disability u, while the survival disabled lives probability
is :

P
[
Tu
(
x+ Υx

)
> t
]

= P
[
T
(
x+ Υx

)
> u+ t|T

(
x+ Υx

)
> u

]
= tp

claim
u

(
x+ Υx

)
.

Hence, a policyholder with the disability occurring at age x + Υx and duration of the disability u will
decease at the duration u+ Tu

(
x+ Υx

)
.
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The distribution function of Tu
(
x+ Υx

)
is

tq
claim
u (x+ Υx) = 1− tp

claim
u

(
x+ Υx

)
= P

[
Tu
(
x+ Υx

)
≤ t
]

= P
[
T
(
x+ Υx

)
≤ u+ t|T

(
x+ Υx

)
> u

]
.

2.2 Disabled reserves valuation

We note Ψ
(
x,Υx

)
the random amount of the insurer’s liabilities for a policyholder aged x at the time

of the computation. It is the sum of the future cash flows for an policyholder aged x discounted with rate
r,

Ψ
(
x,Υx

)
=

+∞∑
t=1

(1 + r)−(t+Υx) c I]t;+∞[

(
Tu
(
x+ Υx

))
,

where c represents the individual care delivered during the period t.

Two uncertainties apply to the law of Ψx. On one hand we have the uncertainty related to the time of
occurrence of the disability, on the other hand, there is the uncertainty associated with the duration of the
disability. In this article, we only focus on the risk of systematic deviations referring to a misinterpretation
of the disabled lives survival probabilities. In consequence we can integrate with respect to the law of Υx

to obtain,

Ψx = EΥx

[
Ψ
(
x,Υx

)]
= c

∑
υ≥1

ρx+υ

+∞∑
t=1

(1 + r)−(t+υ) I]t;+∞[

(
Tu
(
x+ υ

))
= c ψ

It leads for a portfolio of n insured individuals to

Λ =

n∑
i=1

ci ψi.

In the following, we are interested in the expectation of Λ, i.e. the disabled reserve, and more generally
to the law of Λ. The reserve has a simple form :

E
[
Λ
]

=

n∑
i=1

ci
∑
υ≥1

ρx+υ

+∞∑
t=1

(1 + r)−t P
[
Tu
(
x+ υ

)
> t
]
.

=

n∑
i=1

ci E
[
ψ
]

When provisioning the amount E
[
Λ
]
, the insurer faces adverse deviations due to two distinct factors :

i. The random fluctuations of the observed disabled lives mortality rates around the relevant expected
values, i.e., the fitted mortality rates, which are consequences of the finite size of the population
exposed to the risk. The risk of random fluctuations (often called process risk) is diversifiable (one
should better say pooled). Its financial impact decreases, in relative terms, as the portfolio size
increases.

ii. The inaccuracy of the underlying disabled lives survival law, from which the probability P
[
Tu
(
x+

υ
)
> t
]
are derived, is called the table risk. This is the risk of unanticipated aggregate mortality,

arising from the uncertainty in modeling the LTC claimants’ survival law. The table risk can be
thought of as the risk of systematic deviations referring not only to a parameter risk but, as well,
to any other sources leading to a misinterpretation of the life table resulting for example from an
evolution of medical techniques or a change in rules of acceptance. The risk of systematic deviations
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cannot be hedged by increasing the portfolio size. Actually, in relative terms, its severity does not
reduce as the portfolio size increases, since deviations concern all the insureds in the same direction.

In the following, the risk of random fluctuations is briefly sketched. The table risk and its impact on
the SCR are then addressed.

3 The risk components and SCR

3.1 Risk of random fluctuations

To incorporate the uncertainty arising from the random fluctuations of the observed disabled lives
mortality rates around the relevant expected values, i.e. the fitted mortality rates, we can construct a
confidence interval of the disabled reserve around its expected value.
Due to the assumption of independence between policyholders and as we can reasonably assume that the
individual cash flows ψi are bounded by a constant, i.e. that the set {ψi}ni=1 is uniformly bounded, the
limit distribution of Λ is gaussian :

Λ− E
[
Λ
]

σΛ
−−−−−→
n→+∞

N (0, 1),

where σΛ denoting the standard deviation of Λ. Hence, we can approximate the distribution of the
discounted cash flows and we can easily derive quantiles and confidence interval. For example, Λ falls in
the random interval with approximately (1− α) coverage probability,

IΛ = E
[
Λ
]
± Φ−1

1−α/2 × σΛ,

with Φ−1
1−α/2 chosen as the (1− α/2) quantile of the standard normal distribution.

To assess the two first moments of Λ, since

E
[
Λ
]
=

n∑
i=1

ci E
[
ψ
]

and V
[
Λ
]

=

n∑
i=1

c2i V
[
ψ
]
, (1)

we only need to know the expectation and variance of

ψ =
∑
υ≥1

ρx+υ

+∞∑
t=1

(1 + r)−(t+υ) I]t;+∞[

(
Tu
(
x+ υ

))
One easily finds :

E
[
ψ2
]

=
∑
υ≥1

ρx+υ

(
+∞∑
t=1

Sx+υ(t)

(1 + r)2(t+υ)
+ 2×

+∞∑
t=2

1

r

(
1

(1 + r)t+υ
− 1

(1 + r)2(t+υ)+1

)
Sx+υ(t)

)
,

where Sx+υ(t) denotes the survival function when the disability occurred at age x+ υ for duration t.

However, it is simpler to start with a continuous expression of ψ,

ψ =
∑
υ≥1

ρx+υ

∫ +∞

0

exp(−τ t) I]t;+∞[ dt with τ = ln(1 + r).
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It leads to

E
[
ψ
]

=
∑
υ≥1

ρx+υ

∫ +∞

0

exp(−τ t) Sx+υ(t) dt ≈
∑
υ≥1

ρx+υ

∑
t≥1

exp(−τ t) Sx+υ(t), (2)

and E
[
ψ2
]

=
∑
υ≥1

ρx+υ
2

τ

∫ +∞

0

(
1− exp(−τ t)

)
exp(−τ t) Sx+υ(t) dt

≈
∑
υ≥1

ρx+υ
2

τ

∑
t≥1

(
1− exp(−τ t)

)
exp(−τ t) Sx+υ(t). (3)

Note that the discrete approximation of the expectation is identical to the one obtained previously, while
the approximation of the variance differs slightly.

We will not go further in assessing the risk of random fluctuations. Extensive studies have discussed
the issue, see among others Milevsky and Promislow (2001), Dahl (2004), Biffis (2005), and Ballotta and
Haberman (2006) for the valuation of random fluctuations. In the following we focus on the table risk
arising from the uncertainty in modeling the disabled lives survival law.

3.2 Table risk

The choice of the mortality table adopted has a crucial impact on the pricing and reserving as well as
the management of LTC portfolios. Tomas and Planchet (2013) have shown that the construction of such
table is a difficult exercise for the following reasons :

i. The mortality law of LTC claimants consists of a mixture of pathologies, and non-monotonic
phenomena appear.

ii. LTC portfolios are relatively small, and the estimation of crude death rates is very volatile.

iii. Due to the strong link between the age of occurrence of the disability and the related disability,
it is usual to construct a mortality surface.

iv. Disabled lives mortality rates decrease very rapidly during the first months of the duration of
the disability. In consequence, the first year is often difficult to integrate with the usual parametric
approaches.

Unlike the risk of random fluctuations, the table risk is systematic, due to the fact that it concerns
aggregate mortality. It is realized when deviations from expected mortality are observed along the duration
of the care. Here, the idea is to introduce the risk of systematic deviations arising from the uncertainty
on the disabled lives death probability directly with a semi-analytic approach.

One of the simpler ways to introduce an uncertainty on the expected mortality is to add a disturbance
on the logits of the fitted disabled lives death probabilities, see Planchet and Thérond (2011).

We note by q̂u(x+υ) and q̃u(x+υ) the fitted and disturbed disabled lives death probability at duration
u for the age of occurrence x+ υ respectively. Then,

logit q̃u(x+ υ) = ln

(
q̃u(x+ υ)

1− q̃u(u+ υ)

)
= ln

(
q̂u(x+ υ)

1− q̂u(x+ υ)

)
+ ε, (4)

where ε is a variable centered which we suppose to be gaussian in the following.
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Equivalently,

q̃u(x+ υ) =
a× exp

(
logit q̂u(x+ υ)

)
1 + a× exp

(
logit q̂u(x+ υ)

), with ε = ln a. (5)

The disturbance is controlled by the volatility of ε, noted σε. We will vary σε from 1 to 20 %, and measure
the uncertainty on the expectation of the remaining disabled lifetime of a policyholder in computing the
relative difference, denoted by δ, between the expectation and, φ95%, the 95 % quantile of the remaining
disabled lifetime. If we consider that the care costs 1 and a zero discount rate, it leads to

δ =
φ95%

(
E
[
T (x+ υ) | a

])
− E

[
E
[
T (x+ υ) | a

]]
E
[
E
[
T (x+ υ) | a

]] =
φ95%

(
E
[
T (x+ υ) | a

])
− E

[
T (x+ υ)

]
E
[
T (x+ υ)

] . (6)

In fine, the risk of systematic deviations arising from the uncertainty is introduced on the disabled lives
death probability directly.

3.3 Application to the SCR

The current standard requirements for the Solvency II life risk module have been specified in QIS5,
CEIOPS (2010, pp.147-163). QIS5 prescribes a SCR which accounts explicitly for the uncertainty arising
from the systematic deviations and parameters estimation but not for the random fluctuations and process
risk (severity of claims). In fact, the process risk has been disregarded as not significant enough, and has
been included in the systematic and parameter risk component, in order to simplify the standard formula.

The severity of the risk of random fluctuation decreases, in relative terms, as the portfolio size increases.
Hence, we can suppose, for sufficient exposure, that the risk of systematic deviations and parameter risk
have a larger financial impact. Here, our aim is then to measure the relevancy of the shocks described in
the QIS5 specification with the specific risks supported by the insurer in an ORSA perspective. Under
Solvency II, LTC is considered the same way as life business. In the following, we are only interested about
the longevity shocks (a decrease of 20 % in mortality rates for each age) applied to the LTC claimants
only, not to the overall insured population mortality.

Computing the quantiles of the distribution of the sum of the discounted cash flows through expression
(6) gives a biased evaluation of the SCR, because it does not take in account the limitation of the
projection (computed to infinity), and the risk margin. The literature on SCR approximation is very
extensive, see among others Bauer et al. (2010) and Stevens et al. (2010). However, here we use the
general approximation of Guibert et al. (2010) in order to have a simple framework to compute the SCR
in the presence of a systematic risk factor affecting the poolable risk.

Following Guibert et al. (2010, Section 3), we use the general approximation

SCR1 =

VaR 99.5 %(χ)

BEL0
− 1

1− α D0

(
VaR 99.5 %(χ)

BEL0
− 1

)× BEL0 with χ =
F1 + BEL1

1 +R1
,

where F1 denotes the cash flows payable at month 1, R1 is the return on assets at month 1 and D0 the
duration of the liability (one month). The best estimate of the reserve at month 0 and 1 are denoted by
BEL0 and BEL1 respectively.
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The variable χ can be interpreted as the economic liability according to the assets allocation, see
Planchet and Thérond (2007), while

VaR 99.5 %(χ)

BEL0
− 1

represents the one-month solvency ratio without taking in account the duration of capital commitment.

The law of the variable χ can be reasonably approximated by the sum of the discounted cash flows,
i.e. Λ, which is, conditionally to the disturbance, (approximatively) gaussian, see Guibert et al. (2010,
Section 3.2) :

FΛ(x) = P
[
Λ ≤ x

]
= E

[
P
[
Λ ≤ x|a

]]
−−−−−→
n→+∞

∫
Φ

(
x− µ(a)

σ(a)

)
Fa(da).

In practice, we approximate this function by Monte Carlo simulations on the basis of a sample of the
variable a :

FΛ(x) ≈ FK(x) =
1

K

K∑
k=1

Φ

(
x− µ(ak)

σ(ak)

)
,

where K denoted the number of simulations. Then, a quantile ρ is derived by solving the equation

FK(xρ) = ρ numerically. This model have been used to integrate risk of a pandemia into an internal
model in the Solvency II framework by Planchet (2013).

The moments of Λ are derived in expression (1). If we consider that the monthly care costs 1 and a
zero discount rate, it leads, for a portfolio of n LTC claimants to

µa = E
[
Λ|a
]

= n× E
[
Ψ|a

]
and σa = σΛ | a =

√
n× V

[
Ψ|a

]
,

with E
[
Ψ|a

]
≈
∑
υ≥1

ρx+υ

∑
t≥1

Sx+υ(t | a) and V
[
Ψ|a

]
≈ 2

∑
υ≥1

ρx+υ

∑
t≥1

t Sx+υ(t | a)− (Sx+υ(t | a))
2
,

following expressions (2) and (3).

Having an discounted rate r > 0 will simply give more weight to the nearest cash flows and therefore
will tend to lower volatility of the estimators.

We can then compute the ratio between the SCR and the best estimate of the reserve as a function
of the portfolio size for different ages of occurrence for the risk of systematic deviations.

4 Numerical application

The data come from a portfolio of LTC heavy claimants of a French insurance company. The period
of observation stretches from 01/01/1998 to 31/12/2010. The data are composed of a mixture of heavy
disabilities. The pathologies are composed, among others, by dementia, neurological illness and terminal
cancer. The data consist for 2/3 of women and 1/3 of men. We have no exogenous information about the
LTC claimants. We observe only the aggregated exposition and number of deaths over two dimensions.
These are the age of occurrence v of the pathologies and the duration of the care u. The range of ages of
occurrence is

[
70− 90

]
and the maximum duration of the pathologies is 119 months. Figures 1a and 1b

display the observed statistics of the dataset.
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(a) Number of deaths. (b) Exposure. (c) fitted probability of death.

Figure 1: Number of deaths, exposure and
q̂claimu (x+ υ) obtained in Tomas and Planchet (2013, Section 3.2).

For the numerical application, we use the fitted surface of the disabled lives mortality obtained in
Tomas and Planchet (2013). The fitted disabled lives probability q̂u(x+ υ), displayed in Figure 1c, have
been obtained by fitting the adaptive local bivariate likelihood model with local bandwidth factors me-
thodology. This method allows an adjustment based on the reliability of the data to take into account
the nature of the risk and varies the amount of smoothing in a location dependent manner. The ap-
proach is an extension of the adaptive kernel methods proposed by Gavin et al. (1995) to adaptive local
kernel-weighted log-likelihoods techniques. For regions in which the exposure is large, a low value for
the bandwidth results in an estimate that more closely reflects the crude rates. On the other hand, for
regions in which the exposure is small, such as long duration, a higher value for the bandwidth allows
the estimate to progress more smoothly.
In addition, we have at our disposal the disability law %x provided by the same company and we used the
periodic mortality tables TH00-02 and TF00-02 provided by the French Institute of Statistic (INSEE)
to compute the mortality law qins

x of the insured population. The computations are carried out with the
help of the software R, R Development Core Team (2014).

We apply model (5) and vary σε from 1 to 20 %. The remaining life expectancy of an insured individual
varies slightly with σε, being around 3.02 months for an insured individual aged 80. We then measure
the impact of uncertainty on the expected disabled lifetime of a policyholder by computing the relative
difference δ between the 95 % quantile of the simulated remaining lifetime from K = 5000 simulations
and its expectation (see equation (6)).

Figure 2 shows the impact of uncertainty on the remaining life expectancy. The impact of uncertainty
is relatively linear on the remaining life expectancy for a given age. However, it is increasing with the age
as the remaining disabled lifetime of a policyholder is decreasing with the age, which in turn induces an
increase of the uncertainty.

Experts consider an uncertainty associated to the remaining disabled lifetime of a policyholder of ± 5

months at all ages of occurrence. It means, for instance, that the remaining disabled lifetime when the
disability occurred at age 80 varies by approximatively 1.36 %. In addition, its variation increases greatly
at the highest age of occurrence. In order to be coherent with the experts’ opinion, we look at which level
of volatility σε leads to a resulting uncertainty δ corresponding to the variation observed by the experts.
The results are displayed in Table 1.
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Figure 2: Relative difference δ between 95 % quantile of the simulated
remaining disabled lifetime and its expectation.

Age of the Remaining Variation Experts’ Corresponding
policyholder disabled lifetime opinion (%) σε (%)

70 4.16 0.91 9.33

71 4.12 0.92 9.33

72 4.06 0.93 9.33

73 4.00 0.95 9.33

74 3.92 0.97 9.33

75 3.82 0.99 9.33

76 3.71 1.02 9.44

77 3.58 1.06 9.44

78 3.43 1.10 9.44

79 3.23 1.17 9.56

80 3.01 1.25 9.58

81 2.78 1.36 9.67

82 2.52 1.50 9.96

83 2.24 1.68 9.96

84 1.95 1.93 9.96

85 1.65 2.29 10.05

86 1.35 2.80 10.05

87 1.05 3.61 10.06

88 0.75 5.02 10.29

89 0.48 7.95 10.52

90 0.22 17.07 10.52

Table 1: Remaining disabled lifetime of a policyholder (in months), variation according experts’ opinion
and corresponding level of volatility σε.
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We then compute the ratio between the 99.5 % quantile of the simulated sum of the discounted cash
flows and the best estimate of the reserve for further levels of volatility in Figure 3 (color lines). We also
obtain the corresponding ratio when varying the volatility with the age of occurrence of the disability
according the experts’ opinion (red dotted line) and compare the results of the QIS5 longevity shock
(black dotted line).

Figure 3: Ratio between the 99.5 % quantile of the simulated sum of the discounted cash flows
and the best estimate of the reserve.

With a fixed level of volatility σε = 9 %, the ratio between the quantile at 99.5 % of the simulated
sum of the discounted cash flows and the best estimate of the reserve is around 20.6 % at age 80, i.e. the
capital required for covering the uncertainty arising from the systematic deviations is approximatively
20.6 % of the best estimate.

In applying a reduction of 20 % on the disabled lives death probabilities with the same logic as the
longevity shock described in the QIS5 specifications, the remaining disabled life expectancy of a policy-
holder aged 80 increases from 3.01 to 3.64 months, meaning a gain of 20.9 %. In consequence, fixing the
volatility of the disturbance at 9 % appears to be relatively coherent with the calibration of the standard
formula as illustrated in Figure 3, black dotted line.
However, varying the volatility with the age of occurrence of the disability according the experts’ opi-
nion, Figure 3 red dotted lines, seems inconsistent with the shocks described in the QIS5 specifications.
The standard formula has been calibrated on standard mortality which differs greatly from heavy LTC
claimants mortality.

We have applied the methodology to other LTC claimants datasets. It appears that the results are
insensitive to the underlying structure of the disabled lives survival law. This is explained by the fact that
we are working on the core of the distribution, i.e. the general form of the survival law. In consequence,
the underlying structure has no impact. In addition, the model only assesses the risk associated with
the uncertainty arising from the systematic deviations to which the risk of random fluctuations must be
added.
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As mentioned in Section 3.3, computing the quantiles of the distribution of Λ gives a biased evaluation
of the SCR. In the following, we use the general approximation proposed by Guibert et al. (2010) and
compute the ratio between the SCR and the best estimate of the reserve as a function of the portfolio
size for different ages of occurrence for the underwriting risk. The result is displayed in Figure 4 with
varying the level of volatility σε according the age of occurrence of the disability and a cost of capital α
of 6 %.

Figure 4: Ratio between the SCR and the best estimate of the reserve
as a function of the portfolio size.

At age 80, the minimal SCR is around 21.5 % of the best estimate of the reserve for a portfolio of
LTC claimants of infinite size, i.e. when ignoring the risk of random fluctuations. For a size of 100 LTC
claimants, when random fluctuations are important, the minimal SCR is 35.3 % of the best estimate of
the reserve.

We have applied this model to other datasets. Unlike computing the quantiles of the distribution of Λ,
the results obtained with the general approximation proposed by Guibert et al. (2010) are very sensitive
to the choice of the underlying disabled lives survival law. It highlights the impact of the structure of the
survival law on the underwriting risk, in particular the importance of the tail of distribution.

5 Conclusions

The uncertainty associated to the underlying disabled lives survival law has important consequences
in terms of volatility of reserves.

As soon as we are able to model this uncertainty, the general framework described in Guibert et al.
(2010) allows us to assess the adequacy of the standard shocks described in the QIS5 specifications with
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a risk analysis specific to the insurer depending on the structure of the portfolio. We can then build a
stochastic model taking into account the constraint of quantifying the uncertainty in a finite horizon and
the effect of the risk margin. In this framework, the use of simulations is limited and occurs independently
of the portfolio size, as in a semi-analytical model, and the computation time is limited.

These reflections highlight the essential assessment of uncertainty associated to the underlying disabled
lives survival law as the milestone for a thorough evaluation of the insurer solvency. It leads to consider
the implementation of a partial internal model for the underwriting risk.

In addition, the approach presented shows that the level of underwriting SCR obtained is strongly
associated to the precision of the assessment of the underlying disabled lives survival law and in particular
to the tail of distribution.

Finally, LTC insurance has the particularity to cumulate the effect of long term liabilities with the
consideration of future premiums over a long period. The levels of SCR obtained in this study are true
for a single premium. For a regular premiums contract, these are upper bounds, because the insurer has
the option to adjust the price in the future, which is not included in our approach.
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