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Abstract: It is essential for insurance regulation to have a clear picture of the risk measures that are
used. We compare different mathematical interpretations of the Solvency Capital Requirement (SCR)
definition that can be found in the literature. We introduce a mathematical modeling framework that
allows us to make a mathematically rigorous comparison. The paper shows similarities, differences,
and properties such as convergence of the different SCR interpretations. Moreover, we generalize the
SCR definition to future points in time based on a generalization of the value at risk. This allows for
a sound definition of the Risk Margin. Our study helps to make the Solvency II insurance regulation
more consistent.
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1. Introduction

Solvency II is the new regulation framework of the Kuropean Union for insurance and reinsurance
companies. It will replace the Solvency I regime and is planned to become effective in 2013. One
main aspect of Solvency II is the calculation of the Solvency Capital Requirement (SCR), which is
the amount of own funds that an insurance company is required to hold. For the calculation of
the market values of the liabilities, Solvency II suggests using a cost-of-capital method and defines
the Risk Margin (RM). For calculating the SCR, each company can choose between setting up its
own internal model and using a provided standard formula. The calculation standards were defined
in the documents of the Committee of European Insurance and Occupational Pensions Supervisors
(CEIOPS; the successor is EIOPA), but they are mainly described verbally. To our knowledge, truly
mathematical definitions only currently exist for the standard formula.

Since Solvency II will have a significant impact on the European insurance industry, a large number
of papers have already been published on that topic. For example, Devolder (2011) studies the
capital requirement under different risk measurements, Eling et al. (2007) outline the characteristics
of Solvency II, Doff (2008) makes a critical analysis of the Solvency II proposal, Steffen (2008) gives
an overview of the project, Filipovi¢ (2009) analyzes the aggregation in the standard formula and



Holzmiiller (2009) focuses on the relation between the United States risk-based capital standards,
Solvency II and the Swiss Solvency Test. Only a few papers give a mathematically substantiated
definition of the SCR, e.g. Barrieu et al. (2010), Bauer et al. (2010), Devineau and Loisel (2009), and
Kochanski (2010). They all define the SCR only at time 0, except for Ohlsson and Lauzeningks (2009),
who define the SCR for any point in time, but only within a chain ladder framework. Another problem
is that different mathematical definitions are used. The reason is that the directive of the European
Parliament and the Council (2009) describes the SCR only verbally, and from a mathematical point of
view there is room for interpretation. This paper yields the first mathematical analysis of similarities
and differences of the various interpretations of the SCR.

The RM is supposed to enable the calculation of the liabilities’ market values. It is less discussed
in the literature. For example, Floreani (2011) studies conceptual issues relating to the RM in a
one period model, Kriele and Wolf (2007) consider different approaches for a RM and Salzmann and
Wiithrich (2010) analyze the RM in a chain ladder framework. Generally, the RM is defined by a
cost-of-capital approach and is based on future SCRs. However, no current broad definitions for the
future of SCRs currently exist in the literature, which subsequently lacks a mathematically correct
definition of the RM. This paper fills this gap and presents therefore a definition of a dynamic value
at risk. Moreover we show that the circularity of the RM definition can generally be solved.

The paper is structured as follows. In Section 2 we present different interpretations of the fun-
damental SCR definition. Section 3 introduces a general modeling framework on which we base our
analyses. Section 4 compares the different definitions. In Sections 5 and 6, we study convergence
properties of the SCR definitions, and we discuss the SCR for insurance groups. With the help of
the generalized SCR definitions of Section 3, we present a sound definition of the RM in Section 7.
Section 8 gives an overview of the main findings and points out open problems.

2. The regulatory framework

In this section we discuss the fundamental definition of the SCR taking into account regulatory re-
quirements. In the directive of the European Parliament and the Council (2009), which is the binding
framework for Solvency 11, we find the following two definitions of the SCR:

e Article 101 of the directive requires that the SCR “shall correspond to the Value-at-Risk of the
basic own funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5%
over a one-year period.”

e At the beginning of the directive an enumeration of remarks is given that has been attached to
the directive. Remark 64 of the directive (European Parliament and the Council, 2009, page 24)
says that “the Solvency Capital Requirement should be determined as the economic capital to
be held by insurance ... undertakings in order to ensure ... that those undertakings will still be
in a position with a probability of at least 99.5%, to meet their obligations to policy holders and
beneficiaries over the following 12 months.”

However, from a mathematical point of view there is room for interpretation and we have to clarify the
fundamental mathematical definition of the SCR. The following definitions are possible interpretations
of the Solvency II framework.

(a) Let Ny be the net value of assets minus liabilities at time ¢, and let v(0,¢) be a discount factor for
the time period [0, ¢]. Then a possible interpretation of Article 101 is

SCR() = VaRo_995 (N() — U(O, 1)N1> . (2.1)

The proper choice of the discount factor is unclear. Article 101 does not give a definite answer.

(al) Let v"(0,t) be the discount factor that corresponds to a riskless interest rate. Then a possible
specification of definition (a) is

SCRU = VaRo.ggg, (No — v”((), 1)N1> . (2.2)



Such a definition can be found e.g. in Bauer et al. (2010), Devineau and Loisel (2009),
Floreani (2011) and Ohlsson and Lauzeningks (2009). In practice there are various ways to
obtain a riskless interest rate. It can be theoretically derived from a model, or it can simply
be defined as the returns on government bonds or real bank accounts. Note that the discount
factor v"(0,t) is usually random.

(a2) Let v®(0,t) be a discount factor that relates to the real capital gains that the insurance
company really earns on its assets in the time period [0, ¢]. Then another possible specification
of definition (a) is

SCRy := VaRo.g95 (NO —v®(0, 1)N1> . (2.3)

We are not aware of such a definition in the literature, although it has advantageous properties
as we will see later on.

(b) Assuming the existence of a martingale measure ) that allows for a risk-neutral valuation of
assets and liabilities, some authors, e.g. Barrieu et al. (2010) and Kochanski (2010), define the
SCR according to Article 101 as

SCRy := VaRo.095 (EQ (v™(0, 1)Ny) — v™(0, 1)N1>. (2.4)

(c) A mathematical interpretation of Remark 64 of the directive leads to
SCRy :=inf {Ng e R: P (N, > 0,e €[0,1]) > 0.995}.

In practice, Ny is not calculated continuously in ¢ but only on a discrete time grid. In case of a
yearly basis, we simplify the above definition to

SCRy :=inf {Ng e R: P (N; >0) > 0.995}. (2.5)

Bauer et al. (2010) state that this is the intuitive definition of the SCR, while (al) is an approx-
imation of it. With this it is to be considered that N; depends on Ny, such that it is really a
minimization problem.

The different interpretations of the SCR. lead us to the following questions.

(1) Are (some of) the different definitions equivalent? If not, can we find additional conditions that
make (some of) them equivalent?

(2) Are Article 101 and Remark 64 consistent? If not, which additional assumptions do we need to
make them consistent?

(3) If the different definitions cannot be harmonized, are there other arguments that support or
disqualify some versions?

So far we only have discussed the definition of a present SCR that gives the solvency requirement
for today. However, for the calculation of the Risk Margin, which will be discussed in more detail in
Section 7, we also have to define future SCRs that describe solvency requirements at future points in
time.

(4) How can we mathematically define an SCR, that describes the solvency requirement at a future
time s > 07

In the Solvency II standard formula the one year perspective is replaced by shocks that happen
instantaneously. Consequently, there is no discount factor and so the standard formula does not
answer the questions. We start with a small example that illustrates the SCR definitions. The
example is kept very simple in order to make the differences between the definitions more clear.
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Figure 2.1: development of the assets

Example 2.1 (SCR of a riskless insurer). We consider a time horizon of one year and a financial
market with two assets, a riskless bond K and a stock K2, which both have a price of K& =K 3 = 100
at time 0. Two scenarios 2 = {w;, w2} may occur, see Figure 2.1. Both scenarios shall have the same
probability, P({w1}) = P({w2}) = 0.5. We consider a simplified insurance company that is closed to
new business and which has an asset portfolio with no bonds and two stocks, (Hg, H3) = (0,2). The
insurance portfolio consists of just one unit-linked life-insurance with a sum insured of K% at time 1.
Given that no assets are traded during the whole year, i.e. (H}, H?) = (Hg, H3) for all t € [0, 1], we
obtain Ny = 100 and N; = K?. In the following we calculate the SCR according to the different
definitions.

(i) Since the bond is riskless, the riskless discount factor is v™(0,1) = 1.057!, and by definition (al)

we obtain
100
SCRy = VaRg 995 (100 — 1.0571K12> = —.
(ii) Since v*°(0,1) = %, the SCR according to definition (a2) is
1
100 o
SCRO = VaR0,995 (100 — K,%Kl) =0.

(iif) Since we can show that Q({w;}) = P({w;}) = 0.5 for i = 1,2, we have v"/(0, 1)Eq(N;) = 100 =
Ny, and consequently the SCR according to definition (b) is equal to the SCR from definition (al).

(iv) Definition (c) requires to minimizing Ny. Suppose that the company holds HZ € R stocks at
time 0. Then Ny = (HZ —1)100 and Ny = (H? — 1)K? = (HZ — 1)K?, and thus we get

SCRy = inf {(H§ — 1)100 : P((H§ — 1)K > 0) > 0.995}
=inf {(Hj —1)100: H§ > 1} = 0.

The numerical example shows that the different SCR definitions are not generally equivalent. Which
SCR is adequate here, zero or greater than zero? Let us recall the fundamental intention of the
Solvency II project. According to Remark 16 (European Parliament and the Council, 2009, page 8)
“the main objective of insurance and reinsurance regulation and supervision is the adequate protection
of policy holders and beneficiaries.” Consequently, if the company holds one stock it has a perfect
hedge for the liabilities, and the policy holder is sufficiently protected. Hence, it seems reasonable to
set SCRy equal to zero. However, the SCR definitions that are most frequently used in the literature,
namely definitions (al) and (b), both lead to an SCR greater than zero.

3. A mathematical modeling framework

For a more detailed comparison of the different SCR definitions of the previous section, we have to
establish a more detailed modeling framework. We keep the model as simple as possible without any
loss of generality. The modeling takes some effort, but in turn we will gain mathematically rigorous
results.



Definition 3.1 (assets and liabilities). Let (£2, F,P) be a probability space with filtration (F%)¢>o,
and let all events in Fy either have probability one or zero.

1. Let K} be the capital accumulation function that gives the market value of the investment i at
time ¢ (1 <4 <m) and let K; = (K}, ..., K;"). We assume that (K});>¢ is an adapted positive
semimartingale.

2. Let H} be the units of asset K} that the insurer holds at time ¢ (1 < i < m) and let H;, =
(H},...,H™). We assume that (Hj);>o is an adapted finite-variation process.

3. We define A; := H; - Ky := Y _* | HK} as the market value of the assets that an insurer holds
at time ¢. For technical reasons we generally assume that A; = 0 implies H; = (0, ...,0).

4. If A; € R\ {0}, we define 0} := gfﬁ as the proportion that the market value of investment ¢ has
on the total market value of the asset portfolio. We call (6;); := (6}, ...,0/); the asset strategy

of the insurer.

5. Let Z; denote the sum of all actuarial payments on the interval [0,¢]. We assume that (Z;):>0
is an adapted finite-variation process.

6. Let L; be the time ¢ market value of the liabilities of the insurer. We assume that (L;);>0 is
some adapted stochastic process.

7. Let Y; denote the sum of all payments to and from the shareholder. We assume that (Y;);>0 is
an adapted finite-variation process.

Defining (K})>0 as a semimartingale, (H})i>0, (Zt)t>0, and (Y3)¢>0 as finite-variation processes, and
(L¢)¢>0 as an arbitrary stochastic process comprises basically all modeling frameworks that are used
in the actuarial literature. The class of semimartingales includes diffusion processes as well as Lévy
processes and discrete investment returns. The class of finite-variation processes includes absolutely
continuous and discrete payments. Consequently, with this framework we are able to model almost
all insurance companies. However, this framework allows constellations of parameters that does not
correspond to a reasonable insurance company.

Proposition 3.2 (product rule). The change in the market value of the assets at time t can be split up
nto a sum of the return from the investments and the gain through purchase and sale of investments,
1.€.

dAt :Ht, th+thHt (31)

The proposition is an application of the integration by parts formula for semimartingales (Protter,
2005, page 68 and Theorem 28 in section II).

Assumption. Purchases and sales of investments K; - dH; happen due to premium and insurance
benefit payments and expenses dZ; and due to payments to and from the shareholder dY;,

K;-dH, = dZ; + dY;. (3.2)

Premium payments and payments from the shareholder have a positive sign, whereas insurance
benefit payments and payments to the shareholder get a negative sign. Let
dK}

Kj_

dg, := Y 6 d¢} with dgj :=

i=1

(3.3)

in case of A;_ # 0 and let d¢, := 0 for A, = 0. For each investment i, d¢! is the interest intensity
for this investment. Since the total return from the investments of the insurer equals

H; -dK; = Ay d¢,,



we can interpret d¢, as the company specific average interest intensity. Applying definition (3.3) and
(3.2), equation (3.1) can be rewritten as

dAy = Ai—d¢, +dZ; + dY;. (3.4)

This means that the change in the market value of the assets at time ¢ equals the sum of the investment
return on the assets (with average interest rate d¢,), the actuarial payments, and the payments to
and from the shareholder at time ¢. The unique solution (Protter, 2005, Theorem 37 in section II) of

AR, = K, dd,, Ko=1,

is a positive semimartingale and describes the capital accumulation function of a synthetic asset
composed according to (6;); that yields exactly the same interest rate as the investment portfolio of
the insurer. Thus, we define the company specific discount factor (cf. (2.3)) by

v (s,t) :=

=

(3.5)

The discount factor v°°(s,t) is always positive since (K;); is a positive semimartingale. Similarly, we
assume that v"!(s,t) has a representation of the form v™(s,t) = K7/ K] where dK]' = KJ* d¢}" with
the riskless interest rate dgj'.

Proposition 3.3. For all 0 < s <t < oo we have

v (s, t)Ar — Ag = / v (s,u) d(Zy + Ya).

(s:t]

Proof. Let H; := ?t_lHt Ky = Ft_l A;. Analogously to the proof of Theorem 37 in chapter II
of Protter (2005), we can show that ?;1 is a semimartingale, and, thus, H; is a semimartingale.
Applying the integration by parts formula (Protter, 2005, page 68 and Theorem 28 in chapter II), we
get d(H; Ky) = H;_dK; + Ky dH,; + d[H, K|;, where the third addend is the so called quadratic
variation. Since the definition of K; implies that

AR, = H, K, dg, = Ar_dd, = H,_ - dK,

and since d(H; K;) = d4; = d(H,; - K;), we have K, dH; + d[H,K]; = K; - dH;. The right hand
side has finite variation, because H; has finite variation. As the bracket process d[H, K]; also has
finite variation, K;_ dH; must have finite variation, too. As stochastic integrals with finite variation
integrator and left-continuous integrand always have finite variation (Protter, 2005, page 63 and
Theorem 17 in chapter I1), we get that dH; = K, 1(?,5_ dH;) has finite variation, as well. Hence, we

get

KidH; = K;_dH;+d[H,K]; = K; - dH; = dZ; + dY;.

With the help of this equality we obtain

Ky

?AtAs:KS(HtHS): K. dH, = / Ks %, dm, = /UCO(s,u)d(Zt+n).
t
] (s:] (s,1]

(S7t

Definition 3.4. Let N; := A; — L; be the net value at time ¢, which is defined as the difference
between the market value of the assets and the liabilities.



The net value should not be confused with the net asset value, which is used in the official Solvency I1
documents. The net asset value is the market value of the assets minus the best estimate of the
liabilities. The net value can be interpreted as the economic equity.

In definition (c) of the previous section we have to minimize the value of the asset portfolio at time
zero. Because upsizing and downsizing of the asset portfolio can be disproportional to the existing
portfolio, we have to extend our modeling framework. Suppose that we have an insurance company
with asset portfolio (H;);, liabilities (L¢);, actuarial payments (Z;)¢, and shareholder payments (V7).

We assume that the asset portfolNio may be shift(id to (Hy + Hy); such that the market value of the
assets at time ¢ changes to A; + A; = Hy - Ky + H; - K. Accordingly, the new net value at time ¢ is

N, =Aj+ A — Ly,

since the liabilities do not change, i.e. Ly = 0. We interpret (f[t)t as an additional asset portfolio that
evolves according to

d;{t = ;{t— d(gt,

see (3.4), where the average interest rate d¢y and the asset strategy 6; of the asset portfolio (Hy)
are defined analogously to (3.3). Note, that A, and H, can be negative. Again, A =0 implies
E[t = (0,...,0). We assume that L; is independent of th. Accordingly, we can define a discount factor
for the additional asset portfolio

K, . = = = o
v¥(s,t) == = with dK; = K;_ d¢y, Ko = 1.
t

Since the differential equations for ﬁt and INQ are equal up to the initial condition, we have
A
v¥(s,t) = =2, (3.6)
Ay
Theorem 3.5. Given that No 1s deterministic, we have

inf {No € R: P(N; > 0) > 0.995} = VaRg.995(No — v°%(0,1)N1). (3.7)

Proof. From (3.6) we get Agyq = v%(s, s+ 1)L A, which leads to
NS“ = Ngi1 + va’d(s, s+ 1)_1115 = Ngy1 + vad(s, s+ 1)_1 (]vs — Ny),
and since v®(s, s 4 1) is always positive, we obtain

{Nop1 >0} = {0"s,54+1) Nyy1 > 0} = {Ny — v%(s, s+ 1) Nypp < N,} (3.8)

for all s > 0. If Ny is deterministic, the left hand side of (3.7) is well-defined and equals the right
hand side of (3.7) because

P(ﬁl Z 0) =5 P(NQ - v“d(O, 1) N1 S N(])

The corollary allows us to substitute definition (2.5) with
SCR(C) = VaR0.995 (N() — Uad(o, I)Nl) . (3.9)

The assumption that J\70 is deterministic means that N(] is known at present time zero, which meets
with reality. The equality (3.7) is at first view surprising, since the left- and right-hand side are
different in structure. This difference is especially important when Monte-Carlo simulations are used.
In order to calculate the left-hand side, a starting level of Ny is needed before N; can be simulated.



This simulation only approximates the ruin probability for this starting level. Consequently, we need
methods such as nested intervals and the simulation has to be run over and over again until the
desired ruin probability is reached. In contrast, the right-hand side can be calculated with one run of
simulations.

For the definition of a dynamic value at risk we need the following proposition. The proof can be
found in the appendix. In a discrete time setting, a dynamic value at risk was already introduced by
Kriele and Wolf (2012). We give a more general definition for continuous time intervals.

Proposition 3.6. Let (2, F,P) be a probability space with random variables Xjo 4 : (2, F) — (', F)
and Y : (Q, F) — (R, B(R)), where (', F.) is some measurable space. Then the function h : Q' — R
defined by

hyo(z) :=inf{y e R: P(Y <y|Xppq=1) > a}
is F.-B(R)-measurable.

Definition 3.7 (dynamic value at risk). Suppose that the assumptions of Proposition 3.6 hold, and
let Fs = 0(Xjo,5)) C F, that is, F is generated by Xy . Then we define for a € (0,1)

VaR,, (Y‘Fs> = hY,oc(X[O,s}) .

With the help of Definition 3.7 we can generalize the SCR definitions (2.1), (2.2), (2.3), (2.4) and
(3.9) to future points in time by replacing the values at risk by dynamic values at risk.

Definition 3.8 (present and future SCR). The SCR at time s is defined as

(2) SCRE = VaRogos (N — v(s,5 + 1) Neya| ),
(a1) SCR! = VaRo,g05 (N, = v"'(s,5+ 1) NSH‘E),
(42) SCRE? == VaRogos (N, — (5,5 + 1) Now |73,
(b) SCRY := VaRq 995 (vrl(s, s+ 1) (EQ(Nst1]Fs) — N1) \f)

(c) SCRS := VaRg 995 (NS —v¥(s,54 1) Ns+1’fs)-

4. Comparison of the different SCR definitions

In a next step we want to learn if and when the different SCR definitions are equivalent. We start
with an example.

Example 4.1. We consider a simplified insurance company that is closed to new business and has to
fulfill insurance liabilities of 105 in one year (e.g. an endowment insurance without surplus participation
and a remaining term of one year). We consider the same financial market as in Example 2.1. The
company holds one riskless bond K' and one stock K2, i.e. H} = HZ = 1. At time 0 the insurer has
assets of Ag = 200 and liabilities of Ly = % = 100. Consequently, we have Ny = 100 and Ny = K2,
since K{ = 105. In the following we calculate the SCR at time 0 according to the different SCR

definitions.

(i) The SCR calculated with definition (al) is

K2
SCRg! = VaRg 95 (No — "0, 1)N1> = VaR 995 (100 - 17015) =

100
0.



(ii) The SCR calculated with definition (a2) is

200 100
SCRSQ = VaRo.995 <N0 —v(0, 1)N1) = VaRg 995 <100 — 2) =

K2+105 ') 13°

(iii) Since v"(0,1)Eq(K?) = 100 = Ny, we obtain by definition (b)

100

SCRY = SCRY! = =

(iv) Equation (3.7) gives us two possibilities to calculate the SCR, both of which we want to demon-
strate. We assume that the insurer has additional assets Ay and that 5& € [0,1] is the percentage
invested in the bond. Consequently, 5(2) =1- 5(1) is invested in the stock. In this example, we do
not allow short sales, and the units of the additional assets shall not change, i.e. ﬁ& = H 1 and
HZ = H2. We obtain Ny = 100 + Ay and Ny = K2 + Ay v*(0,1)~! with

A ~ ~ K2\-1
ad 0 1 1 1
0,1) = = _<9 1.05+(1 -6 —) .
v(0,1) . 0 ( 0)100

The left-hand side of (3.7) is
SCRS = inf {Ny € R: P(N; > 0) > 0.995} = inf {100 + Ag : Ay > —600(85 +6)~'}
=100 — 600(85 +6)~".
For the right-hand side of (3.7) we get
SCRE = VaRg.995 <N0 o 1)N1) = 100 — 600(8} + 6)~7,

which is of course equal to the value above. The resulting SCR, varies considerably depending on
the choice of 5& One possibility for 5(1) would be to minimize over this parameter. This would
lead to SCRG = 0. The initial ratio of bonds 9(1] was % We can choose 5(1) such that definitions
(a2) and (c) are equal,

~ 1 ~ 1
SCRS = SCRY? < 100 — 600(6} +6)~! = 1%0 & 605 ).

To summarize, we found that
e depending on the choice of (gt)t, SCR{ can be equal to any of the other SCR definitions,
o SCRS2 equals SCRS if (6)); = (6y)¢,
e SCRY! equals SCRS.

We will see that all three facts do not only hold for our specific example but are generally true.

Theorem 4.2. We have SCR? = SCR for all financial markets (K;)¢, actuarial functions (Z;):,
and liability market values (L¢); if and only if v(s,s + 1) = v*(s, s + 1) almost surely.

Proof. Tfv(s,s+1) = v%(s, s+1) almost surely, then the definitions of SCR? and SCRE are equivalent.
Suppose now that P(v(s,s + 1) # v%(s,s + 1)) > 0. Without loss of generality let P(v(s,s 4+ 1) >
v¥(s,5+1)) < P(v(s, s+ 1) < v¥(s, s+ 1)). We define a disjoint decomposition MU M; U My =
by {v(s,s+1) > v¥(s, s + 1)} C Mg € F, {v(s,s +1) <v¥(s,s +1)} = My € F, and {v(s,s +1) =
v¥(s,5+1)} D My € F with P(M3) < 0.005. Since P(Mp) < 0.5, we have P(M; U Mz) > 0.005, and
by setting Ns = 0 and

1

Y —
st ve(s s+ 1)

]-MlUMQ

we obtain SCRS > 1 since P(Ns — v (s, s +1) Ngy1 > 1) = P(M7 U M) > 0.005 and SCR® < 1 since
P(Ns —wv(s,s+ 1) Ngj1 < 1) =P(MpU M;) > 0.995. That means that SCR? # SCRS. O



Remark 4.3 (Invariance of SCR with respect to the initial capital). Since (3.6) yields that v2%(s, s +
1) As41 = Ag, we generally have

N, — U“d(s, s+ 1)Nsi1 = Ny — vad(s, s+ 1)Nsi1,
which implies that
SCRE = VaR0.995 (Ns — Uad(s, S + 1)Ns+1‘fs) = VaR0.995 (ﬁs — ’Uad(s, s + 1)N5+1 ’fs> . (4.1)

Originally, we motivated the definition of SCR{j by the net asset value minimization (2.5), which is by
definition invariant with respect to the initial net asset value. Equation (4.1) says that this invariance
property remains true for s > 0, given that additional assets are invested according to (6;);. By setting
v¥(s,5+1) = v"(s,5+1) and v*(s, s+ 1) = v°°(s, s+ 1), we analogously get that SCR?! and SC R
are invariant with respect to the initial net asset value if additional capital is invested risklessly and
proportionally to the existing asset portfolio, respectively. Hence, we can say that definitions (al)
and (a2) implicitly assume that redundant capital is invested riskless and proportional to the existing
portfolio, respectively.

The next proposition analyzes the relationship between the discount factors, 6, and H;.

Theorem 4.4. Given that 0; and gt exist, we have 0y = 515 if and only if Hy = Uy ﬁt for some real-
valued and Fi-measurable random variable Wy € R\ {0}. We have v°(s,s +1) = v¥(s, s+ 1) for all
financial markets (K); if and only if 6, = 0y almost surely on (s,s + 1].

Proof. Let Q = B1U...U By, be a disjoint and F-measurable decomposition of §2 such that 9{ (w)>0
for w € Bj, which implies that H](w) # 0 for w € B;j. Such a decomposition always exists since
we supposed that 6, exists and since 6; is Fi-measurable. By solving the system of linear equations

i = gﬁ{(tz, i € {1,...,m}, we obtain that the definition of #; is equivalent to

Hiw)  6i(w) K (w) y » . |
H(w) 6w Kiw)® 2B iehmmiid)

An analogous result holds for 5t and I:Tt, and if we assume that 6; = gt, we may set B; = Ej and
obtain

_ N.E o we By e (L \ (),

Thus, we can define U; by W (w) := H}(w)/H!(w) for w € Bj, which is non-zero and F;-measurable
as Hg(w) and I:Tg (w) are non-zero and Fy-measurable and B; € F, j € {1,...,m}. On the other hand,
if we assume that H; = ¥, ﬁt, then the definitions of 6; and 6775 yield Ht% = @,
Suppose now that there exists an ig € {1,...,m} and a to € (s, s+ 1] for which P(Hig + éig) > 0. By
defining K°(w) := 1+ L[49,00)(t) and K (w) := 1 for all j # io, from (3.5) and (3.3) we get
1

UCO(S,t) — W’ Uad(s,t) _

to—

1
146
Thus, we obtain P(v%(s, s + 1) = v(s, s + 1)) = P(6{2 = §,°) < 1. On the other hand, if (6;); = (6;);
almost surely, then we also have (¢;); = (¢); almost surely for the corresponding cumulative interest
intensities according to (3.3) and, thus, v°(s,t) = v®(s,t) almost surely. O

Remark 4.5. SCR definition (c) can change considerably depending on the choice of v®(s,s + 1).
While in definitions (al), (a2), and (b) the discount factor is largely determined by pre-existing
circumstances, the discount factor v*¢(s, s +1) is mainly a management decision that the insurer has
to make by appointing an asset strategy (6;);.
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By considering both Theorem 4.2 and Theorem 4.4, we get that SCR%?* = SCR for all financial
markets (K;);, actuarial functions (Z;);, and liability market values (L) if and only if §; = 6; almost
surely on (s,s + 1]. This property was already indicated by Example 4.1. The same example also
indicates that (al) and (b) are equal, which we can actually prove by using the following proposition.

Theorem 4.6. We assume a risk-neutral measure Q and a discount factor v™" such that
Ky = Eq(v™(t,u) K| F;)

for all w >t > 0 and such that
L, :/ Eq(v" (t,u) d(—Zy — Yu)|F2)
(t,00)

for allt > 0. Then we have
N, = EQ(vrl(s, s+ 1) Ngj1|Fs)
for all s > 0.

Proof. From the martingale property K; = Eq(v"(t,u) K,|F;) we can deduce K; = Eq(v"(t,u) K .| F),
which implies

Eq (v”(t, u)(v(t, u))f1 |]:t) =1

for all w >t > 0. Then, by applying Proposition 3.3, we get

Eq(v"(s,s + 1) As1|Fs) = Eq <v”(s, s+ 1) (v°(s,s + 1)) LA

)

_ A +/ Eq(v"(s,5 4+ 1) (v (u, s + 1) d(Zu + Ya)| 7o) -
(s,84+1]

+ / v (s, 54+ 1) (v°(u, s+ 1)) "1 d(Z, + Vy)
(s,s+1]

As Z,, +Y, is of finite variation and has a representation of the form d(Z, + Y,) = (zy + yu) du +
A(Z,+Y,), we have

Eq (v (s, s + 1) (v (u, s + 1)) d(Zy + Vo) | Fs)
=Eq (v’"l(s, u) Eq (U’"l(u, s+ 1) (v°(u,s + 1))_1 ‘Fu) (zu + Yu)

}"s) du
+ Eq (v (5,0) Eq (0" (u s + 1) (07 (u,5+ 1)) A(Z + Ya) |72
= Eq (v (s. ) (zu + ) 7).

and, thus, we obtain

}“s> du + Eq (v”(s, W) A(Zy + Ya)

EQ(UM(S, s+ 1) As+1|fs) = As + / EQ (UTZ(Sa u) d(Zu + YU)"’T:S)

(s,s+1]
%)

=L+ / Eq (v (s, u) d(Zu + Vo) | Fs) -
(s,s+1]

On the other hand, we have

Eq(v"™(s,s + 1) Lsy1|Fs) = Eq (Ls — / (s, u) d(=Zy — Yy)
(s,s+1]

Hence, we get

Eq (v (s,s + 1) Ngt1|Fs) = Eq(v"™(s,5 + 1) Agy1 — v (8,5 4+ 1) Lg1|Fs) = As — Ls = Ns.

11



Under the assumptions of Theorem 4.6 we always have
VaRo.005 (NS — (s, 5+ 1) Nop1) ‘}')
= VaRoq.995 (EQ( ‘(5,5 + 1) No1|Fs) — v(s, 5+ 1) Nyy1) ’E)
for any choice of v(s, s 4+ 1). In particular, for v(s,s + 1) = v"(s, s + 1) we get
SCR™ = VaR,, 995(EQ( Us, 5+ 1) Nys1|Fs) — 0" (s, 5 + 1) SH‘}") — SCR®.

for all s > 0. Because of this equivalence of SCR% and SCR?, it suffices to study definitions (al),
(a2), and (c) only.

SCR SC R

ad . co

Q exists

Uad = ,Url

SCRY SCR¢

v =" & Q exists

Figure 4.1: Relation between the SCR definitions

5. Convergence of SCR definitions

Example 5.1 (Convergence of SCR definitions (al) and (a2) to (c)). We pick up example 4.1 but
set 0} = 0.4, which has the effect that definitions (a2) and (c) are not equal anymore. We still have
SCRg' = 10 and SCRE? = 1% but SCR§ = 2. Suppose that the insurer uses SCR definition (al)

13
and aims at minimizing the asset portfolio. At time zero, there is a net value of Ny = 100, but the
regulatory requirement is just y(!) = SC’RS1 = 1—90, so the insurer reduces Ag = 200 to 100 + 100.

The reduction of Ay follows strategy 6y, which means that bonds worth @ and stocks worth @ are

paid out. However, the change of Ay has an effect on SC’R , and a recalculation of the SCR (for
Ny = 100) yields y(2) 340 . Thus, the insurer has to adapt the asset portfolio Ay agam By repeating
this procedure n-times, we get y(™ = 245 + (35)”315 which converges for n — oo to 2 = SCRg. The
same procedure for SCR definition (a2) leads to y(™) = D4 (& )”315 which convergeb also to SCR§

for n — oo. It is essential here that in each iteration step strategy 90 is used. If, for example, the
company cuts the bonds only but keeps all stocks, SCRE! would not have changed.

In fact, we can show that SCR® always converges to SCRC. Before we put this into a theorem, we
introduce the following setting. An insurer has a net value of y(®) := N, and calculates the SCR

In a next step the company reduces the asset portfolio by A such that the new net value is N =
N, + A, = yM. According to (3 6) we have Ayy; = v%(s,s + 1)L A,, and thus we get N8+1 =
Nsi1 + (y(l) — Ny)v*(s,s +1)~'. With y® we denote the SCR that corresponds to the altered

net value. As y? is not necessarily equal to y(), the asset portfolio is again re-organized such that
Ny, = N, + A, = y@. By repeating this procedure n-times, we obtain

y(l) = SCRa VaRy. 995( — ’U(S S+ 1) Ngi1

y™ = VaRg 995 (y(”_l) —v(s,s+1) (Ns+1 + (" = N (s, s+ 1) ) ‘}' ) (5.1)

12



Theorem 5.2. The random variable SCRY is the (almost surely) unique fiz-point of iteration (5.1).
If there exits an € € (0,1) such that

v(s,s+1)
—_— < 2— 5.2
v(s, s+ 1) SeTe (52)
then li_)rn y") = SCRS, where y™ is defined as in (5.1).
Proof. 1f y is a fix-point of (5.1), then

y = VaRopgo5(y —v(s,s+ 1) (Ns+1 +(y — Ns)'Uad(S,S + 1)-1) ‘J—_-s)

0
o Vo (G (5 s 00 ) )
(.

— 88+1)N5+1 y’}")

vd(s, s+ 1)

0= VaRo_995

= :VaRo.ggg,( — 8 S+1 3+1‘]:> = SCR;:

In the third line, we use that % is greater than zero such that we can omit it, see Proposition A.1
in the appendix. The equivalencés yield that SCRY is always a fix-point and that all fix-points equal
SCRE.

By multiplying equation (5.2) with —1, adding 1, and multiplying the result with y™ — SCR¢
separately for y(™) — SCRS > 0 or y™ — SCRS < 0, we get

1 — ™ _ aoRe] < (o™ — aopey(q L&) ™ _ o Re
(1—e)|y™ - SCR| < (y SCRS)(l vad(s,s+1)>§(l &)|y™ — SCRe|.

From this inequality and equation (5.1) we obtain that

y(n+1) SCRC + VaRg 995 (m (Ns — ad(S, s+ 1) s+1 — SCRE¢ )
_ s D Yo goge
+(1 vad(578+1))( SCR)]—")

has the upper bound SCRS + (1 —€)|y™ — SCRE| and the lower bound SCRE — (1 —¢)|y™ — SCR¢|.
By induction we can show that

|y(”+1) - SC’RE} <(1- e)”“’y(o) - SCR;’ =0 (n—00).
Hence, ILm y" = SCRe. O

Setting v(s, s+ 1) = v"(s,s + 1) and v(s,s + 1) = v°°(s, s + 1), we get that iterative calculations of
SCR and SCR%? converge to SCRS. If the probability space ) is countable, condition (5.2) can be

relaxed to 0 < % < 2. Since the capital accumulation function is positive, the discount factors

v(s,s4+1)
vad(s,s+1)
smaller than 1 + 2i, or i*¢ < 1 4 2i. This restriction is usually met in practice. The proof also shows

that for a discount ratio vi;g%;”l) > 2 the sequence y(™ never converges. This fact is illustrated in

Example 5.3. If the discount ratio is random and takes values both less and greater than 2, a general
convergence result is out of reach.

are positive and < 2 if and only if the average interest rate i®® of the additional assets is

Example 5.3 (speed of convergence). We modify the payoff of the stock from example 4.1, such
that it earns a deterministic interest rate. We use this variable to analyze different discount ratios
p = %. With a starting point of Ny = 100 we calculate the iteration (5.1) with 62 = 6%, such
that v9%(s, s + 1) = v°(s,s + 1) and SORS = SCR?2. The results for the first 15 steps are shown

in Figure 5.1. For p = 0.93 the convergence is rapid. This is still the case for p = 1.07, even though

13



300

200

.

9 11 4

-100 +

R

-400

—=-0.93 1.07 —<1.69 —+-2.00 —-2.05

Figure 5.1: iteration (5.1) for different discount ratios

the iteration is not monotonous anymore. If the discount ratio is equal to p = 2.00, the iteration has
two accumulation points, and the iteration jumps between them. For values larger than 2 we see a
divergent behavior. It should be mentioned that these examples are quite extreme. For example, in
case of p = 2.00 the stock performance has to be at least 215% in 99.5% of all events, given that
the riskless interest rate is 5% and the stock ratio is 50%. In practice condition (5.2) is hardly a
restriction.

6. Insurance groups

Insurance groups have the possibility to shift money between its subsidiary undertakings up to a certain
extent. It may be sensible that such a shift should not change the SCR. Under certain conditions we
show in the following that this is the case for SCRC.

Suppose we have an insurance group that consists of n insurance companies with asset portfolios
(“Hy);, liabilities (“Ly);, actuarial payments (*Z;);, and shareholder payments (*Y;); (1 <i < n). Let
(th)t be the asset strategy of company ¢ for additional assets. We assume that the total assets of the n
insurance companies are reallocated at time s and that iH s are the units of assets that insurer i delivers

or receives (depending on the sign) at time s. Let igl = ZggKﬁ

be the corresponding proportions of

transferred assets, and let *SC RS and ZS/CT%E be the SCRs for company i according to definition (c)
before and after the asset transfer. As the m companies may have different asset strategies, the
exchange of assets at time s occasionally comes with some trading on the capital markets in order to
harmonize the received assets with the asset strategies (*0;);.

Proposition 6.1 (invariance property). We have Z@i = 1SCRS for all1 <i < n. If we ban trading
. ——C .

when the assets of an insurance group are reallocated, we have 'SCR, = "SCR for all 1 <i <n and

all capital markets (Ky); if and only if ‘0; =0, for all 1 < i < n.

Proof. If we allow for trading, any reallocation of assets conforms with the asset strategies (iét)t,
and the Corollary can be proven by following the arguments of Remark 4.3. If we ban trading, then
condition ‘@; = 0, is sufficient and necessary because of Theorem 4.4. O

As stated in the directive (European Parliament and the Council, 2009, Chapter II, Section 1),
the SCR of a group should be calculated on the basis of the consolidated accounts (default method)
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or by aggregating the stand-alone SCRs (alternative method). The default method is similar to the
calculation of a single SCR. In the technical specifications to QIS 5 (CEIOPS, 2010, section 6) the
alternative method is basically described as

SCRgroup - Z iSCRsolo-adjusted ’

where iSC’Rsolo_adjuSted is the SCR of company ¢ adjusted according to some group effects. Conse-
quently, if we use the SCR definition (c), the SCR of the group is invariant with respect to reallocation
of capital, given that the asset strategies are consistent.

Example 6.2 (invariance property for SCR definitions (al), (a2) and (c)). We consider example 4.1
but add one more asset, which has price K3 := 100 at time zero and payoff K3 := 210 — K? after
one year. We consider two insurance companies that belong to an insurance group and both have
liabilities of Ly = 100 and L; = 105. Before a transfer of assets takes place company 1 has only
one unit of K2, while company 2 has one unit of K' and one unit of K3. The number of units are
assumed to be constant over time. Consequently, we obtain 1Ny = 0, 2Ny = 100, ' N; = K? — 105
and 2Ny = K3. The resulting SCRs are shown in Table 1. Suppose that company 2 transfers one

| SCR§'  SCR$  SCRj
Company 1 | 0 ~ 143 2 ~167 % =125

Company 2 &70 ~ 14.3 % ~T.7 0

Table 1: SCR before the transfer takes place

unit of investment 3 at time zero to company 1, 1H0 1H0 = (0,0,1) and 2H0 1H0 = (0,0,—1).
We obtain 1No = 100, 2N0 =0, N1 = 105 and 2N1 = 0. The corresponding SCRs after the transfer

are given in Table 2. As expected, definition (c) is invariant with respect to the exchange of assets.

——al —~— a2 ——cC
| SCR, SCR, SCR,
Company 1 0 0 12.5
Company 2 0 0 0

Table 2: SCR after the transfer took place

The SCR definitions (al) and (a2) are not invariant, not only individually for each company but also
in total. The transfer of investment K3 from company 2 to company 1 is reasonable, since K3 is a
perfect hedge for investment K2. After the asset transfer, both companies have no longer any risk, and
SCRs of zero seem to be appropriate. But why is 1@8 > 07 As 'Hy = (0,0,1) and definition (c)
implicitly assumes that redundant assets are paid out (cf. definition (2.5) and Remark 4.3), shares of
K3 are paid out and the perfect hedge is disrupted.

The example illustrates that an invariance property is not always desirable. However, if asset values
are minimized, we always end up with a SCR according to definition (c), see Theorem 5.2.

7. Risk Margin

This section deals with the Risk Margin and its interaction with the SCR. Since there is no universally
valid definition of the RM in the academic literature, we close this gap and present a definition of the
RM that is consistent with the directive. The key is that we defined the SCR in Definition 3.8 also
for future points in time. In order to keep this section generally valid for all SCR, definitions discussed
in previous sections, we use v(s, s + 1) for the discount factor in the SCR definition.

As stated in article 75 paragraph 1(b) (European Parliament and the Council, 2009), “liabilities
shall be valued at the amount for which they could be transferred, or settled, between knowledgeable
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willing parties in an arm’s length transaction.” Paragraph 1 of article 77 requires that the “value of
technical provisions shall be equal to the sum of a best estimate and a risk margin”. Thus, the risk
margin is the difference between the market value and the best estimate of the liabilities. This leads
to a very general definition of the RM.

Definition 7.1 (RM general version). The RM at time s is defined as
RMS = Ls - Bs )
where By is the best estimate of the liabilities at time s.

This is the correct definition of the RM, but it is not a constructive definition, and there is a lot of
room for interpretation. The purpose of the RM is to decompose the calculation of the market value
of the liabilities into Ly = By + RM;. Article 77 paragraph 5 of the directive requires that the “risk
margin shall be calculated by determining the cost of providing an amount of eligible own funds equal
to the Solvency Capital Requirement necessary to support the insurance and reinsurance obligations
over the lifetime thereof,” i.e. the directive suggests a cost-of-capital approach with respect to the
SCR. A possible implementation of these requirements is given in the technical specifications to the
fifth Quantitative Impact Study (CEIOPS, 2010). Therein, the RM is defined as

SCRRV

RM =c )k+1’

(7.1)
k>0 (]. + Tk+1

where SCR®V is the SCR of a reference-undertaking, ¢ the cost-of-capital rate and r; the risk-free
rate for maturity ¢. In the Swiss Solvency Test the RM is defined similar, but the sum starts at time 1.
The calculation of the RM is based on a transfer scenario, where the liabilities are taken over by an
artificial insurance company, which minimizes the part of the SCR comming from the hedgeable risks
and which had no other insurance contracts before the transfer takes place (compare CEIOPS, 2010).
That shall establish a comparability of the RM between different insurance companies. The formula
has three deficiencies.

e Formula (7.1) defines the RM only for time s = 0.
e Future SCRs are random and hence the RM at time s = 0 is also random.
e A precise mathematical definition of the SCR of a reference undertaking is missing.

The technical specifications require that the reference undertaking behaves similar to the original
undertaking, but hedges all hedgeable risks. If (6*); is the trading strategy that minimizes SC Ry, the
SCR at time s of a reference-undertaking SCREV is the SCR calculated with trading strategy (6%);.
However, the precise definition of (6*); and its calculation is not a trivial task, and is beyond the
scope of this paper. Since it is extremely difficult to minimize over all possible trading strategies, in
practice, the market risk is usually neglected. As the RM is intended for the calculation of the market
value of the current liabilities, we exclude new business in SCRfY. This assumption is also made in
CEIOPS (2009).
We generalize (7.1) by the following definition.

Definition 7.2 (RM cost-of-capital version). The RM at time s is defined as

RM, = ZEQ/p (c(k:) vrl(s, E+1) SCRkRU‘fs),
k>s

where ¢(k) is the cost-of-capital rate at time k. Since choice of the measure is unclear, we write Q/P
to indicate that a mixture of both measures is likely.
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In our opinion the conditional expected value is the most convincing way to make RM, Fs-
measurable. However, it is also possible to take a dynamic value at risk or another risk measure.
For the practical purpose of calculating the RM, this definition is usually too complex, so that sim-
plifications are needed. Suppose that the cost-of-capital rate is constant, i.e. ¢(t) = ¢, and that
v (s,k + 1) and S CR,I:‘U are conditionally independent given Fs. Note that these two requirements
are often not fulfilled. Then we obtain the following, simplified version of the RM,

R, = 3" Bq(u7(s.k + DI%) Eqye(SORLY| 7).
k>s

In practice further simplifications are used, which cannot be theoretically established.
We seem to have a circular reference in Definition 7.2 since SC’RfU depends on Ny, Ny = Ags — Bs —
RM, depends on RMg, RM; equals the sum of

By = Eqp(c(t) v (s, t 4+ 1) SC’RfU}]:S), t>s,

and Es s depends on SCREV. In the following we show that the circular reference can be solved.
Ohlsson and Lauzeningks (2009) solve this problem for a non-life SCR and Kriele and Wolf (2007)
solve this problem using an approximation of the SCR, while we do this exactly and in a general
framework. In the standard formula the RM is not considered for the calculation of the SCR, so that
there is no circular reference. This is also the case in the Swiss Solvency Test, since the first summand
of the RM is skipped.

Theorem 7.3. The SCR of a reference undertaking at time s can be calculated without a circular
reference, more precisely
1

SCREV =
° 1+ Eqp(c(k)v(s, s + 1)| F;)

VaRg 995 (As|Fs)

where

As = (As — Bs) —v(s,s+ 1)(Asy1 — Bs+1) +v(s, s+ 1) Z (Es+17t - E&t) .
t>s+1

Proof. For simplification we just write v for v(s, s + 1). By definitions 3.8, 7.1 and 7.2, we get
F)
=VaR.995 (As — vAs11 + vBs1 — Bs — Eqp(c(s) v"'(s, s + 1)SCREV| F,)

—v Z IEQ/p(c(k:)vrl(s,k:—l—l)SC'RkRU}]:S)
k>s+1

+0 3 Equp(c(k) o™ (s + 1,k + 1)SCR,§U\f8+1)]f8)
k>s+1

—VaRo.g0s (As — Eqyp (c(s) v (s, 5 + 1)| F,) SCREY ‘ 7).

SCREU =VaRo.995 (As —vAst1 +vBst1 — Bs + vRMs 1 — RM;

Since Eqp (c(s) v (s, s + 1)|Fs) SCREV is Fy-measurable, it can be taken out of the dynamic value
at risk and the theorem follows by solving for SCREV. O

The above formula for SCREV depends only on E,; with t > s + 1, which in turn only depends
on future SCRs at times t > s + 1, so that the formula is a recursion formula that can be solved
backwards. Since new business is not included and since the term of each considered business is finite,
there exists a time point n € N for which SCREV = RM,,, = 0 for all m > n, and hence the recursion
is finite. Unfortunately, the computing time is growing exponentially with the length of the contract
term, which means that numerical calculations are very time-consuming. In case we have an insurance
portfolio only consisting of contracts with term one, SCREY usually increases if we neglect the RM,
since (1 + Eq,p(c(k) v (s, s+ 1)|F5))~! < 1 for reasonable interest rates. Hence, neglecting the RM
leads to a prudent upper bound. If contract terms are greater than 1, we lose that monotony property
since the SCR includes the difference between RMg and RMg4 1.
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8. Conclusion

We started the paper with a comparison of Article 101 and Remark 64 of the Solvency II directive
and presented mathematical interpretations of both. Our main findings are:

e Remark 64 can be defined as a value at risk and, thus, the mathematical structure is similar to
Article 101.

e Article 101 and Remark 64 are comsistent if and only if the discount factor in Article 101
corresponds to the investment strategy of the additional assets.

e The alternative definition (b) is equivalent to Article 101 with a riskless discount factor.

e When assets are minimized iteratively by applying Article 101, the resulting SCRs converge to
the SCR from Remark 64.

For the calculation of the market value of the liabilities, Solvency II suggests using a cost of capital
method and calculating a Risk Margin. However, the definition of the RM depends on future SCRs,
and we are not aware of a mathematical sound definition of future SCRs in the literature. Further
problems are that the Solvency II definition of the RM is circular and that it ignores the fact that
future SCRs are random.

e We showed how to define future SCRs based on a generalization of the value at risk to a dynamic
value at risk.

e For the first time a general RM definition is given that takes into account the randomness of the
future SCRs.

e We showed that the circularity of the RM definition can generally be solved.

An opportunity for future research is to find a more accurate definition of the SCR of a reference-
undertaking. In this paper we assume the existence of a trading strategy (6;): that minimizes the
SCR. The calculation and existence of such a strategy is an open problem.

A. Appendix

Proof of Proposition 3.6. As R is a Polish space (see Kechris, 1995), according to Bauer (1981, chapter
10) there exists a Markov kernel @ such that z — Q(z, A) is a version of

P(Y S A’X[O,s] = a:), A€ %(R)

Setting A = (—o0,y], we get that the function = — Fy(y) := Q(z,(—o0,y]) = P(Y < y|Xp 4 = 7) is
F!-B(R)-measurable for each y € R. For any fixed z, F,(y) is a cumulative distribution function, and
we define the quantile function or generalized inverse as

F, (o) = inf{y € R|F;(y) > a}.
Since z — F,(y) is F.-B(R)-measurable, it holds that
{reQ:F(r)>a}leF., VrekR.

From Milbrodt (2010, page 229) we know that F(r) > a < F~!(a) <r forallr € R and a € (0,1]
such that we obtain

{reQ:Fl (a)<r}={zecQ:F(r)>a}cF, VrecR
Hence, the function
z F Y (a)=inf{y e R: P(Y <y[X|gq =) > a} = hy,a(z)
is F-B(R)-measurable. O
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Proposition A.1. Let (2, F,P) be a probability space with random variables W and Z, where Z(w) >
0 for allw € Q. For all a € (0,1) Vary(W|Fs) =0 if and only if Var,(W Z|Fs) = 0.

Proof. Let Fs = 0(Xjo) C F. Since P(W < 0|X|g 4 = 2) = P(WZ < 0| X[y = ) almost surely and
P(W < 0[Xjoq =2z) =P(WZ < 0|X)g ) = ) almost surely, we have

}=0
af =

The claim follows by the definition of the dynamic value at risk. O

inf{w € R: P(W <w|Xjgq =2) >

a
sinflw e R: P(WZ <w|Xp g =1) > 0.
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