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Abstract

Prolongation of life expectancy implies a severe risk for annuity providers. Insurance companies

can use securitization transactions to address this longevity risk in their portfolios. Securitization can

serve as a substitute for classic reinsurance since it also transfers risk to third parties. We develop

a model to hedge annuity portfolios against increases in life expectancy. By doing so, we forecast

future mortality rates with the Lee-Carter-model and use the Wang-transformation to incorporate

insurance risk. Based on the percentile tranching method, where individual tranches are aligned to

Standard & Poor’s ratings, we price an inverse survivor bond. This bond offers fix coupon payments

to investors while the principal payments are at risk and depend on the survival rate within the

underlying portfolio. Finally, we apply this securitization structure to calculate the securitization

prices for a sample portfolio from a large life insurance company.

Key words Life Securitization · Longevity Risk · Insurance Pricing and Hedging · Inverse Survivor

Bond · Percentile Tranching

JEL Classification G12 · G17 · G22 · G23

1 Introduction

Across the globe, and in the industrial nations in particular, people have seen an unprecedented increase

in their life expectancy over the last decades (see, for example, MacDonald et al., 1998). The benefits

of this apply to the individual, but the dangers apply to annuity providers. Insurance companies often

possess no effective tools to address the longevity risk inherent in their annuity portfolio. However, they

can use the financial markets to mitigate the negative implications from an increase in life expectancy

to their risk position by securitizing parts of their portfolio. The synthetic securitization acts as a hedge

for the insurer’s portfolio: the securitization deal transfers the risks of the portfolio to third parties and

serves as a substitute for reinsurance.
∗Jonas Lorson and Joël Wagner are with the Institute of Insurance Economics, University of St. Gallen, Kirchlistrasse 2,

CH-9010 St. Gallen.
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In contrast to non-life segments, where securitization transactions such as CAT bonds are an estab-

lished instrument now and account for high volumes, the life securitization market is still in its infancy

(see, e.g., Deutsche Bank, 2010). The first mortality-linked securitization transaction was carried out by

Swiss Re in 2003. The issue of the Vita Capital bond for a three-year time period reduced Swiss Re’s

exposure resulting from shifts in mortality. This bond had principal payments which were dependent on

the development of a predefined mortality index (Blake et al., 2006). Another attempt at a longevity bond

occurred in 2004. The European Investment Bank tried to issue, with the help of BNP Paribas, a bond

with coupon payment depending on the survival of English and Welsh males aged 65 in the year 2002.

The duration of the contract was intended to be 25 years and the total volume to be £ 540 mn. However,

the transaction did not attract enough investors and was abandoned in 2005 (Chen and Cummins, 2010).

After these initial attempts, the life securitization market gained momentum with increasing volumes

and transactions until 2007. However, with the beginning of the financial crisis, the issuing of life secu-

ritizations dropped significantly and is still in a recovery phase today (for a detailed review, see Section 2).

The literature offers a variety of models for hedging longevity risk. Among them, Wang et al. (2011)

apply the concept of reverse mortgages to hedge longevity risk for life insurance companies. Wang et al.

(2010) use a model to determine the optimal annuity product mix to receive a natural hedge against

longevity risk, while Luciano et al. (2012) make use of Delta-Gamma hedging. In the paper by Gatzert

and Wesker (2012), the authors consider a “natural” hedge between life insurance and annuities in order to

reduce net portfolio exposure to systemic mortality risk. Another approach is the annuity securitization:

Kim and Choi (2011) present a method for securitizing longevity risk with the help of percentile tranching

using a coupon-at-risk calculation (see also, for instance, Wills and Sherris, 2010, or Bae et al., 2009).

The authors apply the concept of an inverse survivor bond to a fictional portfolio of Australian annuity

contracts. Their focus lies on the yield that investors can achieve with an investment in such a bond. Our

approach is closest to that of Kim and Choi (2011). We make use of a percentile tranching method directly

linking chosen percentiles to Standard & Poor’s (S&P) rating classes for insurance-linked securities. By

doing so, investors receive a clear picture of the quality of the securitization tranche they are investing

in. In addition, the issuer has the possibility to approach specific investor types in terms of risk-attitude

directly with its securitization offer. Typically, the coupon payments are put at risk within an inverse

survivor bond. The insurer receives on the issuing date cash flow from investors which can be considered

a loan. This loan is then repaid to the creditors with an annual principal amount over the entire maturity

of the bond. The principal payments are of equal size for each period; however, their full repayment

remains subject to the actual survival rates within the underlying portfolio. In addition, the investors

receive at each time period the respective coupon rate, which is tranche specific. Within this securitization

structure, the insurer receives the loan from the investors and can use this money to generate capital

returns. At the end of the transaction, the full loan has been paid back to the investors and the coupon

payments depend on the portfolio’s survival rates. In the current low interest capital market environment,

it is doubtful if this structure is still advantageous for the insurer since the ability to generate sufficient

capital returns with the borrowed money to cover potential additional payments from longevity increases

might be limited. Thus, and in order to ensure that enough capital is available, our model is based on
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the payment of fixed coupon rates and variable repayments of the principal (principal-at-risk approach).

In this paper, we extend on methods insurer’s can use to hedge their annuity portfolio against longevity

risk with the help of annuity securitization. To do so, we take the perspective of the issuing insurance

company and calculate the costs of hedging in a four step process. First, we calculate future mortality

rates using the classic Lee-Carter-model (Lee and Carter, 1992). In a second step, we adapt the fore-

casted mortality rates with the help of the transformation by Wang (2000) in order to incorporate the

price of risk in the insurance contract. We then apply the transformed death rates to the annuitants

of our sample portfolio. Third, we slice the forecasted annuity portfolio into different tranches with the

help of the percentile tranching method (analogous to Kim and Choi, 2011). Thereby, we use attachment

and detachment points for the individual tranches corresponding to S&P ratings for insurance-linked

securities. In a last step, we price the different tranches of our annuity securitization with the help of

classical bond pricing. The principal payments that investors receive are a random variable and depend

on the survival distribution of the underlying portfolio. If the number of actual survivors is higher than

expected, the amount of principal payment is reduced according to the determined tranche levels. To

illustrate the implication of this bond structure, we finally conduct several sensitivity tests before we

apply our pricing model to the retail sample annuity portfolio from a leading German life insurer. The

contribution to the academic literature is threefold. On the theoretical side, building on the work of Kim

and Choi (2011), we adapt their pricing model to the current market situation. Putting the principal

at risk instead of the coupon payments, the insurer is supplied with sufficient capital in order to cover

additional costs due to longevity. On the empirical side, we specify the method for the German market.

Inserting specific country data into the model, we analyze price sensitivities of the presented securitiza-

tion model. Finally, in a case study, we apply the procedure to the annuity portfolio of a large German

life insurer and calculate the price of hedging longevity risk.

The remainder of this paper is organized as follows. In Section 2, the theoretical background of

securitization in general, and life insurance securitization in particular, is discussed as well as the related

literature review. The concept of inverse survivor bonds is explained in detail. Section 3 presents the

mathematical calculus of an annuity securitization, from the definition of future mortality rates with

the help of the Lee-Carter-model up to the pricing of single securitization tranches. Section 4 presents

numerical outcomes and shows the dynamics and sensitivities of our model. Afterwards, Section 5 applies

the model to a real-world annuity portfolio from a large life insurance company. Section 6 summarizes

the presented results and concludes.

2 Literature review and securitization market overview

With the recent financial crisis in mind – and its being caused by unsound structuring of mortgage

loans – securitization is still of major interest for financial service providers in general and insurance

companies in particular. In contrast to the banking sector where securitization, via asset-backed securities

or collateralized debt obligations for instance, hit huge levels before the financial crisis, life insurance

companies are still very cautious about these transactions despite potential benefits (see, for example,
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De Mey, 2007, or Beltratti and Corvino, 2008, for a review). In general, securitization can be defined

as the “repackaging and trading of cash flows that traditionally would have been held on-balance-sheet”

(Cummins and Weiss, 2009, p. 515). The purpose of this trading lies in the diversification of risk.

There are manifold explanations why securitization transactions are beneficial for life insurers. Ac-

cording to Cowley and Cummins (2005), a reduction of costs of capital as well as an increase in the return

on equity are the main advantages. Through securitization, unlocking embedded profits in the balance

sheet becomes possible for the issuer. In addition, this financial instrument can serve as an alternative

possibility to financing. Furthermore, the transparency of many on-balance-sheet assets and liabilities –

traditionally characterized by a certain degree of illiquidity, complexity, and informational opacity – is

improved by securitization (Cowley and Cummins, 2005, p. 194). Other players in the financial market

can also benefit from these transactions. Life securitization introduces a new asset class with almost no

correlation to other investments (see also Lin and Cox, 2008). The true driver of life portfolios lies in the

life expectancy of the policyholders – and this is not affected by the development of yield curves or stock

market returns. Consequently, institutional investors should be able to reduce their overall portfolio risk

by adding life securitization to their investments (see, for example, Litzenberger et al., 1996, and Deng

et al., 2012). From a regulatory perspective, it is expected that securitization will be treated under Sol-

vency II analogous to reinsurance when it comes to the determination of standard capital requirements

(Cummins and Trainar, 2009, p. 489). At the same time, it enables third parties to invest in insurance

products without possessing an insurance license by acting as investors to the securitization.

Historic life securitization transactions

Figure 1 shows an aggregation of the issued life securitizations from 1999 to 2011. The deals are clustered

into three different categories: regulation XXX/aXXX securitization deals,1 mortality securitizations

and embedded value securitizations. Historically, the maximum total amount of life securitization was

achieved in 2007 with a volume of $ 8.1 bn. The amount of transaction volumes then drops significantly

with the start of the financial crisis in 2008 to $ 0.6 bn. In comparison with the assets on the balance

sheets of life insurers, the volume of these transactions is totally negligible even in years with extensive

usage of this instrument. On average, the securitized deal had a size of $ 417 mn while the median of the

transaction volumes is $ 300 mn. The top three issuing companies in terms of total volume are Aegon

($ 3.7 bn), Scottish Re ($ 3.6 bn), and Genworth ($ 3.5 bn). In total, insurance companies undertook

71 life securitization transactions from 1999 to 2011, of which 31 were embedded value, 31 regulation

XXX/aXXX transactions and 9 mortality transactions. In that period, primary insurers securitized life

products in 48 deals with a value of $ 21.6 bn and reinsurance companies transferred a volume of $ 8.4 bn

with the help of 23 transactions. Further information on observed life securitization deals can be found

in, e.g., Lorson (2012).

An explanation for the relatively low transaction volumes in comparison to the balance sheet assets of

life insurers can be found in D’Arcy and France (1992). The concerns for the usage of insurance futures

based on catastrophy loss indices stated by the author in 1992 still hold true today for the securitization

1Issuing of debt securities on insurer’s capital reserve requirements for term life products. More details on the different
categories can be found in, e.g., Kampa (2010) or Cowley and Cummins (2005).
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Figure 1: Historic life securitization transactions from 1999 to 2011. Figures are in million US dol-
lars and categorized by regulation XXX/aXXX securitization, mortality securitizations, and embedded
value securitizations. The data on the issues is compiled from Swiss Re (2006), Artemis (http://www.
artemis.bm), Trading Risk (http://www.trading-risk.com), and Factiva press research (www.dowjones.com/
factiva). See also Lorson (2012).

of life insurance portfolios: concerns about the counterparty risk, uncertainties about the treatment of

contracts by the regulator, and lack of insurer know-how or expertise. Before we can argue about the

three concerns, an important difference between “normal” securitizations and the securitization of life

insurance portfolios has to be pointed out. “Normal” securitizations often represent asset securitization

such as mortgages or credit card receivables (see also Cowley and Cummins, 2005). The borrower receives

an initial amount of money or funding and then begins to make payments (both interest and principal)

over time to repay the loan. Consequently, the originator faces the credit risk of the borrower but no risk

exposure exists vice versa. By any securitization deal, the economic situation and the risk of the borrower

is not affected. However, when it comes to life insurance securitization, the situation is different: life

securitization is a securitization of liabilities and implies a different logic. In this case, one counterparty

of the original contract (the policyholder) makes payments over a long period of time and receives a pay-

ment from the other counterparty (the insurer) in the future at the end of the contract. The policyholder

is consequently facing the credit risk of the counterparty and its economic position is severely affected by

the counterparty, especially by the originator’s default risk (see Cowley and Cummins, 2005). Insurers

who are willing to pursue a life portfolio securitization have to select the buyer of their portfolio very

carefully in order to avoid an increase of the counterparty risk for the policyholder. Even if the selection

is done carefully and the economic situation of the policyholder will not be deteriorated, it is doubtful

whether the regulator will allow such a transaction and how the regulatory environment looks like (see
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for example Cummins and Weiss, 2009).

Classification of securitization deals

When it comes to classifying securitization deals, Cummins and Weiss (2009) divide the securitization

primarily into two different categories: the asset-backed securities such as securities backed by corporate

bonds or mortgages, and the non-asset-backed products with examples like futures and options. The first

are usually backed by the underlying asset that is securitized, the latter are normally guaranteed by the

counterparty of the transaction and/or by an exchange. Both types of securitizations have in common

that they can be traded in an organized exchange environment as well as over-the-counter. Through

securitization, investors that do not possess an insurance license have access to insurance cash flows (Cox

and Schwebach, 1992). This further facilitates the diversification of risk in the entire financial market.

An insurer deciding to undergo a life insurance securitization has, at least theoretically, two possibili-

ties to proceed. The first one is a true sale of the assets which should be securitized, and the second one is

a synthetic securitization. In the case of a “true” securitization the insurer would securitize its portfolio

(or parts of it) by selling the contracts to investors in different tranches. In contrast to the banking sector

where true sale transactions occur daily, this type of securitization does not take place in the insurance

industry. The main reason for this is legal issues. As mentioned before, in life insurance the economic

position of the policyholder is severely affected by the counterparty since the fulfillment of the service

promise lies in the future. It is very doubtful if a regulatory authority would allow such transactions in

which the counterparty obligation fades from a supervised insurance company to third party investors.

In addition, such a deal would result in a giant time horizon of commitment for the investors. Contract

durations of more than 60 years are not uncommon (for instance in the case of classic pension products).

Only few investors might be interested in engaging in such long transactions. Furthermore, a potential

investor would face several operational problems in a true sale life securitization: he must provide the

necessary systems for the premium collection, for instance, or take care of the asset management. Con-

sequently, to the best of our knowledge, there has been no true sale life securitization so far. The second

option, “synthetic” securitization (or “synthetic” sale) is the common method for annuity securitization.

Within this approach, accounting for the contracts and carrying of risks remains with the insurance com-

pany. In most cases, a special purpose vehicle is established to serve as an intermediary for cash flows

between the issuer and the investors. The transaction is simply a securitization of cash flows.

Models for life securitization and pricing

Several models for life securitization approaches can be found in the literature. Blake and Burrows (2001)

proposes the issuing of survivor bonds whereby the coupon payment which investors receive depend on

the mortality rates of a specified population and are thus a random variable (see also Dowd, 2003, and

Blake, 2003). This construct of survivor bonds is also applied by Denuit et al. (2007). Other possibilities

to hedge longevity risk are survivor options or swaps and futures, which are discussed, for example, by

Cox and Lin (2007). Survivor swaps comprise the exchange of cash flows between two parties with a
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fixed cash flow in the present and an uncertain future cash flow depending on the mortality of a specified

group (see, for example, Dowd et al., 2006). Cox et al. (2006) consider the first mortality securitization

by Swiss Re in 2003 and use multivariate exponential tilting to price this transaction. Lin and Cox

(2005) develop a model for analyzing mortality-based securities, in particular mortality bonds and swaps,

and price these contracts (by applying the one factor Wang transformation). Cox et al. (2010) integrate

permanent longevity jump processes as well as a temporary jump process in mortality to the Lee-Carter-

model and use the derived forecasted mortality rates to price a longevity option with indifference pricing.

Lin and Cox (2008) use a two-factor Wang transformation to develop an asset pricing model for securities

based on mortality. Bauer et al. (2010) review existing pricing methods for longevity-linked securities and

present a longevity derivative that provides an option-type payoff. Also Dowd et al. (2006) use the idea of

survivor swaps to exchange future cash flows between the insurer and third parties based on a reference

survivor index. Wills and Sherris (2010) securitize a longevity bond with the help of Australian mortality

data. They calculate different tranches by percentage cumulative loss and price these tranches. Biffis and

Blake (2010) address in their study the effects of asymmetric information on longevity securitizations and

how they should be tranched under partial information. For further references on longevity securitization

research, we refer to the review by Blake et al. (2011).

Inverse survivor bonds

An inverse survivor bond is a special case of survivor bonds that insurance companies can use to hedge

their annuity portfolio against mortality changes. The structure of these bonds is illustrated in Figure 2.

Annuitants

Premiums

paid

Annuity

Issuer

Premium

Contingent

payment

Special purpose

vehicle (SPV)

Investment

into bond

Coupon &

principal

Investors

Tranche 1

Tranche 2

Tranche 3

. . .

Tranche N

Figure 2: Structure of an Inverse Survivor Bond (adapted from Wills and Sherris, 2010, and Kim and
Choi, 2011).

At the center of the bond structure stands a special purpose vehicle (SPV). This legal entity brings

together the issuer (the insurance company) and the investors who want to engage in the annuity portfolio.

The insurer – while paying out the annuities to its annuitants – transfers the premiums received from the

annuity sales to the SPV. Following the investors participation in the bond, the SPV provides contingent
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payments to the insurance company (securing thus the annuity payments). On the investor side, the SPV

issues a survivor bond which pays regular coupon payments. Often, the principal is paid as a lump sum

at the maturity of the bond, while the coupon payment is paid annually and is subject to the survival

rate of the underlying portfolio, and thus at risk. The investor faces the risk that partial future coupon

rates or even all future coupon rates are lost if less annuitants than ex ante expected die within the

portfolio. In our consideration, as mentioned before, the principal payment will be at risk whereas the

coupon payments are secured.

In order to attract more investors and to offer a tailored risk profile, the survivor bond is sliced

into different tranches. Lane and Beckwith (2007) argue that tranching becomes more popular when

related to insurance-linked securities. Such bonds usually possess less than ten tranches, which can differ

significantly in their risk profile. The investors in the first tranche are provided with the least coverage.

They are the first to lose their coupon or principal payments if the number of actual survivors in the

portfolio is higher than expected. If the first tranche is exceeded, the loss moves to the second tranche,

and so on. Due to the different risk characteristics, each tranche has a different price within the survivor

bond. In order to signal to investors the quality of the securitized portfolio, the first loss position (the

first tranche) is often kept by the issuer (see, for example, Gale and Hellwig, 1985, or Riddiough, 1997).

When maintaining the first loss position, the issuer has an incentive to closely monitor the correct and

timely premium collection and to price the portfolio conscientiously.

3 Calculation of the securitization of an annuity portfolio

This section describes the calculus used to synthetically securitize a life annuity portfolio. We adapt the

model from Kim and Choi (2011) for an inverse survivor bond with the core difference that we set the

principal payment at risk and not coupon payment. Figure 3 illustrates our approach.

Based on historic life tables, Section 3.1 describes the application of the Lee-Carter-model in order to

forecast future mortality rates. Afterwards in Section 3.2, we adjust the derived survival probabilities for

the uncertainty in the mortality tables as well as the uncertainty of the annuitant’s lifetime. Therefore,

we use the Wang-transformation (Wang, 2000) to derive the adjusted survival probability distribution for

all ages x of annuitants and future years t = 1, . . . , T , where T denotes the duration of the securitization

contract. In Section 3.3 the different attachment and detachment points for each observed tranche are

introduced. We define N tranches with the help of percentiles based on cumulative survival probabilities.

Based on these tranche limits, we derive the value of each individual tranche j, j = 1, . . . , N , for each

time t (until T ) and the face value FV of the entire inverse survivor bond. Using this face value we price

the individual tranches in Section 3.4 by calculating prices for the coupon payments as well as for the

principal payments for all contract years t. We assume that coupons and principals are paid once a year

at the end of the period. Finally, we derive the total price of securitization for a given annuitant aged x

by summing all tranches and contract years.
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Actual historic death rates

Forecasting future mortality rates with

the Lee-Carter model (Section 3.1)

Survival probablity distribution forecast for all ages and years

Adjustment for the market price of risk

using the Wang-transform (Section 3.2)

Adjusted survival probability distribution for all ages and years

Definition of attachment and detachment
points for the tranches (Section 3.3)

Sum of excess losses for each tranche (and age/year) define the bond face value

Calculation of tranche prices as sum

of coupon and principal (Section 3.4)

Total price of securitization (per age) given by sum of tranches and years

Figure 3: Approach for calculating the price of an annuity securitization.

3.1 Forecasting future mortality rates with the Lee-Carter model

A range of stochastic models for forecasting mortality rates have been developed in the last decade. The

earliest model was developed by Lee and Carter (Lee and Carter, 1992) and several researchers built on

and extended their work.2 The Lee-Carter-model is is still the most popular model and widely used in

the literature for valuating life portfolios and as a basis for insurance securitization (see, for example,

Denuit et al., 2007, or Kim and Choi, 2011).

The Lee-Carter-model is a discrete time series model that uses historic mortality rates to project the

future trend of mortality. It is based on the assumption that future mortality will continue to change at

the same rates as it did in the past. In the model, the fitted death rates m(x, t) for ages x at times t (see

2The most prominent models are those of Renshaw and Haberman (2006), De Jong and Tickle (2006), Delwarde et al.
(2007), Czado et al. (2005), or Cairns et al. (2006).
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Lee and Carter, 1992, p. 660) follow the log-linear expression:

lnm(x, t) = αx + βxκt + εx,t. (1)

The death rates m(x, t) are described by two age-specific constants, αx and βx, and a time-varying

factor κt that represents an index of the level of mortality. The error-term εx,t captures the age-specific

effects that are not contained in the model. The fitted parameter αx describes the average age over

time (independently of the time index). The coefficient βx is the age-specific component describing how

death rates vary to changes in the index κt. We consider in our model ages from x = 0 (less than one

year) up to x = 100 years for the fitting. Our analyses include a separate assessment of male and female

death rates, as well as of the whole population without gender-differentiation. By doing so, we choose

the widely adopted method3 of Lee and Miller (2001) who adjust the original Lee-Carter-model in three

ways. First, concerning the fitting horizon, the latter half of the last century is chosen with the goal of

reducing structural shifts. In addition, the mortality index kt is adjusted to the life expectancy e0 instead

of total deaths. Finally, the “jump-off” error is eliminated through forecasting using observed instead of

fitted rates.

Applying the Lee-Carter-model requires a two step process. First, the model parameters in Equa-

tion (1) are estimated based on the observed mortality rates, and, second, the projections for the future

are performed. Following Lee and Carter (1992), a singular value decomposition is performed on the ma-

trix lnm(x, t)−αx with resulting estimates of βx and κt. Subsequently, an iteration process re-estimates

the values for κt until the modeled number of deaths equals the actual amount of deaths. In order to

forecast future mortality rates, Lee and Carter assume that αx and βx remain constant over time. To

forecast the values of the mortality index κt, a standard univariate time series model with a random walk

with drifts is used. Under these assumptions and parameterization, Equation (1) evaluates future death

rates per age group, which forms the basis for all following calculations. In the following we will refer to

the cumulated survival rates for a time-span of t years for individuals aged x at the time of securitization.

Thus we transform the obtained mortality rates m(x, t) into survival rates 1 − m(x, t), and derive the

(simulated) t-year survival probabilities for x years aged individuals (at the time of securitization), which

we denote by p̃x,t. We use the notation ·̃ to denote random variables.

3.2 Adjustment for the market price of risk

Having calculated the future survival probabilities (Section 3.1), we now address the insurance risk

inherent in a contract. Following, e.g., Kim and Choi (2011), Denuit et al. (2007), Dowd et al. (2006),

and Lin and Cox (2005), we apply the Wang-transformation to our forecasted mortality rates.4 Wang

(2000) has developed a method to price the insurance risk inherent in an insurance contract which

combines the classical financial as well as insurance pricing theory. Thus, we will use observed annuity

prices to estimate the market price of risk for annuity mortality and then use this distribution to price

3See, for example, Hanewald et al., 2011, or Booth and Tickle, 2008.
4Chen et al. (2010) prove that for long maturities, the Wang transformation is the preferable method for longevity risk

pricing.
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bonds (see Lin and Cox, 2005). By doing so, the previously obtained survival rates p̃x,t are adapted for

the uncertainty in the mortality tables as well as the uncertainty in the lifetime of the annuitant.

If Φ denotes the standard normal cumulative distribution function and Φ−1 its inverse, Wang (2000,

p. 20) introduces the distortion operator described by

gλ (u) = Φ
[
Φ−1 (u) + λ

]
, (2)

for all u with 0 < u < 1. The real-valued parameter λ can be interpreted as the market price of risk.

Thus a function with given cumulative distribution function, F with values of −∞ < F < +∞ can be

transformed into a distorted distribution function F ∗ with the help of the market price of risk λ by the

following equation,

F ∗ = 1 − gλ(1 − F ) = Φ
[
Φ−1(1 − F ) + λ

]
. (3)

In our framework, we apply the above formula and let F stand for the cumulative distribution function

of the future survival probabilities p̃x,t for ages x and years t. In the sequel we denote with p̃λx,t the

so-transformed survival probabilities.

3.3 Tranche definition and excess loss per tranche

The next step involves the definition of individual tranches to be securitized and the calculation of the

excess loss for each tranche. We consider N different tranches in our inverse survivor bond. The attach-

ment points pλ(j−1)
x,t and detachment points pλ(j)x,t for tranche j, j = 1, . . . , N , are defined as a percentile

of the cumulative survival distribution based on the Wang-transformed values. Here our approach dif-

fers from Kim and Choi (2011, p. 15, Fig. 12). These authors define the attachment point of the first

tranche pλ(0)x,t at the median survival probability or 50%-tile. In order to derive results from financial

markets practice, we link the attachment points to the tranches according to the S&P default table for

insurance-linked securities.5 S&P provides cumulative default probabilities for different rating classes and

different maturities. In Table 9 (see Appendix 7.2) we report the S&P cumulative default probabilities

for insurance-linked securitizations corresponding to the rating classes AAA to B– and maturities ranging

from T = 1 to 30 years. In our application, the detachment point of the last tranche is defined as the

100%-tile of the survival distribution, i.e. pλ(N)
x,t = 1 (100%-tile). The attachment and detachment points

for the remaining tranches can be flexible and defined according to the intended tranche composition

of the securitization. The percentile below the attachment point of the first tranche pλ(0)x is the part

retained by the issuer. It can be considered as a first loss position. In our further applications, we will,

e.g., define the attachment pλ(0)x,t equal to the percentile of the S&P B+ tranche, which corresponds to

an approximately 30% cumulative default probability within 10 years. For further tranches we consider

BBB–, A, and AAA in our reference case (see Table 4). The face value FV of the bond can also be

readily calculated. It corresponds to the difference between the 100%-tile of the survival distribution and

the attachment point of the first tranche (pλ(0)x,t ).

5See S&P default tables from 2008, http://www.standardandpoors.com.
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To calculate the excess loss for each tranche, we assume that the insurer pays 1 (one) currency unit to

each annuitant who survives each year. In the following, we suppose the attachment points pλ(j−1)
x,t and

the detachment points pλ(j)x,t for each tranche j, j = 1, . . . , N given. Let lx represent the initial population

of annuitants of age x at the beginning of the securitization (t = 0). Thus the actual number of survivors

in each group (tranche) is a random variable driven by the numerically simulated distribution of survival

rates p̃x,t, and l̃λx+t = lx · p̃λx,t describes the actual number of survivors at age x + t. Furthermore, and

with the yearly annuity payment set to unity, it follows that l(j)x+t = lx · pλ(j)x,t denotes the actual amount

of losses linked to the attachment/detachment points (see also Kim and Choi, 2011, pp. 11 and 16).

With the above notations, we are able to derive the calculation of the excess of loss. We illustrate our

proceeding in Figure 4. Each dot in Figure 4 represents one realization of the simulation run for the life

expectancy of an x years aged individual at a given time t after securitization. The dashed lines indicate

the attachment and detachment points of the observed tranche j (at time t). If a survival realization lies

within the borders of the loss that the considered tranche j has to bear – in line with the definition of the

respective attachment and detachment points – the tranche is triggered by the grey shaded loss. Thus

the excess loss for the jth tranche for individuals aged x at the time of securitization and t years after

securitization, denoted by L̃(j)
x+t, is a random variable and can be described by

L̃(j)
x+t =

[
l̃λx+t − l(j−1)

x+t

]+
−
[
l̃λx+t − l(j)x+t

]+
, (4)

where [·]+ stands for max(0, ·).

Having determined the excess loss for the tranche, the cash flows to the investors have to be calculated

accordingly. A reduction by the excess loss can be applied to the coupon rate or the principal payment of

the inverse survivor bond. While existing literature often discusses the case of a reduction of the coupon

rate, both models can be found in practice. In our model, if a tranche is triggered by an amount of

survivors that is higher than expected, the principal payment of this tranche is reduced proportionally.

Therefore, a proportion factor of default is introduced for each tranche j and time t that is defined by

Λ̃(j)
x+t =

L̃(j)
x+t

l(j)x+t − l(j−1)
x+t

, (5)

where we have 0 ≤ Λ̃(j)
x+t ≤ 1. This factor represents the loss percentage that is inherent in the jth

tranche, given the amount of survivors for the observed realization. It corresponds to the ratio of the

realized excess loss L̃(j)
x+t in the tranche and the “width” of the tranche given by l(j)x+t − l(j−1)

x+t .

3.4 Pricing of the inverse survivor bond

The mechanism used for pricing the single tranches and the annuity securitization is as follows. As with

any other bond, the price of the inverse survivor bond consists of two parts, the coupon payment and the

principal payment.

The bond is structured in a way that the back payment of the nominal face value FV is distributed

over the duration of the contract T with T equally sized payments defined by FV/T . Since the principal

12
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Attachment point

l(j−1)
x+t = lx · pλ(j−1)

x,t

Detachment point

l(j)x+t = lx · pλ(j)x,t

Actual number

of survivors l̃λx+t

Tranche j

Survival realization l̃λx+t

Borne loss L̃(j)
x+t by tranche j

for given survival realization l̃λx+t

Figure 4: Illustration of the excess loss L̃(j)
x+t calculation (see Equation 4) for tranche j at time t for

annuitants aged x + t (age x at the time of securitization).

payment is put at risk, it becomes a random variable which is expressed by

P̃
(j)
x+t =

(
1 − Λ̃(j)

x+t

)
·
FV

T
, (6)

for the tranches j = 1, . . . , N and the annuitants’ ages x + t (t = 1, . . . , T ). The principal is inversely

proportionate to the amount of losses or, framed differently, to the amount of survivors in our portfolio.

The principal’s value can vary between 0, in the case where the actual survival rate is greater than the

detachment points of the jth tranche, and the full payment of FV/T , in the case where the actual survival

rate is lower than the corresponding attachment point of the jth tranche, i.e., we have 0 ≤ P̃
(j)
x+t ≤

FV
T

.

The coupon payment is based on the outstanding principal and is paid annually. The applied annual

interest rate c(j) for each tranche j is comprised of a reference yield y such as, for instance, LIBOR

or EURIBOR, and a tranche-specific spread s(j), i.e., c(j) = y + s(j). The basis for the calculation

of the interest amount is defined by the outstanding amount of debt towards the investor given by

Dt = FV − (t− 1) · FV/T = (T − t + 1) · FV/T . Thus the coupon payment is given by

C
(j)
t = Dt · c

(j) = (T − t + 1) ·
FV

T
·
(
y + s(j)

)
, (7)

for all tranches j = 1, . . . , N in times t = 1, . . . , T .

On the basis of the principal and coupon payments for each year and tranche along to the realized ex-

cess loss, the price of the inverse survivor bond can be derived with the help of the general bond equation.

13
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The bond price P (j)
x in time t = 0 for an x years aged individual (at the time of securitization) and for

tranches j = 1, . . . , N , corresponds to the sum of the present value of (or expected value of discounted)

principal payments P (j),P
x and the sum of all discounted coupon P (j),C

x payments until contract maturity

T . The price P (j)
x is given by

P (j)
x = P (j),P

x + P (j),C
x

=
T∑

t=1

E
(
P̃

(j)
x+t · (1 + rf)

−t
)

+
T∑

t=1

C
(j)
t · (1 + rf)

−t

=
T∑

t=1

1

(1 + rf)t
·
[
E
(
P̃

(j)
x+t

)
+ C

(j)
t

]

=
FV

T
·

T∑

t=1

1

(1 + rf)t
·
[
E
(
1 − Λ̃(j)

x+t

)
+ (T − t + 1) ·

(
y + s(j)

)]
, (8)

with rf the risk-free interest and E(·) denoting the expected value operator.

4 Numerical implementation and results

The aim of this section is to apply the previously introduced model step-by-step to the German market

and to link the definition of the tranches to S&P ratings. Thus we will be able to compare the prices for

different portfolio structures (different definition of the tranches) and perform selected sensitivity analysis

on the example of the results for a 65 year-old annuitant at the moment of securitization and unity (e 1)

annual pension claims.

4.1 Forecasting future mortality rates for Germany

In all industrial societies, the life expectancy of the population has risen continuously over the last

decades. This also holds true for Germany. As the basis for our calculations, we use German historic

mortality rates from the years 1960 to 2009. Thereby we combine the reported values of the Federal

Republic of Germany and the German Democratic Republic.6 For our study we proceed as described in

Section 3.1. For the analysis of the data on deaths and exposures as well as for the Lee-Carter forecasting

of mortality rates we use the R package ‘demography’.7 Figure 5 shows the historic age-specific death

rates in log-values. One can clearly observe that death rates across all ages continuously declined over

the last decades. Assuming that this trend continues in the future, we use the Lee-Carter model to

calculate future mortality rates for the population. First the model is fitted to the historic death rates.

Figures 6 and 7 report the values of αx, βx, and the forecasted κt for the entire German population, i.e.

without regard to gender (gender-indifferent case). Separate results for the male and female population

are provided in Figures 14 to 17 in the Appendix 7.1.

6The data is derived from the Human Mortality Database and available for download at http://www.mortality.org.
7See http://cran.r-project.org/web/packages/demography/demography.pdf for the documentation.
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Figure 5: Illustration of German historic death rates (in log-values) for ages 0 to 102 from 1960 to 2009
using data from the Human Mortality Database available at http://www.mortality.org.
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Figure 7: Forecasted values of kt for the years
2010 to 2040 for the German population.

4.2 Adjustment for the market price of risk

After having determined the predictions on future mortality rates, the next step in securitizing annuity

contracts incorporates the adjustment of these rates for insurance risk inherent in the contract with the

help of the Wang-transformation as described in Section 3.2. Thus we first estimate the market price of
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risk λ for the German life insurance market. In order to do so, we use four different quotes of leading

German life insurance companies (Allianz, AXA, Generali, and R&V) for an annuity product with an

initial payment of e 100 000 and a duration of 10 years. The underlying annuitant is assumed to be a

male and a female with the age at 65. For both male and female quotes, we derive the market value of

risk λ by numerically solving the following equation:8

net single premium = annuity quote · ψλ
65,10. (9)

The net single premium is the market price net of annuity expenses, i.e., the net single premium times

(1 − cost loading). The cost loading is calculated individually for each company based on the disclosed

acquisition and administration costs in the offer. The total cost loading is close to 6% in the analyzed

offers. ψλ
65,10 represents the actuarial present value of a 10-year immediate annuity at age 65. The value

is calculated using the risk-adjusted survival probability pλ65,10 =
(
1 − Φ

[
Φ−1 (q65,10) − λ

])
, where q65,10

stands for the 10-year mortality rate of a 65 year-old man or woman provided by the German Federal

Statistical Office. Furthermore the discounting of the individual annuity quotes is done with an interest

rate of 2.5% as an average of historic two-year government bond returns. The resulting values for the

market price of risk λ differ slightly from insurer to insurer. The detailed results for the market price of

risk for the different insurers are shown in Table 1.

Market price of risk λ Allianz AXA Generali R&V Average

Male 0.3039 0.1957 0.0668 0.5243 0.2727
Female 0.1736 0.0207 0.0571 0.4906 0.1855

Average – – – – 0.2291

Table 1: Market price of risk λ for different life insurers in Germany.

Our findings for the German market are close to the values reported for other markets in the literature

(see, for example, Kim and Choi, 2011) where often a value of 0.2 is used for λ. Since the average result

of analysis is near to the values observed by other authors and in order to ensure comparability with

existing literature, we will use the parameter value λ = 0.2 for the Wang-transformation.

4.3 Tranche definition in a reference case

In general, an annuity securitization – as any other securitization transaction – can be performed with

different tranche ratings and thus a different inherent quality of the single tranches. In our model,

we use the rating definitions of S&P for insurance-linked securities. S&P provides cumulative default

probabilities for different time horizons for each rating category. Exemplary values for insurance-linked

securities with a maturity of ten years are plotted in Figure 8. A detailed list of these probabilities is

provided in Table 9 in Appendix 7.2. We use these values to evaluate the attachment and detachment

points for the different tranches of the securitization. According to S&P, there are 16 different ratings with

8This proceeding follows, for example, Kim and Choi (2011), or Lin and Cox (2005).
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investment grade, ranging from the lowest rating of B− to the top rating of AAA; we only consider these

ratings and no ratings for speculative assets. In addition to the different cumulative default probabilities,

each rating class possess also an individual yearly yield or return. We define in our model the yield of

a rating tranche as a spread in basis points (bp), i.e. hundredth of %, over a reference rate y such as

LIBOR or EURIBOR. Figure 9 presents the spreads that we apply for the respective ratings (for details,

see Table 9). These spreads have been adapted to observed spreads both in the securitization market as

well as in the literature (see, for example, Mählmann, 2012, or Cowley and Cummins, 2005, p. 221).

S&P tranche

C
u
m

u
la

ti
ve

 d
ef

au
lt
 p

ro
b
ab

il
it
ie

s 
fo

r 
10

 y
ea

rs
 (

in
 %

)

0

10

20

30

40

50

AAA
AA+

AA
AA−

A+ A A−
BBB+

BBB
BBB−

BB+
BB

BB−
B+ B B−

Figure 8: S&P cumulative default probabilities
for insurance-linked securities for a 10-year ma-
turity.
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tranches.

In order to specify the attachment points pλ(j−1)
x,t and detachment points pλ(j)x,t of the tranches, we

need to fix further parameters of the contract. Let us introduce a reference case through a portfolio with

one annuitant aged 65 at the issuing of the securitization transaction. We set the market price of risk

λ = 0.2 as derived in Section 4.2. Furthermore, for the reference case, we apply a securitization with

N = 4 rated tranches, namely B+, BBB−, A, and AAA. This can be considered as a structure of tranches

with “medium” quality. Following Table 9, the cumulative default probability of the B+ tranche, i.e. the

first tranche that is accessible for investors, over a 10-year maturity is 30.565% with the corresponding

survival probability of 69.435%.

It is reasonable to assume that the issuing insurer has built up reserves for its annuity portfolio over

time which cover the 50%-tile of a potential survival distribution. This means that usually the reserves

of annuitants dying earlier can be used to cover additional expenses by the insurers for annuitants who

live longer than expected. This is close to the usual logic behind the risk pooling or pricing in insurance

contracts, often refering to the expect value of claims or out-payments as measure. Given the proposed

securitization structure, the insurer will still have to cover the annuity payments between the reserved

50%-tile and the percentile where the cumulative default probability of the first securitized tranche kicks
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in. Only from there on the risk is transferred to investors. In our example of a 10-year securitization with

a B+ tranche as the most junior, this layer goes from the 50%-tile to the 69.435%-tile. This approach

means that the first loss position – under the assumption of a reserve policy of the 50%-tile – is borne

by the issuer. This approach is also in line with the literature postulating that the first loss piece is kept

by the issuer in order to signal towards investors about the quality of the portfolio (see, for example,

Riddiough, 1997, or Gale and Hellwig, 1985).

Table 2 shows the attachment points corresponding to the reference securitization. The numerical

findings are based on the Wang-transformed survival rates derived from the Lee-Carter model and are

compiled from 100000 simulation runs.

T pλ(B+)
65 pλ(BBB−)

65 pλ(A)
65 pλ(AAA)

65

1 0.9935 0.9937 0.9940 0.9942
2 0.9862 0.9866 0.9870 0.9873
3 0.9778 0.9784 0.9791 0.9796
4 0.9691 0.9699 0.9709 0.9715
5 0.9593 0.9604 0.9617 0.9624
6 0.9490 0.9503 0.9519 0.9529
7 0.9378 0.9396 0.9415 0.9428
8 0.9255 0.9276 0.9300 0.9316
9 0.9123 0.9148 0.9177 0.9196
10 0.8973 0.9003 0.9038 0.9061

Table 2: Illustration of the attachment points pλ(j)65 for four selected tranches B+, BBB−, A, and AAA,
and maturities T = 1, . . . , 10 (in years) in the reference case. The market price of risk is set to λ = 0.2.

4.4 Pricing of inverse survivor bond in a reference case

In order to derive prices for the bond, we need to define further parameters for the reference setting. For

the following analysis, we assume the maturity of the inverse survivor bond to be T = 10 years. The

considered annuitant in the reference case possesses an annual pension claim of e 1 per year and is aged

x = 65 at the time of securitization. For our securitization, we define the face value FV of the bond

equal to T · e 1 = e 10 which is a nominal value. The discounted face value of the bond then equals a

present value of e 8.53. Furthermore, the coupon payments of the bond are interpreted as spreads over

the reference yield y. We set y = 1%. The discounting is done with a risk-free interest rate rf = 3%. The

forceasting of future mortality with the help of the Lee-Carter-model is done on the basis of the whole

population. Table 3 summarizes the parameter assumptions for the reference case.

With these input parameters, we calculate the tranche prices P (j)
65 for the securitization of the reference

case. The results obtained are presented in Table 4. According to our model, the hedging of the annuity

contract with an annual pension payment of e 1 for a 65 year old yields a bond price for the issuing

insurer of e 10.057 (present value). This represents costs of 17.9% (1.527/8.53) based on the present

18



Working Papers on Risk Management and Insurance No. 118 - October 2012

Parameter Variable Value

Annuitants’ age at issuing x 65 years
Population/Gender – male & female
Maturity T 10 years
Market price of risk λ 0.2
Reference yield y 1%
Risk-free interest rf 3%
Annual pension – e 1

Table 3: Model parameterization in the reference case.

value e 8.53 (present face value of the bond). The results show further that the principal amount of

the securitization, which is initially distributed among the four tranches in an equal manner (see Section

3.3), differs significantly by the quality of the tranches. The most riskiest tranche – in our simulation

the B+ rated tranche – suffers the highest losses and receives a principal payment of P (B+),P
65 = e 1.715

instead of the present value of the tranche’s face value 2.133 (8.53/4). The amount of coupon payments

for each tranche shows exactly the opposite development than the principal. Since the spreads follow an

exponential increase according to the riskiness of the tranches (see Figure 9), the B+ tranche receives the

highest coupon payments, i.e. y + 680 bp, and can compensate the principal loss with the guaranteed

yields. Thus the B+ tranche yields overall annually 2.3% over the risk free rate when comparing the

total price P (B+)
65 = 2.671 to the invested e 2.133. The more senior tranche AAA suffers in the principal

losses of 0.002, which is neglegible and is still renumerated with additional coupon payments yielding a

total payment of 2.309 corresponding to an annual 0.8% return over the risk free rate.

Tranches j B+ BBB− A AAA Sum

Attachment point pλ(j)65 69.435% 89.363% 98.218% 99.638%

Principal payments P (j),P
65 1.715 2.022 2.113 2.131 7.981

Coupon payments P (j),C
65 0.955 0.612 0.331 0.178 2.076

Bond price (total) P (j)
65 2.671 2.634 2.444 2.309 10.057

Table 4: Tranche prices (in e) for the parameterization of the reference case (see Table 3).

4.5 Sensitivity analyses of the bond prices

Before we step to the valuation of the retail insurance portfolio in Section 5, we analyze the effects and

sensitivities inherent to the synthetic securitization model. For this we will use fictional portfolios or

contracts. In the following paragraphs we study the variations in the results, i.e., the principal and

coupon payments as well as the total bond price, when changing selected contract parameters. Our first

sensitivity analyses include variations in the bond maturity T and in the structure of the portfolio, i.e.
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the rating of the tranches and the number N of tranches. Further analysis include changes in the values

of the reference yield y and of the risk-free interest rf (or discount factor). Finally we also vary the

underlying population considered and its historical mortality rates, i.e., we consider the total (male and

female) population as well as males and females separately.

Bond maturity

First we address the differences in the bond prices for several time horizons T of the securitization trans-

action. For this we use the parameterization of the reference case specified in Table 3 and let T take the

values 5, 10, 15, and 20 years. Table 5 presents the results of the sensitivity analysis. The results for the

impact of different maturities are also illustrated through Figures 10(a)–(d).

T Tranches j B+ BBB− A AAA Sum

5

Attachment point pλ(j)65 79.913% 95.641% 99.380% 99.900%

Principal payments P (j),P
65 1.021 1.122 1.142 1.145 4.429

Coupon payments P (j),C
65 0.273 0.175 0.095 0.051 0.594

Bond price (total) P (j)
65 1.294 1.297 1.236 1.195 5.023

10
(reference case)

Attachment point pλ(j)65 69.435% 89.363% 98.218% 99.638%

Principal payments P (j),P
65 1.715 2.022 2.113 2.131 7.981

Coupon payments P (j),C
65 0.955 0.612 0.331 0.178 2.076

Bond price (total) P (j)
65 2.671 2.634 2.444 2.309 10.057

15

Attachment point pλ(j)65 61.904% 84.582% 96.136% 98.963%

Principal payments P (j),P
65 2.211 2.725 2.919 2.979 10.833

Coupon payments P (j),C
65 1.990 1.276 0.689 0.370 4.325

Bond price (total) P (j)
65 4.201 4.001 3.608 3.349 15.159

20

Attachment point pλ(j)65 56.802% 80.409% 93.507% 97.825%

Principal payments P (j),P
65 2.576 3.264 3.570 3.704 13.113

Coupon payments P (j),C
65 3.330 2.134 1.153 0.619 7.236

Bond price (total) P (j)
65 5.905 5.398 4.723 4.323 20.349

Table 5: Results of the sensitivity analysis of the securitization prices with regard to different maturities
T = 5, 10, 15, 20 of the transaction. Values shown are in e for the parameterization (except for T ) from
the reference case given in Table 3.

When it comes to the maturity of the inverse survivor bond, several effects can be noticed. The longer

the duration is, the more important become the coupon payments P (j),C
65 for the total bond price P (j)

65 .

For example, within a T = 20 year transaction, the coupon payments of the most junior tranche, the
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Figure 10: Results of the sensitivity analysis of the securitization prices with regard to different maturities
T = 5, 10, 15, 20 of the transaction. Values shown are in e for the parameterization (except for T ) from
the reference case given in Table 3.

B+ tranche, are in total higher than the principal payment that is made (e 3.33 compared to e 2.58).

Over all tranches and in the case T = 20, the sum of all coupon payments
∑

j P
(j),C
65 represent 35.6%

(= 7.236/20.349) from the total bond price
∑

j P
(j)
65 . This ratio is only 20.6% (= 2.076/10.057) when the

time horizon is T = 10 years. This effect can be expected since the coupon payments are stable over the

entire time period while the principal payments are at risk each year anew. Furthermore, a doubling of

the duration results in a total bond price that is slightly higher than twice the initial one. Prolonging

the duration, for instance, from T = 10 years to T = 20 years, the total price of the transaction
∑

j P
(j)
65

rises from e 10.06 to e 20.35. However, this effect can almost be neglected. Comparing the annual costs

– e 1.01 over 10 years with e 1.02 over 20 years – reveals an increase of only 1.2% is observed.
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Portfolio structure

Next, we address the impact of different portfolio structures on the prices of the securitization. For our

study, we typically consider four different tranches in our securitization transaction. In order to test the

impact of different tranche layouts on the price of the portfolio hedging, we apply in the following four

different portfolio securitizations. First, we reconsider the “medium”-rated securitization with AAA, A,

BBB−, and B+ tranches introduced in the reference case (see Section 4.3). The second approach is a

synthetic securitization with “top”-rated tranches, i.e. the portfolio is sliced in a AAA, AA+, AA, and

B+ tranche. The third securitization structure represents a “poor”-rated deal with BB+, BB, BB−,

and B+ tranches. The last calculation is based on a securitization that entails each S&P rating class

between B+ and AAA, i.e. 14 different tranches. If the insurer targets more risk-averse investors with its

securitization, it is more likely that the company will pursue a strategy that generates more highly rated

tranches (“top” structure). However, if more risk-affine investors are addressed, a synthetic securitization

with a higher proportion of riskier tranches is structured (“poor” structure). In Table 6 we report the

results from the sensitivity analysis for the structures “medium”, “top”, and “poor”. Figures 11(a)–(d)

illustrate the tranche prices for all four different securitization structures.

“Medium”
(reference case)

Tranches j B+ BBB− A AAA Sum

Attachment point pλ(j)65 69.435% 89.363% 98.218% 99.638%

Principal payments P (j),P
65 1.715 2.022 2.113 2.131 7.981

Coupon payments P (j),C
65 0.955 0.612 0.331 0.178 2.076

Bond price (total) P (j)
65 2.671 2.634 2.444 2.309 10.057

“Top”

Tranches j B+ AA AA+ AAA Sum

Attachment point pλ(j)65 69.44% 99.13% 99.46% 99.64%

Principal payments P (j),P
65 1.913 2.118 2.123 2.131 8.285

Coupon payments P (j),C
65 0.955 0.220 0.202 0.178 1.556

Bond price (total) P (j)
65 2.868 2.338 2.325 2.309 9.840

“Poor”

Tranches j B+ BB− BB BB+ Sum

Attachment point pλ(j)65 69.435% 75.803% 81.742% 86.821%

Principal payments P (j),P
65 1.550 1.682 1.799 2.085 7.116

Coupon payments P (j),C
65 0.955 0.882 0.808 0.723 3.368

Bond price (total) P (j)
65 2.505 2.564 2.608 2.807 10.484

Table 6: Results of the sensitivity analysis of the securitization prices with regard to different tranche
structures of the transaction. The portfolio structure “medium” corresponds to the reference tranches
introduced in Section 4.3. Values shown are in e for the parameterization from the reference case given
in Table 3.
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Figure 11: Results of the sensitivity analysis of the securitization prices with regard to different tranche
structures of the transaction. The portfolio structure “medium” corresponds to the reference tranches
introduced in Section 4.3. Case (d) reports the total bond price when N = 14 tranches are created
including all ratings from B+ to AAA. Values shown are in e for the parameterization from the reference
case given in Table 3.

Given the parameterization of the reference case given in Table 3, the calculations reveal that a more

poorly rated portfolio with tranches B+, BB−, BB, and BB+ – which represent the first four tranches

starting from B+ – yields the highest securitization price with
∑

j P
(j)
65 = e 10.48, whereas a portfolio

consisting of highly rated tranches (B+, AA, AA+, and AAA) accounts for the lowest price with e 9.84.

This is a difference of 6.5%. The reference case with a securitization structure of medium quality accounts

for a price of e 10.06. A securitization including all 14 S&P tranches from B+ to AAA is priced e 9.89.

The ratio of all principal payments to the total bond price,
∑

j P
(j),P
65 /

∑
j P

(j)
65 varies from 67.9% (“poor”

structure) to 84.2% (“top” structure) and is strongly related to the rating and the default probabilities

of the tranches.
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Reference yield, risk-free interest and underlying population

The objective of this paragraph is to summarize the findings from studying the impact of changes in the

reference yield y, in the risk-free interest rate rf (used for discounting the payments, see Section 3.4), and

in the considered subset of the population underlying our mortality forecasts.

Table 7 reports the results from our sensitivity tests. The input parameters of the reference yield y,

the discount factor rf , and the effect of gender consideration in mortality forecasting are analyzed. Testing

for the impact of the reference yield y on which the tranche spreads are applied, as expected we observe

that the values of the principal payments P (j),P
65 remain unaffected. The more senior tranches, such as

A or AAA, in particular benefit from an increase in the reference yield. While the coupon payments

P (B+),C
65 for the B+ tranche show a total increase of 12.9% from e 0.96 (y = 1%) to e 1.08 (y = 2%), the

additional coupon value for the AAA tranche yields e 0.12 (difference in P (AAA),C
65 when y changes from

1% to 2%), which corresponds to an increase of 68.5%. Rising the reference yield y from 1% to 4%, the

B+ tranches receives an increase of 38.5% while the coupon payments are more than tripled for the most

senior AAA tranche (from e 0.178 to e 0.545). Changes in the risk-free interest rf also show expected

effects with all prices decreasing for higher values of the discount rate rf . Finally, the data shows that

the consideration of gender in the forecasting of future mortality rates, and thus also the valuation of the

securitization, is of minor importance. The tranche prices only differ at the second digit.

5 Case Study: Application to a real insurance portfolio

After having calculated the individual tranche prices for one underlying age of the annuitant in the

previous section, we apply now the numerical results to a real portfolio comprising annuitants of different

ages. Furthermore annual annuity payments are no more e 1. In order to simulate our tranching of

life annuity products, we consider a retail data sample of randomly selected (active) life contracts from

a leading German life insurer. The portfolio consists of 20 544 contracts with a total volume of annual

guarantied pension payments of e 89.8 mn (nominal annuities). Figures 12 and 13 give a detailed overview

on portfolio composition. Since the portfolio contains only annuity contracts in the pay-out phase, the

majority of the annuitants is over 60 years old. This effect is illustrated in the distribution of annual

payouts per age (see Figure 13). The highest payments are made for the group of retired policyholders

over 60 years.

Our objective is to price the inverse survivor bond linked to a transaction of the described retail

portfolio, and thus calculate the price of hedging for the insurer. Thereby, we calculate tranche prices

for every age within in the portfolio and sum the individual prices up to the entire portfolio value. The

different age groups yield similar tranche prices since attachment and detachment points are evaluated

on the basis of the survival probabilities of the respective age. The results of the portfolio valuation are

presented in Table 8. As for the reference case in Section 4, we calculate the inverse survivor bond for a

maturity of T = 10 years using the value λ = 0.2 for the market price of risk.

The insurer effectively receives a payment of e 766.0 mn (e 89.8 mn for T years, discounted to t = 0).

The bond price equals
∑

j P
(j)
all = e 903.1 mn which yields costs of e 137.1 corresponding to 17.9% of the
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y rf Pop. Tranches j B+ BBB− A AAA Sum

1% 3% m.&f.
Principal P (j),P

65 1.715 2.022 2.113 2.131 7.981

Coupon P (j),C
65 0.955 0.612 0.331 0.178 2.076

Bond price P (j)
65 2.671 2.634 2.444 2.309 10.057

2% 3% m.&f.
Principal P (j),P

65 1.719 2.027 2.112 2.131 7.989

Coupon P (j),C
65 1.078 0.735 0.453 0.300 2.566

Bond price P (j)
65 2.797 2.762 2.565 2.431 10.555

3% 3% m.&f.
Principal P (j),P

65 1.719 2.026 2.112 2.131 7.987

Coupon P (j),C
65 1.200 0.857 0.576 0.423 3.056

Bond price P (j)
65 2.919 2.883 2.688 2.553 11.043

4% 3% m.&f.
Principal P (j),P

65 1.717 2.026 2.112 2.131 7.986

Coupon P (j),C
65 1.323 0.980 0.698 0.545 3.546

Bond price P (j)
65 3.040 3.006 2.810 2.676 11.532

1% 1% m.&f.
Principal P (j),P

65 1.907 2.250 2.344 2.366 8.867

Coupon P (j),C
65 1.031 0.661 0.357 0.192 2.240

Bond price P (j)
65 2.938 2.910 2.701 2.557 11.107

1% 2% m.&f.
Principal P (j),P

65 1.809 2.134 2.224 2.244 8.410

Coupon P (j),C
65 0.992 0.636 0.343 0.184 2.156

Bond price P (j)
65 2.801 2.770 2.567 2.428 10.566

1% 4% m.&f.
Principal P (j),P

65 1.632 1.926 2.008 2.026 7.592

Coupon P (j),C
65 0.921 0.590 0.319 0.171 2.001

Bond price P (j)
65 2.553 2.516 2.327 2.197 9.593

1% 3% m.
Principal P (j),P

65 1.715 2.021 2.113 2.131 7.979

Coupon P (j),C
65 0.955 0.612 0.331 0.178 2.076

Bond price P (j)
65 2.670 2.633 2.443 2.309 10.055

1% 3% f.
Principal P (j),P

65 1.714 2.020 2.113 2.131 7.978

Coupon P (j),C
65 0.955 0.612 0.331 0.178 2.076

Bond price P (j)
65 2.669 2.633 2.444 2.309 10.054

Table 7: Results from the sensitivity analysis of the securitization prices with regard to different values
of the reference yield y = 1%, 2%, 3%, 4%, of the risk-free interest rf = 1%, 2%, 3%, 4%, and with regard
to different underlyings for the (male and/or female) population in mortality forecasting. Values shown
are in e for the parameterization from the reference case given in Table 3. The first setting with y = 1%,
rf = 3% and including the male and female population corresponds to the reference case. Parameters
differing from the reference case are printed in bold. “Pop.” stands for population, “m.” for the male,
and “f.” for the female population.
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Figure 12: Number of annuitants per age as of
31st December 2009.
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Figure 13: Annual nominal annuity payments
in e mn per age as of 31st December 2009. The
grey shaded area cumulates to e 89.8 mn in
annuity payments.

payment in t = 0 (see also Section 4.4). At first glance, this figure seems quite high. However, there a

several effects that cushion the issuer’s cost. First, the insurer receives the entire investment, i.e. the face

value of the bond in time t = 0 and has the possibility to generate investment returns with the money

that is not paid back to the investors, respectively retained for paying annuities in the event of higher

survival rates. In order to compensate the costs, the insurer needs to invest the available capital at an

annural return of 4.2%, to be put in relation to the risk-free rate parameterized as rf = 3%. Second, the

proposed hedge structure starts at the cumulative default probability of the B+ tranche (about 70%-tile)

and reaches to the 100%-tile. Even if the insurer keeps the first loss position, a large proportion of the

risk is transferred to third parties. However, the issuer can still leverage the reserves from annuitants

dying earlier than expected. We do not quantify this effects in this paper. From the investor perspective,

the B+ tranche is renumerated with an annual return of 2.3% over the risk free rate. The most senior

tranche AAA is still able to generate revenues at 0.8% over the risk free rate.

6 Conclusion

This paper introduces a model for an annuity securitization with the help of an inverse survivor bond.

We have taken the perspective of the issuing insurer and calculated the price of hedging for the company.

We applied a tranching approach for the securitization based on the percentile tranching method and

designed the bond in a way that the principal payments are risk, i.e. depending on the survival rates of

the underlying portfolio of annuitants. In order to do so, we first used the Lee-Carter-model for Germany

and calculated estimates on future mortality rates. We forecast the survival distribution using 100 000
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Tranches j B+ BBB− A AAA Sum

Total prices of gender-indifferent securitization

Principal payments P (j),P
all 154.06 181.52 189.73 191.37 716.69

Coupon payments P (j),C
all 85.79 54.99 29.70 15.95 186.43

Bond price (total) P (j)
all 239.85 236.52 219.43 207.32 903.11

Securitization of male annuitants in portfolio

Principal payments P (j),P
male 88.04 103.65 108.37 109.31 409.37

Coupon payments P (j),C
male 49.00 31.41 16.96 9.11 106.49

Bond price (total) P (j)
male 137.04 135.06 125.34 118.42 515.86

Securitization of female annuitants in portfolio

Principal payments P (j),P
female 66.03 77.81 81.36 82.06 307.26

Coupon payments P (j),C
female 36.79 23.58 12.73 6.84 79.94

Bond price (total) P (j)
female 102.82 101.39 94.09 88.90 387.20

Total prices of gender-specific securitization

Principal payments P (j),P
all 154.07 181.46 189.73 191.37 716.63

Coupon payments P (j),C
all 85.79 54.99 29.70 15.95 186.43

Bond price (total) P (j)
all 239.86 236.45 219.43 207.31 903.05

Table 8: Pricing of hedging longevity risk in the retail portfolio with total annual annuity payments of
e 89.9mn over 10 years. Reported values are in e mn and represent results for gender-indifferent and
gender-specific underlying populations and forecasted future mortality rates.

simulation runs. In a second step, we applied the Wang-transformation to the derived rates in order to

incorporate the risk inherent in the annuitant’s contract. This distribution serves as the basis for our

tranching by slicing the portfolio into different rated tranches according to S&P ratings for insurance-

linked securities. Thereby, the first loss position is kept by the issuer and four different tranches are

transferred to investors on the capital market. In a next step, we used a classical bond equation to

determine the individual tranche prices and the overall costs for the insurer for the securitization of an

annuity portfolio. We applied this pricing model to a reference case and perform sensitivity analyses.

Finally, in an application to a sample retail portfolio we determined the price for hedging the contracts

against longevity risk.

The results show that changes in the reference yield of the coupon payments have a severe impact

on the bond price; this effect can be epically observed for highly-rated tranches. Changing the reference

yield (such as LIBOR or EURIBOR) from 1% (our reference case) to 2%, causes the coupon payment of

a AAA tranche to more than triple on a 10-year maturity. The effect on the bond price due to structural

changes in the securitization outlay are also of importance. On a 10-year time period, the total bond

price between a “top” rated and “poor” rated portfolio differs by 6.5%.

Considering the issuer as well as the investor perspective, the reference case yields total costs of
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17.9% for the insurer from the securitization. At first, this cost loading seems high; however, due to

the presented structure of the bond, an annual return of 4.2% on the received capital, which the insurer

should invest, is enough to compensate the costs. The transaction is also advantegous for the investors.

Investments into the minor B+ tranche are renumerated with an annual yield of 2.3% over the risk-free

rate, while the most senior AAA tranche – which bears the lowest default risk – still receives annually

0.8% over the risk-free rate.

Our findings contribute to the current discussion about how insurers can face longevity risk within

their annuity portfolios. The fact that the rating structure has such a severe impact on the overall hedging

costs for the insurer implies that companies which are willing to undergo an annuity securitization should

consider their deal structure very carefully. In addition, we have pointed out that in imperfect markets,

the retention of the equity tranche by the originator might be advantageous. Never the less, one has to

bear in mind that by this behavior, the insurer is able to reduce the overall default risk in his balance

sheet by securitizing a life insurance portfolio; however, the fraction of first loss pieces from defaults

increases more than proportionally. The insurer has to take care to not be left with large, unwanted

remaining risk positions in his books.
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7 Appendix

7.1 Forecasting future mortality rate for Germany: additional results

Figures 14 and 15 show the values of αx, βx, and the forecasted κt for the male German population.

Figures 16 and 17 report the values for the female German population.
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Figure 14: Fitted values for ax and bx for ages
0 to 101 for the German male population.
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Figure 15: Forecasted values of kt for the years
2010 to 2040 for the German male population.
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Figure 16: Fitted values for ax and bx for ages
0 to 101 for the German female population.
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Figure 17: Forecasted values of kt for the years
2010 to 2040 for the German female population.
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7.2 S&P rating classes for insurance-linked securitizations

Table 9 shows the cumulative default probabilities of the S&P rating for insurance-linked securities

according to their maturity.

Maturity AAA AA+ AA AA− A+ A A− BBB+

1 0.003 0.010 0.015 0.025 0.040 0.060 0.085 0.234
2 0.027 0.048 0.074 0.106 0.150 0.200 0.264 0.514
3 0.052 0.085 0.133 0.188 0.260 0.340 0.443 0.850
4 0.076 0.123 0.191 0.269 0.370 0.480 0.621 1.246
5 0.100 0.160 0.250 0.350 0.480 0.620 0.800 1.704
6 0.122 0.192 0.310 0.397 0.531 0.655 0.966 1.805
7 0.144 0.224 0.420 0.543 0.719 0.887 1.287 2.261
8 0.204 0.311 0.549 0.713 0.937 1.152 1.648 2.756
9 0.276 0.414 0.700 0.909 1.184 1.451 2.047 3.284
10 0.362 0.536 0.872 1.130 1.458 1.782 2.479 3.842
15 1.037 1.447 2.078 2.617 3.237 3.864 5.051 6.936
20 2.175 2.893 3.858 4.690 5.586 6.493 8.068 10.279
25 3.804 4.853 6.133 7.223 8.337 9.454 11.284 13.667
30 5.885 7.241 8.781 10.066 11.329 12.580 14.553 17.003

s(j) 45 65 80 110 140 170 210 300

Maturity BBB BBB− BB+ BB BB− B+ B B−

1 0.353 0.547 1.632 2.525 3.518 4.510 5.824 8.138
2 0.825 1.279 3.211 4.946 6.915 8.885 11.751 16.674
3 1.405 2.177 4.758 7.230 10.095 12.960 17.152 24.004
4 2.073 3.213 6.276 9.380 13.037 16.694 21.921 30.025
5 2.812 4.359 7.763 11.403 15.745 20.087 26.089 34.945
6 2.980 6.316 8.327 12.175 16.832 21.462 27.947 38.234
7 3.672 7.434 9.598 13.826 18.895 24.083 30.999 41.476
8 4.390 8.529 10.831 15.387 20.800 26.457 33.680 44.209
9 5.127 9.598 12.025 16.862 22.563 28.610 36.046 46.543
10 5.876 10.637 13.179 18.258 24.197 30.565 38.145 48.559
15 9.684 15.418 18.383 24.234 30.849 38.096 45.822 55.592
20 13.414 19.591 22.777 28.944 35.737 43.198 50.706 59.851
25 16.980 23.300 26.570 32.808 39.556 46.958 54.169 62.789
30 20.367 26.665 29.933 36.108 42.709 49.936 56.845 65.022

s(j) 340 400 490 560 620 680 750 800

Table 9: S&P default table for insurance-linked securitizations reporting cumulative default probabilities
(in %) for different ratings and maturities (in years). For each rating the corresponding (yearly) spread
s(j) is indicated in basis points (1 bp = 0.01%). See also S&P at http://www.standardandpoors.com.

30

http://www.standardandpoors.com


Working Papers on Risk Management and Insurance No. 118 - October 2012

References

Bae, T., C. Kim, and R. J. Kulperger, 2009, Securitization of Motor Insurance Loss Rate Risks, Insurance:

Mathematics and Economics, 44(1):48–58.

Bauer, D., M. Börger, and J. Ruß, 2010, On the Pricing of Longevity-Linked Securities, Insurance:

Mathematics and Economics, 46(1):139–149.

Beltratti, A. and G. Corvino, 2008, Why are Insurance Companies Different? The Limits of Conver-

gence Among Financial Institutions, The Geneva Papers on Risk and Insurance Issues and Practice,

33(3):363–388.

Biffis, E. and D. Blake, 2010, Securitizing and Tranching Longevity Exposures, Insurance: Mathematics

and Economics, 46(1):186–197.

Blake, D., 2003, Reply to ”Survivor Bonds: A Comment on Blake and Burrows”, The Journal of Risk

and Insurance, 70(2):349–351.

Blake, D. and W. Burrows, 2001, Survivor Bonds: Helping to Hedge Mortality Risk, The Journal of Risk

and Insurance, 68(2):339–348.

Blake, D., A. Cairns, K. Dowd, and R. Macminn, 2006, Longevity Bonds: Financial Engineering, Valua-

tion, and Hedging, The Journal of Risk and Insurance, 73(4):647–672.

Blake, D., C. Courbage, R. MacMinn, and M. Sherris, 2011, Longevity Risk and Capital Markets: The

2010/2011 Update, The Geneva Papers on Risk and Insurance Issues and Practice, 36(4):489–500.

Booth, H. and L. Tickle, 2008, Mortality Modelling and Forecasting : A Review of Methods, Annals of

Actuarial Science, 1(2):3–43.

Cairns, A. J. G., D. Blake, and K. Dowd, 2006, A Two-Factor Model for Stochastic Mortality with

Parameter Uncertainty: Theory and Calibration, The Journal of Risk and Insurance, 73(4):687–718.

Chen, B., L. Zhang, and L. Zhao, 2010, On The Robustness of Longevity Risk Pricing, Insurance:

Mathematics and Economics, 47(3):358–373.

Chen, H. and J. D. Cummins, 2010, Longevity Bond Premiums: The Extreme Value Approach and Risk

Cubic Pricing, Insurance: Mathematics and Economics, 46(1):150–161.

Cowley, A. and J. D. Cummins, 2005, Securitization of Life Insurance Assets and Liabilities, The Journal

of Risk and Insurance, 72(2):193–226.

Cox, S. H. and Y. Lin, 2007, Natural Hedging of Life and Annuity Mortality Risk, North American

Actuarial Journal, 11(3):1–15.

Cox, S. H., Y. Lin, and H. Pedersen, 2010, Mortality risk modeling: Applications to insurance securiti-

zation, Insurance: Mathematics and Economics, 46(1):242–253.

31



Working Papers on Risk Management and Insurance No. 118 - October 2012

Cox, S. H., Y. Lin, and S. Wang, 2006, Multivariate Exponential Tilting and Pricing Implications for

Mortality Securitization, The Journal of Risk and Insurance, 73(4):719–736.

Cox, S. H. and R. G. Schwebach, 1992, Insurance Futures and Hedging Insurance Price Risk, The Journal

of Risk and Insurance, 59(4):628–644.

Cummins, J. D. and P. Trainar, 2009, Securitization, Insurance, and Reinsurance, The Journal of Risk

and Insurance, 76(3):463–492.

Cummins, J. D. and M. A. Weiss, 2009, Convergence of Insurance and Financial Markets: Hybrid and

Securitized Risk-Transfer Solutions, The Journal of Risk and Insurance, 76(3):493–545.

Czado, C., A. Delwarde, and M. Denuit, 2005, Bayesian Poisson Log-Bilinear Mortality Projections,

Insurance: Mathematics and Economics, 36(3):260–284.

D’Arcy, S. P. and V. G. France, 1992, Catastrophe Futures : A Better Hedge for Insurers, The Journal

of Risk and Insurance, 59(4):575–600.

De Jong, P. and L. Tickle, 2006, Mathematical Population Studies Extending Lee-Carter Mortality

Forecasting, Mathematical Population Studies, 13(1):1–18.

De Mey, J., 2007, Insurance and the Capital Markets, The Geneva Papers on Risk and Insurance Issues

and Practice, 32(1):35–41.

Delwarde, A., M. Denuit, and P. Eilers, 2007, Smoothing the Lee-Carter and Poisson Log-Bilinear Models

for Mortality Forecasting : a Penalized Log-Likelihood Approach, Statistical Modelling, 7(1):29–48.

Deng, Y., P. L. Brockett, and R. D. MacMinn, 2012, Longevity/Mortality Risk Modeling and Securities

Pricing, The Journal of Risk and Insurance, 79(3):697–721.

Denuit, M., P. Devolder, and A.-C. Goderniaux, 2007, Securitization of Longevity Risk: Pricing Sur-

vivor Bonds With Wang Transform in the Lee-Carter Framework, The Journal of Risk and Insurance,

74(1):87–113.

Deutsche Bank, 2010, Insurance-Linked Securities – A Niche Market Expanding, Research Report.

Dowd, K., 2003, Survivor Bonds: A Comment on Blake and Burrows, The Journal of Risk and Insurance,

70(2):339–348.

Dowd, K., D. Blake, A. J. G. Cairns, and P. Dawson, 2006, Survivor Swaps, The Journal of Risk and

Insurance, 73(1):1–17.

Gale, D. and M. Hellwig, 1985, Incentive-Compatible Debt Contracts : The One-Period Problem, The

Review of Economic Studies, 52(4):647–663.

Gatzert, N. and H. Wesker, 2012, The Impact of Natural Hedging on a Life Insurer’s Risk Situation,

Journal of Risk Finance, (forthcoming).

32



Working Papers on Risk Management and Insurance No. 118 - October 2012

Hanewald, K., T. Post, and H. Gründl, 2011, Stochastic Mortality, Macroeconomic Risks and Life Insurer

Solvency, The Geneva Papers on Risk and Insurance Issues and Practice, 36(3):458–475.

Kampa, C., 2010, Alternative Risk Transfer: The Convergence of The Insurance and Capital Markets.

Part III, Insurance Studies Institute, (available at http://www.ssrn.com).

Kim, C. and Y. Choi, 2011, Securitization of Longevity Risk Using Percentile Tranching, The Journal of

Risk and Insurance, 78(4):885–906.

Lane, M. N. and R. G. Beckwith, 2007, That was the Year that was! The 2007 Review of the Insurance

Securitization Market, Lane Financial L.L.C., (available at http://www.lanefinancialllc.com).

Lee, R. and T. Miller, 2001, Evaluating the Performance of the Lee-Carter Method for Forecasting

Mortality, Demography, 38(4):537–549.

Lee, R. D. and L. R. Carter, 1992, Modeling and Forecasting U. S. Mortality, Journal of the American

Statistical Association, 87(419):659–671.

Lin, Y. and S. H. Cox, 2005, Securitization of Mortality Risks in Life Annuities, The Journal of Risk and

Insurance, 72(2):227–252.

Lin, Y. and S. H. Cox, 2008, Securitization of Catastrophe Mortality Risks, Insurance: Mathematics and

Economics, 42(2):628–637.

Litzenberger, R. H., D. R. Beaglehole, and C. E. Reynolds, 1996, Assessing Catastrophe Reinsurance-

Linked Securities as a New Asset Class, Journal of Portfolio Management, 23:76–86.

Lorson, J., 2012, The Impact of Life Insurance Securitization on the Issuer’s Default Risk, Working Paper

on Risk Management and Insurance (I.VW-HSG).

Luciano, E., L. Regis, and E. Vigna, 2012, DeltaGamma Hedging of Mortality and Interest Rate Risk,

Insurance: Mathematics and Economics, 50(3):402–412.

MacDonald, A., A. J. Cairns, P. L. Gwilt, and K. A. Miller, 1998, An International Comparison of Recent

Trends in Population Mortality, British Actuarial Journal, 4(1):3–141.
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