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Abstract 
 
This paper is a first attempt to describe a new stochastic investment model. The model 
produces simulations for interest rates, inflation, equity income and capital gains, 
under a realistic probability law. The model also produces state price deflators, which 
are useful for pricing and for fair value calculations. 
 
We have prepared an implementation of the model, in Excel / VBA, which the authors 
are pleased to release free of charge to interested researchers. The software requires a 
PC with Excel 97 or later. 
 
 
1 Introduction – Requirements for a Fair Value Model 

1.1 The need for stochastic models 
 
Recent moves towards fair value accounting have provided a focus for the 
development of better modelling techniques, especially in the insurance and pensions 
industries. The fair value is readily calculated for insurance and pension products that 
have fixed cash flows: it suffices to discount cash flows at market risk-free rates. In 
the case of cash flows whose variability is independent of market risk, most orthodox 
financial theory dictates that the estimated mean cash flow should be discounted at 
risk-free rates. 
 
The challenge of calculating fair values is greatest for cash flows carrying significant 
market risk, particularly those with embedded options, profit sharing or guarantees. 
Similar issues arise for enterprises whose profits are cyclical, for example, insurers 
affected by cycles in premium adequacy. In these cases, deterministic methods based 
on best estimate mean cash flows are, at best, a blunt valuation tool, because it is 
difficult to justify an appropriate risk-adjusted discount rate. Instead, it is necessary to 
consider at least two possible outcomes, based on good and bad business 
environments. Where multiple options are involved, some form of probability model 
is required. 
 
                                                 
1 Address: B&W Deloitte, Horizon House, 28 Upper High Street, Epsom, Surrey KT17 4RS. 
Email fsouthall@bw-deloitte.com; andrewdsmith8@bw-deloitte.com 
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1.2 From distributions to prices 
 
Having produced simulations of cash flows, it is by no means obvious where to go 
next. The task is to translate the distributions into fair values. One technical tool for 
this is the state price deflator. It is not our purpose here to discuss in detail the 
possible applications of the model. For a general overview, see Jarvis, Southall & 
Varnell. For applications in general insurance, see Christofides & Smith (2001), in 
life assurance see Bezooyen, Mehta & Smith (2001) or Hairs et al (2001). Chapman, 
Gordon & Speed (2001) gave a pensions example. 
 
What then are the requirements for an asset model, in order to support fair value 
calculation? Plainly, it must have enough outputs to model the required cash flows; 
for example if cash flows relate to interest rates, equity markets or retail prices then 
these items must all be outputs from the model. Secondly, the model must support 
state price deflators. Finally, the model must be capable of calibration to market 
prices so that the resulting cash flow valuations are consistent with the market 
evaluation of similar cash flows. This also means that the model should be consistent 
with fair value approaches adopted by banks for the valuation of cash flows from 
financial instruments. 
 

1.3 Monte Carlo versus backward induction and analytics 
 
Many of the most difficult insurance and pension flows to model are path dependent. 
This means that the value of a maturing policy or pension payment will depend not 
only on the level of market prices on the maturity date, but also on the path taken to 
get there. This path dependent feature means that standard option pricing algorithms, 
for example based on backward induction, are computationally inefficient when 
applied to insurance and pension problems. Instead, we have found Monte Carlo 
simulation to be the most practical approach. 
 
 
2 A Proposed Model 

2.1 Notation 
 
In this section we propose some formulas for a fair value model. 
 
The simulation dependent state price deflator at time a is denoted by Da. The price at 
time a of a zero coupon bond paying 1 at time b is denoted by Pab. These parameters 
define the term structure of the model. Superscripts distinguish different numeraires 
(or asset categories) – in this model we consider cash, inflation and equity numeraires 
measured in a single currency, sterling. Our model works in discrete time, so that a 
and b must be integers. 
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We denote by Ba a 5-dimensional Brownian motion. The components of Ba are 
independent Brownian motions, with zero drift and unit variance, so that 

( )INBB aa ,01 +=+  
 
We define Ca to be an accumulation of historic values of Ba, so that Ca satisfies the 
recurrence relation: 

Ca+1 = Ca + Ba 
 
We assume that deflators and term structures satisfy the following equations (for 
b≥a≥0): 
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Using the fact that Paa=1, we can recover deflators and term structures from: 
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Here f>0 is the long forward rate, τ is a positive integer; λ and σ are 5-dimensional 
vectors. We offer no step-by-step derivation of this formula; we derived it by a 
combination of inspired guesswork and trial and error. By way of justification, we 
notice that the result has a number of attractive properties, including: 
z Arbitrage-free because it satisfies the deflator relation: DaPab=Ea(Db). 
z A flexible form that allows many combinations of risk premiums, volatilities 

and correlations and can fit a range of initial yield curve shapes. 
z Interest rates are guaranteed positive, but rates of all terms can fall arbitrarily 

close to zero. 
z The model is tractable analytically, and easy to compute (although the infinite 

sums look daunting, the summand is a geometric progression for u≥a+τ so the 
formulas can be evaluated in finite form). 

z Good news for learners - the model requires no hard maths, beyond 
manipulation of lognormal distributions. In particular we avoid the need for 
stochastic calculus (Ito’s formula) and the partial differential equations that 
have become almost universal in the financial pricing literature. 

We believe this is the first published multi-asset model to display this combination of 
characteristics. 
 
 
 
 
 

 3 



Smith & Southall: A Stochastic Model for Fair Values … 
FIRST DRAFT: Comments welcome. Please do not quote without permission. 

 
2.2 Observable quantities 
 
Using the deflators and term structures we can develop formulas for market 
observable quantities as below: 
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2.3 Calibrated parameters 
 
We will see that reasonable parameters for this model for the UK are: 
 

Cash Inflation Equity 
τ = 20 τ = 20 τ = 20 
f = 5.16% f = 1.40% f = 2.26% 

λ σ λ σ λ σ 
0.377147 -0.006418 0.246355 0.002959 0.313879 -0.009733 

0 0.007629 0.031411 0.003570 0.106971 -0.009827 
0 0 0.118461 -0.006846 -0.003257 0.000808 
0 0 0 0.000285 0.000822 -0.000284 
0 0 0 0 0.066525 -0.004170 

 
A further part of the calibration process is to set the values of Ba for -τ≤a<0. These 
determine the initial shape of the yield curve. Given a starting yield curve, the back-
solution for the Ca is elementary. However, the values will depend on the start date 
for the projections; we recommend that the model be re-calibrated for each use to fit 
exactly the market spot curve on the run date. 
 
  
3 Calibration Issues 

3.1 Observables and non-observables 
 
As deflators are not observable, they are not amenable to standard statistical 
estimation procedures. There are two possible approaches to calibrating a model with 
deflators. 
 
z Firstly, deflators could be added after the event, to a model whose observable 

statistical properties have already been established. In some cases (for 
example, see Chapman, Gordon & Speed, 2001) this is straightforward. But 
for most statistically motivated models, this route turns out to be very 
challenging. The resulting deflator formulas are seldom analytically tractable, 
and may require extensive and time-consuming numerical analysis at run time. 
See Guthrie and others (2001) for a description of deflators applied to the 
Wilkie model and the practical issues that arise. 

z The second alternative is to develop a model algebraically with explicit 
deflators, including many unknown parameters. These parameters can then be 
tweaked so that the observable values behave with the desired volatilities, 
correlations and other statistical properties. That is the route we have followed 
here. 
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3.2 Linear approximations  
 
Our model construction does not make it easy to extract the volatilities. Neither prices 
nor interest rates are exactly lognormal. Our approach, then, is to consider a 
lognormal approximation. We approximate log prices and yields by a linear 
expression in the Brownian innovation. Our coefficients are derived using a Taylor 
expansion. To evaluate these Taylor expansions, we need to define a starting position. 
For this we choose all yield curves to be flat and equal to the relevant long spot rate. 
 
Taking first par yields, we have expressions of the form: 
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Similarly, for deflators we have expressions of the form: 
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where the sensitivity functions are given by: 
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In the first part of the calibration we assume that the f and τ values are known and 
therefore the functions above can be evaluated. Using these functions, we can 
calculate approximately the variance-covariance matrix of increments in prices and 
yields. 
 
We also require approximations for long term average values of yields. As we know 
that DaPab is a martingale in b, we can identify some constant terms in the deflator 
approximation: 
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By induction, we can compute the total return on a constant maturity bond index: 
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Substituting in for the original deflator, and taking b large, we find the asymptotic 
forward rate. 
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3.3 Approximate Statistical Properties for our Chosen Model 
 
Given our choices of parameters, we used our θ-approximations to estimate 
approximate volatilities and correlations, as given in the table below. 
 
 
 Volatilities Correlations 
Price inflation 0.5% 100% -10% 0% 0% 10% 
Real dividend growth  7.0% -10% 100% 0% -20% -30% 
Nominal par yield 10.0% 0% 0% 100% 10% 10% 
Index-linked par yield 10.0% 0% -20% 10% 100% 60% 
MV total equity return 20.0% 10% -30% 10% 60% 100% 

 
Although we have presented these as outputs, these were in fact inputs; we back-
solved for σ, λ parameters to fit these assumptions. In this section, we have indicated 
input assumptions in bold. The other figures are then imposed by the model structure. 
 
We also calculated the risk premiums in excess of cash for three possible investments. 
The values (according to our approximations) are: 
 

 
Risk premium relative to cash 
(expressed as a force) 

Bonds (Term 10) 0.50% 
Index linked (Term 10) -0.23% 
Equity 3.50% 

 
The bond and equity risk premiums were inputs. For index-linked bonds, where less 
historically credible data is available, our chosen risk premium maximises the 
efficiency of the model, using principles described in Bezooyen and others (2001). 
The negative risk premium should not be surprising – for many investors, the ability 
to lock real returns in represents a reduction in risk relative to cash. 
 
In a fair value context, for reasons familiar to option pricing specialists, only the first 
of these is relevant. Fair values are unaffected by risk premium or expected return 
estimates. A change in the expected return does, of course, change prospective 
statistical distributions, but there is an offsetting change in the deflators so that cash 
flow present values are invariant. However, risk premiums are vital for individual 
portfolio selection, where risk is to be balanced against expected return. Furthermore, 
the idea that risk premiums are available on risky assets is fundamental to the 
rationale behind many savings products. Practitioners tend to reject as unrealistic any 
model failing to conjure up their chosen risk premiums. 
 
 
 
 

 7 



Smith & Southall: A Stochastic Model for Fair Values … 
FIRST DRAFT: Comments welcome. Please do not quote without permission. 

 
 
 
 
We can identify (geometric) mean forward rates on various yield curves. These are 
tabulated below. 
 

Geometric Mean Sterling Retail Prices Equity 
0-1 year forward 4.50% 1.75% 2.00% 
5-6 year forward 4.83% 1.61%   

10-11 year forward 5.02% 1.50%   
15-16 year forward 5.12% 1.43%   
20-21 year forward 5.16% 1.40%   

 
The short yield of 4.5% and the risk premium of 0.5% for bonds of term 10 in excess 
of cash were input calibration items discussed earlier. The 5.02% highlighted above 
follows because 1.0502 = 1.0450 * exp(0.0050) 
 
Comparing deflator ratios, we can deduce the following long run (geometric) rates of 
price increase: 
 

Index Long run geometric growth 
Retail prices 2.72% 
Equity capital 6.10% 

 
The retail price assumption was an input; we can reconcile this to mean yields and 
mean inflation, for 
 
1.0272 * 1.0150 = 1.045 * exp(-0.0023) 
 
In the same way, the equity capital return relates to yields and risk premiums because: 
 
1.0610 * 1.0200 = 1.0450 * exp(0.0350) 
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4 Sample Model Output 

4.1 Sample distributions 
In this section we have plotted projections of selected quantities of interest. We have 
used yield curves as at June 2001, and have shown the 1st, 5th, 10th, 25th, 50th, 75th, 
90th, 95th and 99th percentiles based on 5000 simulations. Users can run the free 
software provided to generate many more outputs than the selections shown here. 
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4.2 Output analysis 
 
The actual volatilities and correlations of the simulated observable quantities will be 
different to those input. Quite apart from sampling error, systematic differences are 
due to higher order terms in our linear approximations. In many cases, these terms are 
small. However, in our model it appears that the second order terms are relatively 
significant in the inflation model. The volatility of inflation coming out of the model 
is therefore higher than was intended when the calibration inputs were chosen. It is 
possible that an iterative approach would solve this problem. This and other smaller 
issues serve to highlight the inherent difficulty in calibrating a model indirectly, that 
is, when the principal parameters cannot be observed in historic data.  
 
 
5 Conclusions and Further Work 

5.1 Possible model enhancements 

e have published this model because it is useful for teaching purposes and it can 
give reasonable results to simple problems. It provides a transparent methodology for 

on of cash flows. 

useful to have a model, which can produce simulations at arbitrary time intervals. Our 

 
W

market-consistent valuati
 
This model is only the first step on a long journey. A number of proprietary models 
are available which improve materially on what we have made public. In this section 
we describe some of the ways in which our base model could be improved, to make it 
more acceptable for practical use. 
 
In real business, cash flows occur frequently. Even when financial reporting is annual, 
the run date is often not a whole number of years from the first reporting date. It is 
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annual model does not easily generalise to continuous time. To create a continuous 
time model, the formulas would need to be rebuilt from scratch. 
 
A second aspect relates to empirical distributions. We have used normal distributions 

pirical evidence is broadly unsupportive of 
our model, and equally unsupportive of several other popular models also based on 

ponding diffusion processes in continuous time. 

overseas assets. In some cases, extending 
ur model to other assets is straightforward. The same matrix equations arise, but in a 

identifying values of many sorts of cash flows. The 
chnique is especially useful for path dependent cash flows. A cash flow is path 

s, such as lattice or 
nite difference methods, might be more appropriate. 

 
eing valued – for example, five different investors in the same equity market might 

his issue has become important in the context of property/casualty insurance. Many 

because they are easy to handle. The em

normal distributions, or on the corres
 
Our model here has considered three asset classes – equities, bonds and index-linked 
bonds. There are many other asset classes, which investors might choose, including 
real estate, corporate bonds, mortgages or 
o
larger number of dimensions. In other cases, for example corporate bonds, inclusion 
raises a large number of essentially new modelling issues. 
 
Simulation methods are useful for 
te
dependent if it is a function not only of market conditions on the cash flow date, but 
also of conditions at previous dates. Simulations are not so easy to use in the case of 
cash flows with embedded American options. In this case, it is necessary to find a 
suitable rule for the date at which these options might be exercised – dependent on 
market conditions. In low-dimensional applications other tool
fi
 
There are a number of calibration subtleties associated with the tax system. In a model 
with deflators, it is axiomatic that the market value of an investment is the present 
value of its future cash flows. However, it is not always clear which cash flows are
b
all receive different net dividend streams as a result of the investors’ different tax 
positions. To calibrate a model, the user must choose some dominant tax rate implicit 
in market prices – and this choice will affect the relative attractiveness of different 
investments for investors with less common tax treatments. 

5.2 Other issues in valuing cash flows 
 
We should be aware that the valuation of corporate cash flows could be more complex 
than the simple application of deflators. The issue is that the planned business cash 
flows may not be those valued by shareholders – for example because of plan 
optimism, taxation, capital raising or agency costs. In aggregate, these and other flows 
are commonly called “frictional costs”. Therefore, in a context of corporate valuations 
it is important that the cash flows valued are those that benefit shareholders; the 
business model should not omit any of the less obvious frictional costs. 
 
T
insurers argue that liability cash flows should be discounted at a rate lower than the 
risk free rate, on account of the variability of these cash flows, even when the cash 
flows concerned are uncorrelated with outer market movements. On the face of it, 
such a suggestion is inconsistent with capital market theory; it is arithmetically 
impossible for a willing buyer and a willing seller both to receive a positive premium 
for diversifiable risk. On the other hand, an increase in the valuation of liabilities 
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could perhaps be justified on the basis of the inclusion of frictional costs as a liability. 
It is not yet clear whether accounting standards or fiscal authorities would permit the 
recognition of future frictional costs as a liability. 

e tradition of 
alistic stochastic projections, which many actuaries already employ for financial 
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5.3 Conclusions 
 
The calculation of fair values in pensions and insurance is a pressing problem, both 
from a theoretical and implementation perspective. Application of traditional option 
pricing formulas (such as Black-Scholes) is often not appropriate, because the cash 
flows to be valued do not have the form of traded options. The deflator approach 
combines the pricing insights of Black, Scholes and others with th
re
management. 
 
Some concerns have been expressed that deflators are available only in a small 
number of proprietary models, and are therefore out of the reach of many companies, 
consultants and auditing firms. This was never strictly true - the deflator 
methodologies have been in the public domain for at least twenty years - but it is true 
that some effort is required to make them work in practice. It is the purpose of this 
paper to make the methods practically accessible to a much wider audience. We look 
forward to seeing greater use of financial techniques in the management of insurance 
and pension business. 
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