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Abstract: It is essential for insurance regulation to have a clear picture of the risk measures that are
used. We compare different mathematical interpretations of the Solvency Capital Requirement (SCR)
definition that can be found in the literature. We introduce a mathematical modeling framework that
allows us to make a mathematically rigorous comparison. The paper shows similarities, differences,
and properties such as convergence of the different SCR interpretations. Moreover, we generalize the
SCR definition to future points in time based on a generalization of the value at risk. This allows for
a sound definition of the Risk Margin. Our study helps to make the Solvency II insurance regulation
more consistent.

Keywords: Solvency II; Solvency Capital Requirement; Risk Margin; dynamic value at risk; mini-
mal SCR

1. Introduction

Solvency II is the new regulation framework of the European Union for insurance and reinsurance
companies. It will replace the Solvency I regime and is planned to become effective in 2013. One
main aspect of Solvency II is the calculation of the Solvency Capital Requirement (SCR), which is
the amount of own funds that an insurance company is required to hold. For the calculation of
the market values of the liabilities, Solvency II suggests using a cost-of-capital method and defines
the Risk Margin (RM). For calculating the SCR, each company can choose between setting up its
own internal model and using a provided standard formula. The calculation standards were defined
in the documents of the Committee of European Insurance and Occupational Pensions Supervisors
(CEIOPS; the successor is EIOPA), but they are mainly described verbally. To our knowledge, truly
mathematical definitions only currently exist for the standard formula.

Since Solvency II will have a significant impact on the European insurance industry, a large number
of papers have already been published on that topic. For example, Devolder (2011) studies the
capital requirement under different risk measurements, Eling et al. (2007) outline the characteristics
of Solvency II, Doff (2008) makes a critical analysis of the Solvency II proposal, Steffen (2008) gives
an overview of the project, Filipović (2009) analyzes the aggregation in the standard formula and
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Holzmüller (2009) focuses on the relation between the United States risk-based capital standards,
Solvency II and the Swiss Solvency Test. Only a few papers give a mathematically substantiated
definition of the SCR, e.g. Barrieu et al. (2010), Bauer et al. (2010), Devineau and Loisel (2009), and
Kochanski (2010). They all define the SCR only at time 0, except for Ohlsson and Lauzeningks (2009),
who define the SCR for any point in time, but only within a chain ladder framework. Another problem
is that different mathematical definitions are used. The reason is that the directive of the European
Parliament and the Council (2009) describes the SCR only verbally, and from a mathematical point of
view there is room for interpretation. This paper yields the first mathematical analysis of similarities
and differences of the various interpretations of the SCR.

The RM is supposed to enable the calculation of the liabilities’ market values. It is less discussed
in the literature. For example, Floreani (2011) studies conceptual issues relating to the RM in a
one period model, Kriele and Wolf (2007) consider different approaches for a RM and Salzmann and
Wüthrich (2010) analyze the RM in a chain ladder framework. Generally, the RM is defined by a
cost-of-capital approach and is based on future SCRs. However, no current broad definitions for the
future of SCRs currently exist in the literature, which subsequently lacks a mathematically correct
definition of the RM. This paper fills this gap and presents therefore a definition of a dynamic value
at risk. Moreover we show that the circularity of the RM definition can generally be solved.

The paper is structured as follows. In Section 2 we present different interpretations of the fun-
damental SCR definition. Section 3 introduces a general modeling framework on which we base our
analyses. Section 4 compares the different definitions. In Sections 5 and 6, we study convergence
properties of the SCR definitions, and we discuss the SCR for insurance groups. With the help of
the generalized SCR definitions of Section 3, we present a sound definition of the RM in Section 7.
Section 8 gives an overview of the main findings and points out open problems.

2. The regulatory framework

In this section we discuss the fundamental definition of the SCR taking into account regulatory re-
quirements. In the directive of the European Parliament and the Council (2009), which is the binding
framework for Solvency II, we find the following two definitions of the SCR:

• Article 101 of the directive requires that the SCR “shall correspond to the Value-at-Risk of the
basic own funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5%
over a one-year period.”

• At the beginning of the directive an enumeration of remarks is given that has been attached to
the directive. Remark 64 of the directive (European Parliament and the Council, 2009, page 24)
says that “the Solvency Capital Requirement should be determined as the economic capital to
be held by insurance ... undertakings in order to ensure ... that those undertakings will still be
in a position with a probability of at least 99.5%, to meet their obligations to policy holders and
beneficiaries over the following 12 months.”

However, from a mathematical point of view there is room for interpretation and we have to clarify the
fundamental mathematical definition of the SCR. The following definitions are possible interpretations
of the Solvency II framework.

(a) Let Nt be the net value of assets minus liabilities at time t, and let v(0, t) be a discount factor for
the time period [0, t]. Then a possible interpretation of Article 101 is

SCR0 := VaR0.995

(
N0 − v(0, 1)N1

)
. (2.1)

The proper choice of the discount factor is unclear. Article 101 does not give a definite answer.

(a1) Let vrl(0, t) be the discount factor that corresponds to a riskless interest rate. Then a possible
specification of definition (a) is

SCR0 := VaR0.995

(
N0 − vrl(0, 1)N1

)
. (2.2)
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Such a definition can be found e.g. in Bauer et al. (2010), Devineau and Loisel (2009),
Floreani (2011) and Ohlsson and Lauzeningks (2009). In practice there are various ways to
obtain a riskless interest rate. It can be theoretically derived from a model, or it can simply
be defined as the returns on government bonds or real bank accounts. Note that the discount
factor vrl(0, t) is usually random.

(a2) Let vco(0, t) be a discount factor that relates to the real capital gains that the insurance
company really earns on its assets in the time period [0, t]. Then another possible specification
of definition (a) is

SCR0 := VaR0.995

(
N0 − vco(0, 1)N1

)
. (2.3)

We are not aware of such a definition in the literature, although it has advantageous properties
as we will see later on.

(b) Assuming the existence of a martingale measure Q that allows for a risk-neutral valuation of
assets and liabilities, some authors, e.g. Barrieu et al. (2010) and Kochanski (2010), define the
SCR according to Article 101 as

SCR0 := VaR0.995

(
EQ

(
vrl(0, 1)N1

)
− vrl(0, 1)N1

)
. (2.4)

(c) A mathematical interpretation of Remark 64 of the directive leads to

SCR0 := inf
{
N0 ∈ R : P (Nε ≥ 0, ε ∈ [0, 1]) ≥ 0.995

}
.

In practice, Nt is not calculated continuously in t but only on a discrete time grid. In case of a
yearly basis, we simplify the above definition to

SCR0 := inf
{
N0 ∈ R : P (N1 ≥ 0) ≥ 0.995

}
. (2.5)

Bauer et al. (2010) state that this is the intuitive definition of the SCR, while (a1) is an approx-
imation of it. With this it is to be considered that N1 depends on N0, such that it is really a
minimization problem.

The different interpretations of the SCR lead us to the following questions.

(1) Are (some of) the different definitions equivalent? If not, can we find additional conditions that
make (some of) them equivalent?

(2) Are Article 101 and Remark 64 consistent? If not, which additional assumptions do we need to
make them consistent?

(3) If the different definitions cannot be harmonized, are there other arguments that support or
disqualify some versions?

So far we only have discussed the definition of a present SCR that gives the solvency requirement
for today. However, for the calculation of the Risk Margin, which will be discussed in more detail in
Section 7, we also have to define future SCRs that describe solvency requirements at future points in
time.

(4) How can we mathematically define an SCRs that describes the solvency requirement at a future
time s > 0 ?

In the Solvency II standard formula the one year perspective is replaced by shocks that happen
instantaneously. Consequently, there is no discount factor and so the standard formula does not
answer the questions. We start with a small example that illustrates the SCR definitions. The
example is kept very simple in order to make the differences between the definitions more clear.

3



K1: 100

105

105

ω1

ω2

K2: 100

120

90

ω1

ω2

Figure 2.1: development of the assets

Example 2.1 (SCR of a riskless insurer). We consider a time horizon of one year and a financial
market with two assets, a riskless bond K1 and a stock K2, which both have a price of K1

0 = K2
0 = 100

at time 0. Two scenarios Ω = {ω1, ω2} may occur, see Figure 2.1. Both scenarios shall have the same
probability, P({ω1}) = P({ω2}) = 0.5. We consider a simplified insurance company that is closed to
new business and which has an asset portfolio with no bonds and two stocks, (H1

0 , H
2
0 ) = (0, 2). The

insurance portfolio consists of just one unit-linked life-insurance with a sum insured of K2
1 at time 1.

Given that no assets are traded during the whole year, i.e. (H1
t , H

2
t ) = (H1

0 , H
2
0 ) for all t ∈ [0, 1], we

obtain N0 = 100 and N1 = K2
1 . In the following we calculate the SCR according to the different

definitions.

(i) Since the bond is riskless, the riskless discount factor is vrl(0, 1) = 1.05−1, and by definition (a1)
we obtain

SCR0 = VaR0.995

(
100− 1.05−1K2

1

)
=

100

7
.

(ii) Since vco(0, 1) = 100
K2

1
, the SCR according to definition (a2) is

SCR0 = VaR0.995

(
100− 100

K2
1

K2
1

)
= 0 .

(iii) Since we can show that Q({ωi}) = P({ωi}) = 0.5 for i = 1, 2, we have vrl(0, 1)EQ(N1) = 100 =
N0, and consequently the SCR according to definition (b) is equal to the SCR from definition (a1).

(iv) Definition (c) requires to minimizing N0. Suppose that the company holds H2
0 ∈ R stocks at

time 0. Then N0 = (H2
0 − 1)100 and N1 = (H2

1 − 1)K2
1 = (H2

0 − 1)K2
1 , and thus we get

SCR0 = inf
{

(H2
0 − 1)100 : P((H2

0 − 1)K2
1 ≥ 0) ≥ 0.995

}
= inf

{
(H2

0 − 1)100 : H2
0 ≥ 1

}
= 0 .

The numerical example shows that the different SCR definitions are not generally equivalent. Which
SCR is adequate here, zero or greater than zero? Let us recall the fundamental intention of the
Solvency II project. According to Remark 16 (European Parliament and the Council, 2009, page 8)
“the main objective of insurance and reinsurance regulation and supervision is the adequate protection
of policy holders and beneficiaries.” Consequently, if the company holds one stock it has a perfect
hedge for the liabilities, and the policy holder is sufficiently protected. Hence, it seems reasonable to
set SCR0 equal to zero. However, the SCR definitions that are most frequently used in the literature,
namely definitions (a1) and (b), both lead to an SCR greater than zero.

3. A mathematical modeling framework

For a more detailed comparison of the different SCR definitions of the previous section, we have to
establish a more detailed modeling framework. We keep the model as simple as possible without any
loss of generality. The modeling takes some effort, but in turn we will gain mathematically rigorous
results.
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Definition 3.1 (assets and liabilities). Let (Ω,F ,P) be a probability space with filtration (Ft)t≥0,
and let all events in F0 either have probability one or zero.

1. Let Ki
t be the capital accumulation function that gives the market value of the investment i at

time t (1 ≤ i ≤ m) and let Kt = (K1
t , ...,K

m
t ). We assume that (Ki

t)t≥0 is an adapted positive
semimartingale.

2. Let H i
t be the units of asset Ki

t that the insurer holds at time t (1 ≤ i ≤ m) and let Ht =
(H1

t , ...,H
m
t ). We assume that (H i

t)t≥0 is an adapted finite-variation process.

3. We define At := Ht ·Kt :=
∑m

i=1H
i
tK

i
t as the market value of the assets that an insurer holds

at time t. For technical reasons we generally assume that At = 0 implies Ht = (0, ..., 0).

4. If At ∈ R\{0}, we define θit :=
Hi

t K
i
t

Ht·Kt
as the proportion that the market value of investment i has

on the total market value of the asset portfolio. We call (θt)t := (θ1
t , ..., θ

m
t )t the asset strategy

of the insurer.

5. Let Zt denote the sum of all actuarial payments on the interval [0, t]. We assume that (Zt)t≥0

is an adapted finite-variation process.

6. Let Lt be the time t market value of the liabilities of the insurer. We assume that (Lt)t≥0 is
some adapted stochastic process.

7. Let Yt denote the sum of all payments to and from the shareholder. We assume that (Yt)t≥0 is
an adapted finite-variation process.

Defining (Ki
t)t≥0 as a semimartingale, (H i

t)t≥0, (Zt)t≥0, and (Yt)t≥0 as finite-variation processes, and
(Lt)t≥0 as an arbitrary stochastic process comprises basically all modeling frameworks that are used
in the actuarial literature. The class of semimartingales includes diffusion processes as well as Lévy
processes and discrete investment returns. The class of finite-variation processes includes absolutely
continuous and discrete payments. Consequently, with this framework we are able to model almost
all insurance companies. However, this framework allows constellations of parameters that does not
correspond to a reasonable insurance company.

Proposition 3.2 (product rule). The change in the market value of the assets at time t can be split up
into a sum of the return from the investments and the gain through purchase and sale of investments,
i.e.

dAt = Ht− · dKt +Kt · dHt . (3.1)

The proposition is an application of the integration by parts formula for semimartingales (Protter,
2005, page 68 and Theorem 28 in section II).

Assumption. Purchases and sales of investments Kt · dHt happen due to premium and insurance
benefit payments and expenses dZt and due to payments to and from the shareholder dYt,

Kt · dHt = dZt + dYt . (3.2)

Premium payments and payments from the shareholder have a positive sign, whereas insurance
benefit payments and payments to the shareholder get a negative sign. Let

dφt :=

m∑
i=1

θit−dφit with dφit :=
dKi

t

Ki
t−

(3.3)

in case of At− 6= 0 and let dφt := 0 for At− = 0. For each investment i, dφit is the interest intensity
for this investment. Since the total return from the investments of the insurer equals

Ht− · dKt = At− dφt,
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we can interpret dφt as the company specific average interest intensity. Applying definition (3.3) and
(3.2), equation (3.1) can be rewritten as

dAt = At− dφt + dZt + dYt . (3.4)

This means that the change in the market value of the assets at time t equals the sum of the investment
return on the assets (with average interest rate dφt), the actuarial payments, and the payments to
and from the shareholder at time t. The unique solution (Protter, 2005, Theorem 37 in section II) of

dKt = Kt− dφt, K0 = 1,

is a positive semimartingale and describes the capital accumulation function of a synthetic asset
composed according to (θt)t that yields exactly the same interest rate as the investment portfolio of
the insurer. Thus, we define the company specific discount factor (cf. (2.3)) by

vco(s, t) :=
Ks

Kt

. (3.5)

The discount factor vco(s, t) is always positive since (Kt)t is a positive semimartingale. Similarly, we
assume that vrl(s, t) has a representation of the form vrl(s, t) = Krl

s /K
rl
t where dKrl

t = Krl
t− dφrlt with

the riskless interest rate dφrlt .

Proposition 3.3. For all 0 ≤ s ≤ t <∞ we have

vco(s, t)At −As =

∫
(s,t]

vco(s, u) d(Zu + Yu).

Proof. Let Ht := K
−1
t Ht · Kt = K

−1
t At. Analogously to the proof of Theorem 37 in chapter II

of Protter (2005), we can show that K
−1
t is a semimartingale, and, thus, Ht is a semimartingale.

Applying the integration by parts formula (Protter, 2005, page 68 and Theorem 28 in chapter II), we
get d(HtKt) = Ht− dKt + Kt− dHt + d[H,K]t, where the third addend is the so called quadratic
variation. Since the definition of Kt implies that

Ht− dKt = Ht−Kt− dφt = At− dφt = Ht− · dKt

and since d(HtKt) = dAt = d(Ht · Kt), we have Kt− dHt + d[H,K]t = Kt · dHt. The right hand
side has finite variation, because Ht has finite variation. As the bracket process d[H,K]t also has
finite variation, Kt− dHt must have finite variation, too. As stochastic integrals with finite variation
integrator and left-continuous integrand always have finite variation (Protter, 2005, page 63 and

Theorem 17 in chapter II), we get that dHt = K
−1
t (Kt− dHt) has finite variation, as well. Hence, we

get

Kt dHt = Kt− dHt + d[H,K]t = Kt · dHt = dZt + dYt.

With the help of this equality we obtain

Ks

Kt

At −As = Ks (Ht −Hs) =

∫
(s,t]

Ks dHu =

∫
(s,t]

Ks

Ku

Ku dHu =

∫
(s,t]

vco(s, u) d(Zt + Yt).

Definition 3.4. Let Nt := At − Lt be the net value at time t, which is defined as the difference
between the market value of the assets and the liabilities.
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The net value should not be confused with the net asset value, which is used in the official Solvency II
documents. The net asset value is the market value of the assets minus the best estimate of the
liabilities. The net value can be interpreted as the economic equity.

In definition (c) of the previous section we have to minimize the value of the asset portfolio at time
zero. Because upsizing and downsizing of the asset portfolio can be disproportional to the existing
portfolio, we have to extend our modeling framework. Suppose that we have an insurance company
with asset portfolio (Ht)t, liabilities (Lt)t, actuarial payments (Zt)t, and shareholder payments (Yt)t.
We assume that the asset portfolio may be shifted to (Ht + H̃t)t such that the market value of the
assets at time t changes to At + Ãt = Ht · Kt + H̃t · Kt. Accordingly, the new net value at time t is

Ñt = At + Ãt − Lt ,

since the liabilities do not change, i.e. L̃t = 0. We interpret (H̃t)t as an additional asset portfolio that
evolves according to

dÃt = Ãt− dφ̃t,

see (3.4), where the average interest rate dφ̃t and the asset strategy θ̃t of the asset portfolio (H̃t)t
are defined analogously to (3.3). Note, that Ãt and H̃t can be negative. Again, Ãt = 0 implies
H̃t = (0, ..., 0). We assume that Lt is independent of Ãt. Accordingly, we can define a discount factor
for the additional asset portfolio

vad(s, t) :=
K̃s

K̃t

with dK̃t = K̃t− dφ̃t, K̃0 = 1.

Since the differential equations for Ãt and K̃t are equal up to the initial condition, we have

vad(s, t) =
Ãs

Ãt
. (3.6)

Theorem 3.5. Given that Ñ0 is deterministic, we have

inf
{
Ñ0 ∈ R : P(Ñ1 ≥ 0) ≥ 0.995

}
= VaR0.995

(
N0 − vad(0, 1)N1

)
. (3.7)

Proof. From (3.6) we get Ãs+1 = vad(s, s+ 1)−1Ãs, which leads to

Ñs+1 = Ns+1 + vad(s, s+ 1)−1Ãs = Ns+1 + vad(s, s+ 1)−1 (Ñs −Ns),

and since vad(s, s+ 1) is always positive, we obtain

{Ñs+1 ≥ 0} = {vad(s, s+ 1) Ñs+1 ≥ 0} = {Ns − vad(s, s+ 1)Ns+1 ≤ Ñs} (3.8)

for all s ≥ 0. If Ñ0 is deterministic, the left hand side of (3.7) is well-defined and equals the right
hand side of (3.7) because

P
(
Ñ1 ≥ 0

)
= P

(
N0 − vad(0, 1)N1 ≤ Ñ0

)
.

The corollary allows us to substitute definition (2.5) with

SCRc0 := VaR0.995

(
N0 − vad(0, 1)N1

)
. (3.9)

The assumption that Ñ0 is deterministic means that Ñ0 is known at present time zero, which meets
with reality. The equality (3.7) is at first view surprising, since the left- and right-hand side are
different in structure. This difference is especially important when Monte-Carlo simulations are used.
In order to calculate the left-hand side, a starting level of Ñ0 is needed before Ñ1 can be simulated.
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This simulation only approximates the ruin probability for this starting level. Consequently, we need
methods such as nested intervals and the simulation has to be run over and over again until the
desired ruin probability is reached. In contrast, the right-hand side can be calculated with one run of
simulations.

For the definition of a dynamic value at risk we need the following proposition. The proof can be
found in the appendix. In a discrete time setting, a dynamic value at risk was already introduced by
Kriele and Wolf (2012). We give a more general definition for continuous time intervals.

Proposition 3.6. Let (Ω,F ,P) be a probability space with random variables X[0,s] : (Ω,F)→ (Ω′,F ′s)
and Y : (Ω,F)→ (R,B(R)), where (Ω′,F ′s) is some measurable space. Then the function h : Ω′ → R
defined by

hY,α(x) := inf{y ∈ R : P(Y ≤ y|X[0,s] = x) ≥ α}

is F ′s-B(R)-measurable.

Definition 3.7 (dynamic value at risk). Suppose that the assumptions of Proposition 3.6 hold, and
let Fs = σ(X[0,s]) ⊂ F , that is, Fs is generated by X[0,s]. Then we define for α ∈ (0, 1)

VaRα

(
Y
∣∣Fs) := hY,α(X[0,s]) .

With the help of Definition 3.7 we can generalize the SCR definitions (2.1), (2.2), (2.3), (2.4) and
(3.9) to future points in time by replacing the values at risk by dynamic values at risk.

Definition 3.8 (present and future SCR). The SCR at time s is defined as

(a) SCRas := VaR0.995

(
Ns − v(s, s+ 1)Ns+1

∣∣∣Fs),

(a1) SCRa1
s := VaR0.995

(
Ns − vrl(s, s+ 1)Ns+1

∣∣∣Fs),

(a2) SCRa2
s := VaR0.995

(
Ns − vco(s, s+ 1)Ns+1

∣∣∣Fs),

(b) SCRbs := VaR0.995

(
vrl(s, s+ 1)

(
EQ(Ns+1|Fs)−N1

)∣∣∣Fs),

(c) SCRcs := VaR0.995

(
Ns − vad(s, s+ 1)Ns+1

∣∣∣Fs).

4. Comparison of the different SCR definitions

In a next step we want to learn if and when the different SCR definitions are equivalent. We start
with an example.

Example 4.1. We consider a simplified insurance company that is closed to new business and has to
fulfill insurance liabilities of 105 in one year (e.g. an endowment insurance without surplus participation
and a remaining term of one year). We consider the same financial market as in Example 2.1. The
company holds one riskless bond K1 and one stock K2, i.e. H1

0 = H2
0 = 1. At time 0 the insurer has

assets of A0 = 200 and liabilities of L0 = 105
1.05 = 100. Consequently, we have N0 = 100 and N1 = K2

1 ,
since K1

1 = 105. In the following we calculate the SCR at time 0 according to the different SCR
definitions.

(i) The SCR calculated with definition (a1) is

SCRa1
0 = VaR0.995

(
N0 − vrl(0, 1)N1

)
= VaR0.995

(
100− K2

1

1.05

)
=

100

7
.
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(ii) The SCR calculated with definition (a2) is

SCRa2
0 = VaR0.995

(
N0 − vco(0, 1)N1

)
= VaR0.995

(
100− 200

K2
1 + 105

K2
1

)
=

100

13
.

(iii) Since vrl(0, 1)EQ(K2
1 ) = 100 = N0, we obtain by definition (b)

SCRb0 = SCRa1
0 =

100

7
.

(iv) Equation (3.7) gives us two possibilities to calculate the SCR, both of which we want to demon-
strate. We assume that the insurer has additional assets Ã0 and that θ̃1

0 ∈ [0, 1] is the percentage

invested in the bond. Consequently, θ̃2
0 = 1− θ̃1

0 is invested in the stock. In this example, we do

not allow short sales, and the units of the additional assets shall not change, i.e. H̃1
0 = H̃1

1 and

H̃2
0 = H̃2

1 . We obtain Ñ0 = 100 + Ã0 and Ñ1 = K2
1 + Ã0 v

ad(0, 1)−1 with

vad(0, 1) =
Ã0

Ã1

=
(
θ̃1

01.05 + (1− θ̃1
0)
K2

1

100

)−1
.

The left-hand side of (3.7) is

SCRc0 = inf
{
Ñ0 ∈ R : P(Ñ1 ≥ 0) ≥ 0.995

}
= inf

{
100 + Ã0 : Ã0 ≥ −600(θ̃1

0 + 6)−1
}

= 100− 600(θ̃1
0 + 6)−1 .

For the right-hand side of (3.7) we get

SCRc0 = VaR0.995

(
N0 − vad(0, 1)N1

)
= 100− 600(θ̃1

0 + 6)−1 ,

which is of course equal to the value above. The resulting SCR varies considerably depending on
the choice of θ̃1

0. One possibility for θ̃1
0 would be to minimize over this parameter. This would

lead to SCRc0 = 0. The initial ratio of bonds θ1
0 was 1

2 . We can choose θ̃1
0 such that definitions

(a2) and (c) are equal,

SCRc0 = SCRa2
0 ⇔ 100− 600(θ̃1

0 + 6)−1 =
100

13
⇔ θ̃1

0 =
1

2
= θ1

0 .

To summarize, we found that

• depending on the choice of (θ̃t)t, SCR
c
0 can be equal to any of the other SCR definitions,

• SCRa2
0 equals SCRc0 if (θ̃t)t = (θt)t,

• SCRa1
0 equals SCRb0.

We will see that all three facts do not only hold for our specific example but are generally true.

Theorem 4.2. We have SCRas = SCRcs for all financial markets (Kt)t, actuarial functions (Zt)t,
and liability market values (Lt)t if and only if v(s, s+ 1) = vad(s, s+ 1) almost surely.

Proof. If v(s, s+1) = vad(s, s+1) almost surely, then the definitions of SCRas and SCRcs are equivalent.
Suppose now that P(v(s, s + 1) 6= vad(s, s + 1)) > 0. Without loss of generality let P(v(s, s + 1) >
vad(s, s+ 1)) ≤ P(v(s, s+ 1) < vad(s, s+ 1)). We define a disjoint decomposition M0 ∪M1 ∪M2 = Ω
by {v(s, s+ 1) > vad(s, s+ 1)} ⊂M0 ∈ F , {v(s, s+ 1) < vad(s, s+ 1)} = M1 ∈ F , and {v(s, s+ 1) =
vad(s, s+ 1)} ⊃M2 ∈ F with P (M2) < 0.005. Since P (M0) ≤ 0.5, we have P (M1 ∪M2) > 0.005, and
by setting Ns = 0 and

Ns+1 = − 1

vad(s, s+ 1)
1M1∪M2

we obtain SCRcs ≥ 1 since P(Ns− vad(s, s+ 1)Ns+1 ≥ 1) = P(M1 ∪M2) > 0.005 and SCRas < 1 since
P(Ns − v(s, s+ 1)Ns+1 < 1) = P(M0 ∪M1) > 0.995. That means that SCRas 6= SCRcs.
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Remark 4.3 (Invariance of SCR with respect to the initial capital). Since (3.6) yields that vad(s, s+
1) Ãs+1 = Ãs, we generally have

Ñs − vad(s, s+ 1)Ñs+1 = Ns − vad(s, s+ 1)Ns+1 ,

which implies that

SCRcs = VaR0.995

(
Ns − vad(s, s+ 1)Ns+1

∣∣∣Fs) = VaR0.995

(
Ñs − vad(s, s+ 1)Ñs+1

∣∣∣Fs) . (4.1)

Originally, we motivated the definition of SCRc0 by the net asset value minimization (2.5), which is by
definition invariant with respect to the initial net asset value. Equation (4.1) says that this invariance
property remains true for s > 0, given that additional assets are invested according to (θ̃t)t. By setting
vad(s, s+1) = vrl(s, s+1) and vad(s, s+1) = vco(s, s+1), we analogously get that SCRa1

s and SCRa2
s

are invariant with respect to the initial net asset value if additional capital is invested risklessly and
proportionally to the existing asset portfolio, respectively. Hence, we can say that definitions (a1)
and (a2) implicitly assume that redundant capital is invested riskless and proportional to the existing
portfolio, respectively.

The next proposition analyzes the relationship between the discount factors, θt, and Ht.

Theorem 4.4. Given that θt and θ̃t exist, we have θt = θ̃t if and only if Ht = Ψt H̃t for some real-
valued and Ft-measurable random variable Ψt ∈ R \ {0}. We have vco(s, s+ 1) = vad(s, s+ 1) for all
financial markets (Kt)t if and only if θt = θ̃t almost surely on (s, s+ 1].

Proof. Let Ω = B1 ∪ ...∪Bm be a disjoint and Ft-measurable decomposition of Ω such that θjt (ω) > 0
for ω ∈ Bj , which implies that Hj

t (ω) 6= 0 for ω ∈ Bj . Such a decomposition always exists since
we supposed that θt exists and since θt is Ft-measurable. By solving the system of linear equations

θit =
Hi

t K
i
t

Ht·Kt
, i ∈ {1, ...,m}, we obtain that the definition of θt is equivalent to

H i
t(ω)

Hj
t (ω)

=
θit(ω)

θjt (ω)

Kj
t (ω)

Ki
t(ω)

, ω ∈ Bj , i ∈ {1, ...,m} \ {j}.

An analogous result holds for θ̃t and H̃t, and if we assume that θt = θ̃t, we may set Bj = B̃j and
obtain

H i
t(ω)

Hj
t (ω)

=
H̃ i
t(ω)

H̃j
t (ω)

, ω ∈ Bj , i ∈ {1, ...,m} \ {j}.

Thus, we can define Ψt by Ψt(ω) := Hj
t (ω)/H̃j

t (ω) for ω ∈ Bj , which is non-zero and Ft-measurable

as Hj
t (ω) and H̃j

t (ω) are non-zero and Ft-measurable and Bj ∈ Ft, j ∈ {1, ...,m}. On the other hand,

if we assume that Ht = Ψt H̃t, then the definitions of θt and θ̃t yield θt
Ψt
Ψt

= θ̃t.

Suppose now that there exists an i0 ∈ {1, ...,m} and a t0 ∈ (s, s+ 1] for which P(θi0t0 6= θ̃i0t0) > 0. By

defining Ki0
t (ω) := 1 + 1[t0,∞)(t) and Kj

t (ω) := 1 for all j 6= i0, from (3.5) and (3.3) we get

vco(s, t) =
1

1 + θi0t0−
, vad(s, t) =

1

1 + θ̃i0t0−
.

Thus, we obtain P(vad(s, s+ 1) = vco(s, s+ 1)) = P(θi0t0 = θ̃i0t0) < 1. On the other hand, if (θt)t = (θ̃t)t

almost surely, then we also have (φt)t = (φ̃t)t almost surely for the corresponding cumulative interest
intensities according to (3.3) and, thus, vco(s, t) = vad(s, t) almost surely.

Remark 4.5. SCR definition (c) can change considerably depending on the choice of vad(s, s + 1).
While in definitions (a1), (a2), and (b) the discount factor is largely determined by pre-existing
circumstances, the discount factor vad(s, s+ 1) is mainly a management decision that the insurer has
to make by appointing an asset strategy (θ̃t)t.
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By considering both Theorem 4.2 and Theorem 4.4, we get that SCRa2
s = SCRcs for all financial

markets (Kt)t, actuarial functions (Zt)t, and liability market values (Lt)t if and only if θt = θ̃t almost
surely on (s, s + 1]. This property was already indicated by Example 4.1. The same example also
indicates that (a1) and (b) are equal, which we can actually prove by using the following proposition.

Theorem 4.6. We assume a risk-neutral measure Q and a discount factor vrl such that

Kt = EQ(vrl(t, u)Ku|Ft)

for all u ≥ t ≥ 0 and such that

Lt =

∫
(t,∞)

EQ(vrl(t, u) d(−Zu − Yu)|Ft)

for all t ≥ 0. Then we have

Ns = EQ(vrl(s, s+ 1)Ns+1|Fs)

for all s ≥ 0.

Proof. From the martingale propertyKt = EQ(vrl(t, u)Ku|Ft) we can deduceKt = EQ(vrl(t, u)Ku|Ft),
which implies

EQ

(
vrl(t, u)(vco(t, u))−1|Ft

)
= 1

for all u ≥ t ≥ 0. Then, by applying Proposition 3.3, we get

EQ(vrl(s, s+ 1)As+1|Fs) = EQ

(
vrl(s, s+ 1) (vco(s, s+ 1))−1As

+

∫
(s,s+1]

vrl(s, s+ 1) (vco(u, s+ 1))−1 d(Zu + Yu)

∣∣∣∣Fs)
= As +

∫
(s,s+1]

EQ

(
vrl(s, s+ 1) (vco(u, s+ 1))−1 d(Zu + Yu)

∣∣Fs) .
As Zu + Yu is of finite variation and has a representation of the form d(Zu + Yu) = (zu + yu) du +
∆(Zu + Yu), we have

EQ

(
vrl(s, s+ 1) (vco(u, s+ 1))−1 d(Zu + Yu)

∣∣Fs)
= EQ

(
vrl(s, u)EQ

(
vrl(u, s+ 1) (vco(u, s+ 1))−1

∣∣Fu) (zu + yu)
∣∣∣Fs)du

+ EQ

(
vrl(s, u)EQ

(
vrl(u, s+ 1) (vco(u, s+ 1))−1

∣∣Fu)∆(Zu + Yu)
∣∣∣Fs)

= EQ

(
vrl(s, u) (zu + yu)

∣∣∣Fs) du+ EQ

(
vrl(s, u) ∆(Zu + Yu)

∣∣∣Fs),
and, thus, we obtain

EQ(vrl(s, s+ 1)As+1|Fs) = As +

∫
(s,s+1]

EQ

(
vrl(s, u) d(Zu + Yu)

∣∣Fs).
On the other hand, we have

EQ(vrl(s, s+ 1)Ls+1|Fs) = EQ

(
Ls −

∫
(s,s+1]

vrl(s, u) d(−Zu − Yu)

∣∣∣∣Fs)
= Ls +

∫
(s,s+1]

EQ

(
vrl(s, u) d(Zu + Yu)

∣∣Fs) .
Hence, we get

EQ(vrl(s, s+ 1)Ns+1|Fs) = EQ(vrl(s, s+ 1)As+1 − vrl(s, s+ 1)Ls+1|Fs) = As − Ls = Ns.

11



Under the assumptions of Theorem 4.6 we always have

VaR0.995

(
Ns − v(s, s+ 1)Ns+1

)∣∣∣Fs)
= VaR0.995

(
EQ(vrl(s, s+ 1)Ns+1|Fs)− v(s, s+ 1)Ns+1

)∣∣∣Fs)
for any choice of v(s, s+ 1). In particular, for v(s, s+ 1) = vrl(s, s+ 1) we get

SCRa1
s = VaR0.995

(
EQ(vrl(s, s+ 1)Ns+1|Fs)− vrl(s, s+ 1)Ns+1

∣∣∣Fs) = SCRbs.

for all s ≥ 0. Because of this equivalence of SCRa1
s and SCRbs, it suffices to study definitions (a1),

(a2), and (c) only.

SCRb

SCRa1

SCRc

SCRa2

vad := vco

vad := vrl

Q exists

vad := vrl

vad := vrl & Q exists

Figure 4.1: Relation between the SCR definitions

5. Convergence of SCR definitions

Example 5.1 (Convergence of SCR definitions (a1) and (a2) to (c)). We pick up example 4.1 but
set θ̃1

0 = 0.4, which has the effect that definitions (a2) and (c) are not equal anymore. We still have
SCRa1

0 = 100
7 and SCRa2

0 = 100
13 , but SCRc0 = 25

4 . Suppose that the insurer uses SCR definition (a1)
and aims at minimizing the asset portfolio. At time zero, there is a net value of N0 = 100, but the
regulatory requirement is just y(1) = SCRa1

0 = 100
7 , so the insurer reduces A0 = 200 to 100 + 100

7 .

The reduction of A0 follows strategy θ̃0, which means that bonds worth 240
7 and stocks worth 360

7 are
paid out. However, the change of A0 has an effect on SCRa1

0 , and a recalculation of the SCR (for
N0 = 100

7 ) yields y(2) = 340
49 . Thus, the insurer has to adapt the asset portfolio A0 again. By repeating

this procedure n-times, we get y(n) = 25
4 + ( 3

35)n 375
4 , which converges for n→∞ to 25

4 = SCRc0. The

same procedure for SCR definition (a2) leads to y(n) = 25
4 + ( 1

65)n 375
4 , which converges also to SCRc0

for n → ∞. It is essential here that in each iteration step strategy θ̃0 is used. If, for example, the
company cuts the bonds only but keeps all stocks, SCRa1

0 would not have changed.

In fact, we can show that SCRa always converges to SCRc. Before we put this into a theorem, we
introduce the following setting. An insurer has a net value of y(0) := Ns and calculates the SCR

y(1) := SCRas = VaR0.995

(
Ns − v(s, s+ 1)Ns+1

∣∣∣Fs) .
In a next step the company reduces the asset portfolio by Ãs such that the new net value is Ñs =
Ns + Ãs = y(1). According to (3.6) we have Ãs+1 = vad(s, s + 1)−1Ãs, and thus we get Ñs+1 =
Ns+1 + (y(1) − Ns)v

ad(s, s + 1)−1. With y(2) we denote the SCR that corresponds to the altered
net value. As y(2) is not necessarily equal to y(1), the asset portfolio is again re-organized such that
Ñs = Ns + Ãs = y(2). By repeating this procedure n-times, we obtain

y(n) = VaR0.995

(
y(n−1) − v(s, s+ 1)

(
Ns+1 + (y(n−1) −Ns)v

ad(s, s+ 1)−1
)∣∣∣Fs). (5.1)
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Theorem 5.2. The random variable SCRcs is the (almost surely) unique fix-point of iteration (5.1).
If there exits an ε ∈ (0, 1) such that

ε <
v(s, s+ 1)

vad(s, s+ 1)
< 2− ε , (5.2)

then lim
n→∞

y(n) = SCRcs, where y(n) is defined as in (5.1).

Proof. If y is a fix-point of (5.1), then

y = VaR0.995

(
y − v(s, s+ 1)

(
Ns+1 + (y −Ns)v

ad(s, s+ 1)−1
)∣∣∣Fs)

⇔ 0 = VaR0.995

( v(s, s+ 1)

vad(s, s+ 1)

(
Ns − vad(s, s+ 1)Ns+1 − y

) ∣∣∣Fs)
⇔ 0 = VaR0.995

(
Ns − vad(s, s+ 1)Ns+1 − y

∣∣∣Fs)
⇔ y = VaR0.995

(
Ns − vad(s, s+ 1)Ns+1

∣∣∣Fs) = SCRcs .

In the third line, we use that v(s,s+1)
vad(s,s+1)

is greater than zero such that we can omit it, see Proposition A.1

in the appendix. The equivalences yield that SCRcs is always a fix-point and that all fix-points equal
SCRcs.

By multiplying equation (5.2) with −1, adding 1, and multiplying the result with y(n) − SCRcs
separately for y(n) − SCRcs ≥ 0 or y(n) − SCRcs < 0, we get

−(1− ε)
∣∣y(n) − SCRcs

∣∣ ≤ (y(n) − SCRcs)
(

1− v(s, s+ 1)

vad(s, s+ 1)

)
≤ (1− ε)

∣∣y(n) − SCRcs
∣∣ .

From this inequality and equation (5.1) we obtain that

y(n+1) = SCRcs + VaR0.995

( v(s, s+ 1)

vad(s, s+ 1)

(
Ns − vad(s, s+ 1)Ns+1 − SCRcs

)
+
(

1− v(s, s+ 1)

vad(s, s+ 1)

)(
y(n) − SCRcs

)∣∣∣Fs)
has the upper bound SCRcs + (1− ε)

∣∣y(n)−SCRcc
∣∣ and the lower bound SCRcs− (1− ε)

∣∣y(n)−SCRcc
∣∣.

By induction we can show that∣∣y(n+1) − SCRcs
∣∣ ≤ (1− ε)n+1

∣∣y(0) − SCRcs
∣∣→ 0 (n→∞) .

Hence, lim
n→∞

y(n) = SCRcs.

Setting v(s, s+ 1) = vrl(s, s+ 1) and v(s, s+ 1) = vco(s, s+ 1), we get that iterative calculations of
SCRa1

s and SCRa2
s converge to SCRcs. If the probability space Ω is countable, condition (5.2) can be

relaxed to 0 < v(s,s+1)
vad(s,s+1)

< 2. Since the capital accumulation function is positive, the discount factors

are positive and v(s,s+1)
vad(s,s+1)

< 2 if and only if the average interest rate iad of the additional assets is

smaller than 1 + 2i, or iad < 1 + 2i. This restriction is usually met in practice. The proof also shows
that for a discount ratio v(s,s+1)

vad(s,s+1)
≥ 2 the sequence y(n) never converges. This fact is illustrated in

Example 5.3. If the discount ratio is random and takes values both less and greater than 2, a general
convergence result is out of reach.

Example 5.3 (speed of convergence). We modify the payoff of the stock from example 4.1, such
that it earns a deterministic interest rate. We use this variable to analyze different discount ratios
ρ := v(s,s+1)

vad(s,s+1)
. With a starting point of N0 = 100 we calculate the iteration (5.1) with θ̃it = θit, such

that vad(s, s + 1) = vco(s, s + 1) and SCRcs = SCRa2
s . The results for the first 15 steps are shown

in Figure 5.1. For ρ = 0.93 the convergence is rapid. This is still the case for ρ = 1.07, even though
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Figure 5.1: iteration (5.1) for different discount ratios

the iteration is not monotonous anymore. If the discount ratio is equal to ρ = 2.00, the iteration has
two accumulation points, and the iteration jumps between them. For values larger than 2 we see a
divergent behavior. It should be mentioned that these examples are quite extreme. For example, in
case of ρ = 2.00 the stock performance has to be at least 215% in 99.5% of all events, given that
the riskless interest rate is 5% and the stock ratio is 50%. In practice condition (5.2) is hardly a
restriction.

6. Insurance groups

Insurance groups have the possibility to shift money between its subsidiary undertakings up to a certain
extent. It may be sensible that such a shift should not change the SCR. Under certain conditions we
show in the following that this is the case for SCRc.

Suppose we have an insurance group that consists of n insurance companies with asset portfolios
(iHt)t, liabilities (iLt)t, actuarial payments (iZt)t, and shareholder payments (iYt)t (1 ≤ i ≤ n). Let
(iθ̃t)t be the asset strategy of company i for additional assets. We assume that the total assets of the n
insurance companies are reallocated at time s and that iĤs are the units of assets that insurer i delivers

or receives (depending on the sign) at time s. Let iθ̂js =
iĤj

sK
j
s

iĤs·Ks
be the corresponding proportions of

transferred assets, and let iSCRcs and iŜCR
c

s be the SCRs for company i according to definition (c)
before and after the asset transfer. As the n companies may have different asset strategies, the
exchange of assets at time s occasionally comes with some trading on the capital markets in order to
harmonize the received assets with the asset strategies (iθ̃t)t.

Proposition 6.1 (invariance property). We have iŜCR
c

s = iSCRcs for all 1 ≤ i ≤ n. If we ban trading

when the assets of an insurance group are reallocated, we have iŜCR
c

s = iSCRcs for all 1 ≤ i ≤ n and
all capital markets (Kt)t if and only if iθ̂t = iθ̃t for all 1 ≤ i ≤ n.

Proof. If we allow for trading, any reallocation of assets conforms with the asset strategies (iθ̃t)t,
and the Corollary can be proven by following the arguments of Remark 4.3. If we ban trading, then
condition iθ̂t = iθ̃t is sufficient and necessary because of Theorem 4.4.

As stated in the directive (European Parliament and the Council, 2009, Chapter II, Section 1),
the SCR of a group should be calculated on the basis of the consolidated accounts (default method)
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or by aggregating the stand-alone SCRs (alternative method). The default method is similar to the
calculation of a single SCR. In the technical specifications to QIS 5 (CEIOPS, 2010, section 6) the
alternative method is basically described as

SCRgroup =
∑

iSCRsolo-adjusted ,

where iSCRsolo-adjusted is the SCR of company i adjusted according to some group effects. Conse-
quently, if we use the SCR definition (c), the SCR of the group is invariant with respect to reallocation
of capital, given that the asset strategies are consistent.

Example 6.2 (invariance property for SCR definitions (a1), (a2) and (c)). We consider example 4.1
but add one more asset, which has price K3

0 := 100 at time zero and payoff K3
1 := 210 − K2

1 after
one year. We consider two insurance companies that belong to an insurance group and both have
liabilities of L0 = 100 and L1 = 105. Before a transfer of assets takes place company 1 has only
one unit of K2, while company 2 has one unit of K1 and one unit of K3. The number of units are
assumed to be constant over time. Consequently, we obtain 1N0 = 0, 2N0 = 100, 1N1 = K2

1 − 105
and 2N1 = K3

1 . The resulting SCRs are shown in Table 1. Suppose that company 2 transfers one

SCRa1
0 SCRa2

0 SCRc0

Company 1 100
7 ≈ 14.3 50

3 ≈ 16.7 25
2 = 12.5

Company 2 100
7 ≈ 14.3 100

13 ≈ 7.7 0

Table 1: SCR before the transfer takes place

unit of investment 3 at time zero to company 1, 1Ĥ0 = 1H̃0 = (0, 0, 1) and 2Ĥ0 = 1H̃0 = (0, 0,−1).
We obtain 1Ñ0 = 100, 2Ñ0 = 0, 1Ñ1 = 105 and 2Ñ1 = 0. The corresponding SCRs after the transfer
are given in Table 2. As expected, definition (c) is invariant with respect to the exchange of assets.

ŜCR
a1

0 ŜCR
a2

0 ŜCR
c

0

Company 1 0 0 12.5

Company 2 0 0 0

Table 2: SCR after the transfer took place

The SCR definitions (a1) and (a2) are not invariant, not only individually for each company but also
in total. The transfer of investment K3 from company 2 to company 1 is reasonable, since K3 is a
perfect hedge for investment K2. After the asset transfer, both companies have no longer any risk, and

SCRs of zero seem to be appropriate. But why is 1ŜCR
c

0 > 0? As 1H̃0 = (0, 0, 1) and definition (c)
implicitly assumes that redundant assets are paid out (cf. definition (2.5) and Remark 4.3), shares of
K3 are paid out and the perfect hedge is disrupted.

The example illustrates that an invariance property is not always desirable. However, if asset values
are minimized, we always end up with a SCR according to definition (c), see Theorem 5.2.

7. Risk Margin

This section deals with the Risk Margin and its interaction with the SCR. Since there is no universally
valid definition of the RM in the academic literature, we close this gap and present a definition of the
RM that is consistent with the directive. The key is that we defined the SCR in Definition 3.8 also
for future points in time. In order to keep this section generally valid for all SCR definitions discussed
in previous sections, we use v(s, s+ 1) for the discount factor in the SCR definition.

As stated in article 75 paragraph 1(b) (European Parliament and the Council, 2009), “liabilities
shall be valued at the amount for which they could be transferred, or settled, between knowledgeable
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willing parties in an arm’s length transaction.” Paragraph 1 of article 77 requires that the “value of
technical provisions shall be equal to the sum of a best estimate and a risk margin”. Thus, the risk
margin is the difference between the market value and the best estimate of the liabilities. This leads
to a very general definition of the RM.

Definition 7.1 (RM general version). The RM at time s is defined as

RMs = Ls −Bs ,

where Bs is the best estimate of the liabilities at time s.

This is the correct definition of the RM, but it is not a constructive definition, and there is a lot of
room for interpretation. The purpose of the RM is to decompose the calculation of the market value
of the liabilities into Ls = Bs + RMs. Article 77 paragraph 5 of the directive requires that the “risk
margin shall be calculated by determining the cost of providing an amount of eligible own funds equal
to the Solvency Capital Requirement necessary to support the insurance and reinsurance obligations
over the lifetime thereof,” i.e. the directive suggests a cost-of-capital approach with respect to the
SCR. A possible implementation of these requirements is given in the technical specifications to the
fifth Quantitative Impact Study (CEIOPS, 2010). Therein, the RM is defined as

RM = c
∑
k≥0

SCRRUk
(1 + rk+1)k+1

, (7.1)

where SCRRU is the SCR of a reference-undertaking, c the cost-of-capital rate and rt the risk-free
rate for maturity t. In the Swiss Solvency Test the RM is defined similar, but the sum starts at time 1.
The calculation of the RM is based on a transfer scenario, where the liabilities are taken over by an
artificial insurance company, which minimizes the part of the SCR comming from the hedgeable risks
and which had no other insurance contracts before the transfer takes place (compare CEIOPS, 2010).
That shall establish a comparability of the RM between different insurance companies. The formula
has three deficiencies.

• Formula (7.1) defines the RM only for time s = 0.

• Future SCRs are random and hence the RM at time s = 0 is also random.

• A precise mathematical definition of the SCR of a reference undertaking is missing.

The technical specifications require that the reference undertaking behaves similar to the original
undertaking, but hedges all hedgeable risks. If (θ∗)t is the trading strategy that minimizes SCRs, the
SCR at time s of a reference-undertaking SCRRUs is the SCR calculated with trading strategy (θ∗)t.
However, the precise definition of (θ∗)t and its calculation is not a trivial task, and is beyond the
scope of this paper. Since it is extremely difficult to minimize over all possible trading strategies, in
practice, the market risk is usually neglected. As the RM is intended for the calculation of the market
value of the current liabilities, we exclude new business in SCRRU . This assumption is also made in
CEIOPS (2009).

We generalize (7.1) by the following definition.

Definition 7.2 (RM cost-of-capital version). The RM at time s is defined as

RMs :=
∑
k≥s

EQ/P

(
c(k) vrl(s, k + 1)SCRRUk

∣∣Fs),
where c(k) is the cost-of-capital rate at time k. Since choice of the measure is unclear, we write Q/P
to indicate that a mixture of both measures is likely.
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In our opinion the conditional expected value is the most convincing way to make RMs Fs-
measurable. However, it is also possible to take a dynamic value at risk or another risk measure.
For the practical purpose of calculating the RM, this definition is usually too complex, so that sim-
plifications are needed. Suppose that the cost-of-capital rate is constant, i.e. c(t) ≡ c, and that
vrl(s, k + 1) and SCRRUk are conditionally independent given Fs. Note that these two requirements
are often not fulfilled. Then we obtain the following, simplified version of the RM,

RMs = c
∑
k≥s

EQ

(
vrl(s, k + 1)

∣∣Fs)EQ/P

(
SCRRUk

∣∣Fs).
In practice further simplifications are used, which cannot be theoretically established.

We seem to have a circular reference in Definition 7.2 since SCRRUs depends on Ns, Ns = As−Bs−
RMs depends on RMs, RMs equals the sum of

Es,t := EQ/P

(
c(t) vrl(s, t+ 1)SCRRUt

∣∣Fs), t ≥ s,

and Es,s depends on SCRRUs . In the following we show that the circular reference can be solved.
Ohlsson and Lauzeningks (2009) solve this problem for a non-life SCR and Kriele and Wolf (2007)
solve this problem using an approximation of the SCR, while we do this exactly and in a general
framework. In the standard formula the RM is not considered for the calculation of the SCR, so that
there is no circular reference. This is also the case in the Swiss Solvency Test, since the first summand
of the RM is skipped.

Theorem 7.3. The SCR of a reference undertaking at time s can be calculated without a circular
reference, more precisely

SCRRUs =
1

1 + EQ/P

(
c(k) vrl(s, s+ 1)

∣∣Fs)VaR0.995 (Λs|Fs) ,

where

Λs := (As −Bs)− v(s, s+ 1)(As+1 −Bs+1) + v(s, s+ 1)
∑
t≥s+1

(
Es+1,t − Es,t

)
.

Proof. For simplification we just write v for v(s, s+ 1). By definitions 3.8, 7.1 and 7.2, we get

SCRRUs =VaR0.995

(
As − vAs+1 + vBs+1 −Bs + vRMs+1 −RMs

∣∣∣Ft)
=VaR0.995

(
As − vAs+1 + vBs+1 −Bs − EQ/P

(
c(s) vrl(s, s+ 1)SCRRUs

∣∣Fs)
− v

∑
k≥s+1

EQ/P

(
c(k) vrl(s, k + 1)SCRRUk

∣∣Fs)
+ v

∑
k≥s+1

EQ/P

(
c(k) vrl(s+ 1, k + 1)SCRRUk

∣∣Fs+1

)∣∣∣Fs)
=VaR0.995

(
Λs − EQ/P

(
c(s) vrl(s, s+ 1)

∣∣Fs)SCRRUs ∣∣∣Fs) .
Since EQ/P

(
c(s) vrl(s, s + 1)

∣∣Fs)SCRRUs is Fs-measurable, it can be taken out of the dynamic value

at risk and the theorem follows by solving for SCRRUs .

The above formula for SCRRUs depends only on Es,t with t ≥ s + 1, which in turn only depends
on future SCRs at times t ≥ s + 1, so that the formula is a recursion formula that can be solved
backwards. Since new business is not included and since the term of each considered business is finite,
there exists a time point n ∈ N for which SCRRUm = RMm = 0 for all m ≥ n, and hence the recursion
is finite. Unfortunately, the computing time is growing exponentially with the length of the contract
term, which means that numerical calculations are very time-consuming. In case we have an insurance
portfolio only consisting of contracts with term one, SCRRUs usually increases if we neglect the RM,
since (1 + EQ/P

(
c(k) vrl(s, s+ 1)

∣∣Fs))−1 < 1 for reasonable interest rates. Hence, neglecting the RM
leads to a prudent upper bound. If contract terms are greater than 1, we lose that monotony property
since the SCR includes the difference between RMs and RMs+1.
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8. Conclusion

We started the paper with a comparison of Article 101 and Remark 64 of the Solvency II directive
and presented mathematical interpretations of both. Our main findings are:

• Remark 64 can be defined as a value at risk and, thus, the mathematical structure is similar to
Article 101.

• Article 101 and Remark 64 are consistent if and only if the discount factor in Article 101
corresponds to the investment strategy of the additional assets.

• The alternative definition (b) is equivalent to Article 101 with a riskless discount factor.

• When assets are minimized iteratively by applying Article 101, the resulting SCRs converge to
the SCR from Remark 64.

For the calculation of the market value of the liabilities, Solvency II suggests using a cost of capital
method and calculating a Risk Margin. However, the definition of the RM depends on future SCRs,
and we are not aware of a mathematical sound definition of future SCRs in the literature. Further
problems are that the Solvency II definition of the RM is circular and that it ignores the fact that
future SCRs are random.

• We showed how to define future SCRs based on a generalization of the value at risk to a dynamic
value at risk.

• For the first time a general RM definition is given that takes into account the randomness of the
future SCRs.

• We showed that the circularity of the RM definition can generally be solved.

An opportunity for future research is to find a more accurate definition of the SCR of a reference-
undertaking. In this paper we assume the existence of a trading strategy (θ∗t )t that minimizes the
SCR. The calculation and existence of such a strategy is an open problem.

A. Appendix

Proof of Proposition 3.6. As R is a Polish space (see Kechris, 1995), according to Bauer (1981, chapter
10) there exists a Markov kernel Q such that x 7→ Q(x,A) is a version of

P(Y ∈ A|X[0,s] = x), A ∈ B(R).

Setting A = (−∞, y], we get that the function x 7→ Fx(y) := Q(x, (−∞, y]) = P(Y ≤ y|X[0,s] = x) is
F ′s-B(R)-measurable for each y ∈ R. For any fixed x, Fx(y) is a cumulative distribution function, and
we define the quantile function or generalized inverse as

F−1
x (α) = inf{y ∈ R|Fx(y) ≥ α}.

Since x 7→ Fx(y) is F ′s-B(R)-measurable, it holds that

{x ∈ Ω : Fx(r) ≥ α} ∈ F ′s , ∀ r ∈ R.

From Milbrodt (2010, page 229) we know that F (r) ≥ α ⇔ F−1(α) ≤ r for all r ∈ R and α ∈ (0, 1]
such that we obtain

{x ∈ Ω : F−1
x (α) ≤ r} = {x ∈ Ω : Fx(r) ≥ α} ∈ F , ∀ r ∈ R.

Hence, the function

x 7→ F−1
x (α) = inf{y ∈ R : P(Y ≤ y|X[0,s] = x) ≥ α} = hY,α(x)

is F ′s-B(R)-measurable.
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Proposition A.1. Let (Ω,F ,P) be a probability space with random variables W and Z, where Z(ω) >
0 for all ω ∈ Ω. For all α ∈ (0, 1) Varα(W |Fs) = 0 if and only if Varα(WZ|Fs) = 0.

Proof. Let Fs = σ(X[0,s]) ⊂ F . Since P(W ≤ 0|X[0,s] = x) = P(WZ ≤ 0|X[0,s] = x) almost surely and
P(W < 0|X[0,s] = x) = P(WZ < 0|X[0,s] = x) almost surely, we have

inf{w ∈ R : P(W ≤ w|X[0,s] = x) ≥ α} = 0

⇔ inf{w ∈ R : P(WZ ≤ w|X[0,s] = x) ≥ α} = 0.

The claim follows by the definition of the dynamic value at risk.
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