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Summary Value at Risk (VaR) is a fundamental tool for managing market risks. It mea-
sures the worst loss to be expected of a portfolio over a given time horizon under normal mar-
ket conditions at a given confidence level. Calculation of VaR frequently involves estimating
the volatility of return processes and quantiles of standardized returns. In this paper, several
semiparametric techniques are introduced to estimate the volatilities of the market prices of a
portfolio. In addition, both parametric and nonparametric techniques are proposed to estimate
the quantiles of standardized return processes. The newly proposed techniques also have the
flexibility to adapt automatically to the changes in the dynamics of market prices over time.
Their statistical efficiencies are studied both theoretically and empirically. The combination of
newly proposed techniques for estimating volatility and standardized quantiles yields several
new techniques for forecasting multiple period VaR. The performance of the newly proposed
VaR estimators is evaluated and compared with some of existing methods. Our simulation
results and empirical studies endorse the newly proposed time-dependent semiparametric
approach for estimating VaR.

Keywords: Aggregate returns, Value at Risk, Volatility, Quantile, Semiparametric, Choice
of decay factor.

1. INTRODUCTION

Risk management has become an important topic for financial institutions, regulators, nonfi-
nancial corporations and asset managers. Value at Risk (VaR) is a measure for gauging market
risks of a particular portfolio; it shows the maximum loss over a given time horizon at a given
confidence level . The review article by Duffie and Pan (1997) as well as the books edited by
Alexander (1998) and written by Dowd (1998) and Jorion (2000) provide a nice introduction to
the subject.

The field of risk management has evolved very rapidly, and many new techniques have since
been developed. Äıt-Sahalia and Lo (2000) introduced the concept of economic valuation of VaR
and compared it with the statistical VaR. Other methods include historical simulation approaches
and their modifications (Hendricks (1996), Mahoney (1996)); techniques based on parametric
models (Wong and So, 2003), such as GARCH models (Engle (1995), Bollerslev (1986)) and
their approximations; estimates based on extreme value theory (Embrechtset al., 1997) and ideas
based on variance–covariance matrices (Davé and Stahl, 1997). The problems on bank capital and
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VaR were studied in Jacksonet al.(1997). The accuracy of various VaR estimates was compared
and studied by Beder (1995) and Davé and Stahl (1997). Engle and Manganelli (2000) introduced
a family of VaR estimators, called CAViaR, using the idea of regression quantile.

An important contribution to the calculation of VaR is the RiskMetrics of J. P. Morgan (1996).
The method can be regarded as a nonparametric estimation of volatility together with a normality
assumption on the return process. The estimator of VaR consists of two steps. The first step is to
estimate the volatility for holding a portfolio for 1 day before converting this into the volatility
for multiple days. The second step is to compute the quantile of standardized return processes
through the assumption that the processes follow a standard normal distribution. Following this
important contribution by J. P. Morgan, many subsequent techniques developed share a similar
principle.

Many techniques in use are local parametric methods. By using the historical data at a given
time interval, parametric models such as GARCH(1,1) or even GARCH(0,1) were built. For
example, the historical simulation method can be regarded as a local nonparametric estimation
of quantiles. The techniques by Wong and So (2003) can be regarded as modeling a local stretch
of data by using a GARCH model. In comparison, the volatility estimated by RiskMetrics is
a kernel estimator of observed square returns, which is basically an average of the observed
volatilities over the past 38 days (see Section 2.1). From the function approximation point of
view (Fan and Gijbels, 1996), this method basically assumes that the volatilities over the last
38 days are nearly constant or that the return processes are locally modeled by a GARCH(0,1)
model. The latter can be regarded as a discretized version of geometric Brownian over a short
time period for the prices of a held portfolio.

An aim of this paper is to introduce a time-dependent semiparametric model to enhance
the flexibility of local approximations. This model is an extension of the time-homogeneous
parametric model for term structure dynamics used by Chanet al.(1992). The pseudo-likelihood
technique of Fanet al. (2003) will be employed to estimate the local parameters. The volatility
estimates of return processes are then formed.

The windows over which the local parametric models can be employed are frequently cho-
sen subjectively. For example, in RiskMetrics, a decay factor of 0.94 and 0.97, respectively,
is recommended by J. P. Morgan for computing daily volatilities and for calculating monthly
volatilities (defined as a holding period of 25 days). It is clear that a large window size will re-
duce the variability of estimated local parameters. However, this will increase modeling biases
(approximation errors). Therefore, a compromise between these two contradicting demands is
the art required for smoothing parameter selection in nonparametric techniques (Fan and Gij-
bels, 1996). Another aim of this paper is to propose new techniques for automatically selecting
the window size or, more precisely, the decay parameter. It allows us to use a different amount
of smoothing for different portfolios to better estimate their volatilities.

With estimated volatilities, the standardized returns for a portfolio can be formed quantile of
this return process is needed for estimating VaR. RiskMetrics uses the quantile of the standard
normal distribution. This can be improved by estimating the quantiles from the standardized re-
turn process. In this paper, a new nonparametric technique based on the symmetric assumption
on the distribution of the return process is proposed. This increases the statistical efficiency by
more than a factor of two in comparison with usual sample quantiles. While it is known that the
distribution of asset returns are asymmetric, the asymmetry of the percentiles at a moderate level
of percentagesα is not very severe. Our experience shows that for moderateα efficiency gains
can still be made by using the symmetric quantile methods. In addition, the proposed technique
is robust against mis-specification of parametric models and outliers created by large market
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movements. In contrast, parametric techniques for estimating quantiles have a higher statistical
efficiency for estimated quantiles when the parametric models fit well with the return process.
Therefore, in order to ascertain whether this gain can be materialized, we also fit parametrict-
distributions with an unknown scale and unknown degree of freedom to the standardized return.
The method of quantiles and the method of moments are proposed for estimating unknown pa-
rameters and, hence, the quantiles. The former approach is more robust, while the latter method
is more efficient.

Economic and market conditions vary from time to time. It is reasonable to expect that the
return process of a portfolio and its stochastic volatility depend in some way on time. Therefore,
a viable VaR estimate should have the ability to self-revise the procedure in order to adapt to
changes in market conditions. This includes modifications of the procedures for both volatility
and quantile estimation. A time-dependent procedure is proposed for estimating VaR and has
been empirically tested. It shows positive results.

The outline of the paper is as follows: Section 2 revisits the volatility estimation of J. P.
Morgan’s RiskMetrics before going on to introduce semiparametric models for return processes.
Two methods for choosing time-independent and time-dependent decay factors are proposed. The
effectiveness of the proposed volatility estimators is evaluated using several measures. Section 3
examines the problems of estimating quantiles of normalized return processes. A nonparametric
technique and two parametric approaches are introduced. Their relative statistical efficiencies
are studied. Their efficacies for VaR estimation are compared with J. P. Morgan’s method. In
Section 4, newly proposed volatility estimators and quantile estimators are combined to yield
new estimators for VaR. Their performances are thoroughly tested by using simulated data as
well as data from eight stock indices. Section 5 summarizes the conclusions of this paper.

2. ESTIMATION OF VOLATILITY

Let St be the price of a portfolio at timet . Let

r t = log(St/St−1)

be the observed return at timet . The aggregate return at timet for a predetermined holding period
τ is

Rt,τ = log(St+τ−1/St−1) = r t + · · · + r t+τ−1.

Let �t be the historical information generated by the process{St }, this is, �t is the σ -field
generated bySt , St−1, . . .. If St denotes the current market value of a portfolio, then the value of
this portfolio at timet + τ will be St+τ = St exp(Rt+1,τ ). The VaR measures the extreme loss
of a portfolio over a predetermined holding periodτ with a prescribed confidence level 1− α.
More precisely, lettingVt+1,τ be theα-quantile of the conditional distribution ofRt+1,τ :

P(Rt+1,τ > Vt+1,τ |�t ) = 1 − α,

the maximum loss of holding this portfolio for a period ofτ is St Vt+1,τ , that is, the VaR is
St Vt+1,τ . See the books by Jorion (2000) and Dowd (1998).

The current valueSt is known at timet . Thus, most efforts in the literature concentrate on esti-
matingVt+1,τ . A popular approach to predict VaR is to determine, first, the conditional volatility

σ 2
t+1,τ = Var(Rt+1,τ |�t )
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and then the conditional distribution of the scaled variableRt+1,τ /σt+1,τ . This is also the
approach that we follow.

2.1. Revisiting RiskMetrics

An important technique for estimating volatility is the RiskMetrics approach which estimates the
volatility for a one-period return(τ = 1), σ 2

t ≡ σ 2
t,1, according to

σ̂ 2
t = (1 − λ)r 2

t−1 + λσ̂ 2
t−1, (2.1)

with λ = 0.94. For aτ -period return, the square-root rule is frequently used in practice:

σ̂t,τ =
√

τ σ̂t . (2.2)

J. P. Morgan recommends using (2.2) withλ = 0.97 for forecasting the monthly(τ = 25)
volatility of aggregate return. The Bank of International Settlement suggests using (2.2) for the
capital requirement for a holding period of 10 days. In fact, Wong and So (2003) showed that for
the IGARCH(1,1) model defined similarly to (2.1), the square-root rule (2.2) holds. Beltratti and
Morana (1999) employ the square-root rule with GARCH models to daily and half-hourly data.
By iterating (2.1), it can be easily seen that

σ̂ 2
t = (1 − λ){r 2

t−1 + λr 2
t−2 + λ2r 2

t−3 + · · ·}. (2.3)

This is an example of exponential smoothing in the time domain (see Fan and Yao (2003)).
Figure 1 depicts the weights for several choices ofλ.

Exponential smoothing can be regarded as a kernel method that uses the one-sided kernel
K1(x) = bx I (x > 0) with b < 1. AssumingE(r t |�t−1) = 0, thenσ 2

t = E(r 2
t |�t−1). The

kernel estimator ofσ 2
t = E(r 2

t |�t−1) is given by

σ̂ 2
t =

∑t−1
i =−∞

K1((t − i )/h1)r 2
i∑t−1

i =−∞
K1((t − i )/h1)

=

∑t−1
i =−∞

b
t−i
h1 r 2

i∑t−1
i =−∞

b
t−i
h1

,

whereh1 is the bandwidth (see Fan and Yao (2003)). It is clear that this is exactly the same as
(2.3) withλ = b1/h1.

Exponential smoothing has the advantage of gradually, rather than radically, reducing the
influence of remote data points. However, the effective number of points used in computing the
local average is hard to quantify. If the one-sided uniform kernelK2(x) = I [0 < x ≤ 1] with
bandwidthh2 is used, then it is clear that there areh2 data points used in computing the local
average. According to the equivalent kernel theory (Section 5.4 of Fan and Yao (2003)), the
kernel estimator with kernel functionK1 and bandwidthh1 and the kernel estimator with kernel
function K2 and bandwidthh2 conduct approximately the same amount of smoothing when

h2 = α(K2)h1/α(K1),

where

α(K ) =

{∫
∞

−∞

u2K (u)du

}−2/5{∫ ∞

−∞

K 2(u)du

}1/5

.
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Figure 1. Weights for exponential smoothing with parametersλ = 0.94 (left panel, solid curve),λ = 0.97
(left panel, dashed curve),λ = 0.90 (right panel, solid curve) andλ = 0.99 (right panel, dashed curve) and
the weights of their corresponding equivalent uniform kernels.

Table 1.Effective number of data points used in exponential smoothing.

Parameterλ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Effective numberh2 22.3 24.9 28.2 32.4 38.0 45.8 57.6 77.2 116.4 234.0

It is clear thatα(K2) = 30.4
= 1.5518 and that exponential smoothing corresponds to kernel

smoothing withK1(x) = λx I (x > 0) andh1 = 1. Hence, it effectively uses

h2 = 1.5518/α(K1).

Table 1 records the effective number of data points used in exponential smoothing.
Assume now the model

r t = σtεt , (2.4)

where{εt } is a sequence of independent random variables with mean zero and variance 1. It is
well known that the kernel method can be derived from a local constant approximation (Fan and
Gijbels, 1996). Assuming thatσu ≈ θ for u in a neighborhood of a pointt , i.e.

ru ≈ θεu, for u ≈ t (2.5)

then the kernel estimator or, specifically the exponential smoothing estimator (2.1), can be
regarded as a solution to the local least-squares problem

t−1∑
i =−∞

(r 2
i − θ)2λ(t−i −1), (2.6)
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whereλ is a decay factor (smoothing parameter) that controls the size of the local neighborhood
(Figure 1).

From the above function approximation point of view, the J. P. Morgan estimator of volatility
assumes that locally the return process follows the model (2.5). The model can, therefore, be re-
garded as a discretized version of geometric Brownian motion with no drift,d log(Su) = θdWu,
for u aroundt or

d log(Su) = θ(u)dWu, (2.7)

when the time unit is small, whereWu is the Wiener process.

2.2. Semiparametric models

The implicit assumption of J. P. Morgan’s estimation of volatility is the local geometric Brownian
motion stock price dynamics. To reduce possible modeling bias and to enhance the flexibility of
the approximation, we enlarge the model (2.7) to the following semiparametric time-dependent
model:

d log(Su) = θ(u)Sβ(u)
u dWu, (2.8)

allowing volatility to depend on the value of asset, whereθ(u) and β(u) are the coefficient
functions. Whenβ(u) ≡ 0, the model reduces to (2.7). This time-dependent diffusion model
was used for interest rate dynamics by Fanet al. (2003). It is an extension of the time-dependent
models previously considered by, among others, Hull and White (1990), Blacket al.(1990), and
Black and Karasinski (1991) and the time-independent model considered by Coxet al. (1985)
and Chanet al. (1992). Unlike the yields of bonds, the scale of{Su} can be very different over a
large time period. However, the model (2.8) is used locally, rather than globally.

Motivated by the continuous-time model (2.8), we model the return process discrete time as

ru = θ(u)Sβ(u)

u−1 εu, (2.9)

whereεu is a sequence of independent random variables with mean 0 and variance 1. To estimate
the parametersθ(u) andβ(u), the local pseudo-likelihood technique is employed. For each given
t andu ≤ t in a neighborhood of timet , the functionsθ(u) andβ(u) are approximated by the
constants

θ(u) ≈ θ, β(u) ≈ β.

Then, the conditional log-likelihood forru givenSu−1 is

−
1

2
log(2πθ2S2β

u−1) −
r 2
u

2θ2S2β

u−1

,

whenεu ∼ N(0, 1). In general, the above likelihood is a pseudo-likelihood. Dropping the con-
stant factors and adding the pseudo-likelihood around the pointt , we obtain the locally weighted
pseudo-likelihood

`(θ, β) = −

t−1∑
i =−∞

{
log(θ2S2β

i −1) +
r 2
i

θ2S2β

i −1

}
λt−1−i , (2.10)
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whereλ < 1 is the decay factor that makes this pseudo-likelihood use only the local data (see
Figure 1 and (2.6)). Maximizing (2.10) with respect to the local parametersθ andβ yields an
estimate of the local parametersθ(t) andβ(t). Note that for givenβ, the maximum is achieved at

θ̂2(t, β) = (1 − λ)

t−1∑
i =−∞

λt−1−i r 2
i S−2β

i −1 .

Substituting this into (2.10), the pseudo-likelihood̀(θ̂(t, β), β) is obtained. This is a
one-dimensional maximization problem, and the maximization can easily be obtained by, for
example, searchingβ over a grid of points or by using other more advanced numerical methods.
Let β̂(t) be the maximizer. Then, the estimated volatility for the one-period return is

σ̂ 2
t = θ̂2(t)S2β̂(t)

t−1 , (2.11)

whereθ̂ (t) = θ̂ (t, β̂(t)). In particular, if we letβ(t) = 0, the model (2.9) becomes the model
(2.7) and the estimator (2.11) reduces to the J. P. Morgan estimator (2.3).

Our method corresponds to time-domain smoothing, which uses mainly the most recent data.
There is also a large literature that postulates models on Var(r t |F t−1) = g(r t−1, . . . , r t−p).
This corresponds to the state-domain smoothing, using mainly the historical data to estimate the
functiong. See Engle and Manganelli (2000), Yanget al.(1999), Yatchew and Ḧardle (2003) and
Fan and Yao (2003). Combination of both time-domain and state-domain smoothing for volatility
estimation is an interesting direction for future research.

2.3. Choice of decay factor

The performance of volatility estimation depends on the choice of decay factorλ. In the Risk-
Metrics, λ = 0.94 is recommended for the estimation of 1-day volatility, whileλ = 0.97 is
recommended for the estimation of monthly volatility. In general, the choice of decay factor
should depend on the portfolio and holding period, and should be determined from the data.

Our idea is related to minimizing the prediction error. In the current pseudo-likelihood
estimation context, our aim is to maximize the pseudo-likelihood. For example, suppose that
we have observed the price processSt , t = 1, . . . , T . Note that the pseudo-likelihood estima-
tor σ̂ 2

t depends on the data up to timet − 1. This estimated volatility can be used to predict
the volatility at timet . The estimated volatilitŷσ 2

t given by (2.11) can then be compared with
the observed volatilityr 2

t to assess the effectiveness of the estimation. One way to validate the
effectiveness of the prediction is to use square prediction errors

PE(λ) =

T∑
t=T0

(r 2
t − σ̂ 2

t )2, (2.12)

whereT0 is an integer such that̂σ 2
T0

can be estimated with reasonable accuracy. This avoids the
boundary problem caused by the exponential smoothing (2.1) or (2.3). The decay factorλ can
be chosen to minimize (2.12). Using the model (2.9) and noting thatσ̂t is �t−1 measurable, the
expected value can be decomposed as

E{PE(λ)} =

T∑
t=T0

E(σ 2
t − σ̂ 2

t )2
+

T∑
t=T0

E(r 2
t − σ 2

t )2. (2.13)
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Note that the second term is independent ofλ. Thus, minimizing PE(λ) aims at finding an esti-
mator that minimizes the mean-square error

T∑
t=T0

E(σ 2
t − σ̂ 2

t )2.

A question arises naturally why square errors, rather than, other types of errors, such as
absolute deviation errors should be used in (2.12). In the current pseudo-likelihood context, a
natural alternative is to maximize the pseudo-likelihood defined as

PL(λ) = −

T∑
t=T0

(log σ̂ 2
t + r 2

t /σ̂ 2
t ), (2.14)

compared to (2.10). The likelihood function is a natural measure of the discrepancy betweenr t

andσ̂t in the current context, and does not depend on an arbitrary choice of distance. The sum-
mand in (2.14) is the conditional likelihood, after dropping constant terms, ofr t givenSt−1 with
unknown parameters replaced by their estimated values. The decay factorλ can then be chosen
to maximize (2.14). For simplicity in later discussion, we call this procedure semiparametric
estimation of volatility (SEV).

2.4. Choice of adaptive smoothing parameter

The above choice of decay factor remains constant during post-sample forecasting. It relies heav-
ily on the past history and has little flexibility to accommodate changes in stock dynamics over
time. Therefore, in order to adapt automatically to changes in stock price dynamics, the decaying
parameterλ should be allowed to depend on the timet . A solution to such problems has been
explored by Mercurio and Spokoiny (2003) and Härdleet al. (2003).

To highlight possible changes of the dynamics of{St }, the validation should be localized
around the current timet . Let g be a period for which we wish to validate the effectiveness of
volatility estimation. Then, the pseudo-likelihood is defined as

PL(λ, t) = −

t−1∑
i =t−1−g

(log σ̂ 2
i + r 2

i /σ̂ 2
i ). (2.15)

Let λ̂t maximize (2.15). In our implementation, we useg = 20, which validates the estimates in
a period of about 1 month. The choice ofλ̂t is variable. To reduce this variability, the series{λ̂t }

can be smoothed further by using the exponential smoothing

3̂t = b3̂t−1 + (1 − b)λ̂t . (2.16)

In our implementation, we useb = 0.94.
To sum up, in order to estimate the volatilityσ̂t , we first compute{σ̂u} and{3̂u} up to time

t − 1 and obtain̂λt by minimizing (2.15) and then̂3t from (2.16). The value of̂3t is then used
in (2.10) to estimate the local parametersθ̂ (t) andβ̂(t), and hence the volatilitŷσ 2

t using (2.11).
The resulting estimator will be referred to as the adaptive volatility estimator (AVE).

The techniques in this section and Section 2.3 apply directly to the J. P. Morgan type of
estimator (2.1). This allows different decay parameters for different portfolios.
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2.5. Numerical results

In this section, the newly proposed procedures are compared by using three commonly used
methods: RiskMetrics, historical simulation and a GARCH model using the quasi-maximum
likelihood method (denoted by ‘GARCH’). See Engle and Gonzalez-Rivera (1991) and Boller-
slev and Wooldridge (1992). For the estimation of volatility, the historical simulation method
is simply defined as the sample standard deviation of the return process for the past 250 days.
For the newly proposed method, we employ the semiparametric estimator (2.11) withλ = 0.94
(denoted by ‘semipara’); the estimator (2.11) withλ chosen by minimizing (2.12) (denoted by
‘SEV’); and the estimator (2.11) (denoted by ‘AVE’) with the decay factor3̂t chosen adaptively
as in (2.16).

To compare the different procedures for estimating the volatility with a holding period of
1 day, eight stock indices and two simulated data sets were used together with the following five
performance measures. For other related measures, see Davé and Stahl (1997). For a holding
period of 1 day, the error distribution is not very far from normal.

Measure 1 (Exceedance ratio against confidence level).This measure counts number of events
for which the loss of the asset exceeds the loss predicted by the normal model at a given con-
fidenceα. With estimated volatility, under the normal model, the 1-day VaR is estimated by
8−1(α)σ̂t , where8−1(α) is theα quantile of the standard normal distribution. For each esti-
mated VaR, the exceedance ratio (ER) is computed as

ER = n−1
T+n∑

t=T+1

I (r t < 8−1(α)σ̂t ),

for a post sample of sizen. This gives an indication of how effectively volatility can be used for
estimating one-period VaR. Note that the Monte Carlo error for this measure has an approximate
size{α(1 − α)/n}

1/2, even when the trueσt is used. For example, withα = 5% andn = 1000,
the Monte Carlo error is around 0.68%. Thus, unless the post-sample size is large enough, this
measure has difficulty in differentiating between various estimators due to the presence of large
error margins.

Measure 2 (Mean absolute deviation error, MADE).To motivate this measure, let us first
consider the mean square errors

PE= n−1
T+n∑

t=T+1

(r 2
t − σ̂ 2

t )2.

Following (2.13), the expected value can be decomposed as

E(PE) = n−1
T+n∑

t=T+1

E(σ 2
t − σ̂ 2

t )2
+ n−1

T+n∑
t=T+1

E(r 2
t − σ 2

t )2.

Note that the first term reflects the effectiveness of the estimated volatility while the second
term is the size of the stochastic error, independent of estimators. As in all statistical prediction
problems, the second term is usually of an order of magnitude larger than the first term. Thus,
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a small improvement on PE could mean substantial improvement over the estimated volatility.
However, due to the well-known fact that financial time series contain outliers due to market
crashes, the mean-square error is not a robust measure. Therefore, we will use the mean-absolute
deviation error

MADE = n−1
T+n∑

t=T+1

|r 2
t − σ̂ 2

t |.

Measure 3 (Square-root absolute deviation error, RADE).An alternative variation to MADE
is the RADE, which is defined as

RADE = n−1
T+n∑

t=T+1

∣∣∣∣∣|r t | −

√
2

π
σ̂t

∣∣∣∣∣.
The constant factor comes from the fact thatE|εt | =

√
2
π

for εt ∼ N(0, 1).

Measure 4—Test of independence.A good VaR estimator should have the property that the
sequence of the events exceeding VaR behaves like ani.i.d. Bernoulli distribution with probabil-
ity of successα. Engle and Manganelli (1999) give an illuminating example showing that even a
bad VaR estimator can have the right exceedance ratioα.

Let I t = I (r t < 8−1(α)σ̂t ) be the indicator of the event that the return exceeds VaR.
Christoffersen (1998) introduced the likelihood ratio test for testing independence and for testing
whether the probability Pr(I t = 1) = α.

Assume{I t } is a first-order Markovian chain. Letπi j = Pr(I t = j |I t−1 = i ) (i = 0, 1 and
j = 0, 1) be the transition probability andni j be the number of events transferring from statei
to statej in the post-sample period. The problem is to test

H0 : π00 = π10 = π, π01 = π11 = 1 − π.

Then the maximum likelihood ratio test for independence is

LR1 = 2 log

(
π̂

n00
00 π̂

n01
01 π̂

n10
10 π̂

n11
11

π̂n0(1 − π̂)n1

)
, (2.17)

whereπ̂i j = ni j /(ni 0 + ni,1), n j = n0 j + n1 j , and π̂ = n0/(n0 + n1). The test statistic is
a measure of deviation from independence. Under the null hypothesis, the test statistic LR1 is
distributed approximately according toχ2

1 when sample size is large. Thus, reporting the test
statistic is equivalent to reporting theP-value.

Measure 5—Testing against a given confidence level.Christoffersen (1998) applied the max-
imum likelihood ratio test to the problem

H0 : P(I t = 1) = α vs. H1 : P(I t = 1) 6= α

under the assumption that{I t } is a sequence ofi.i.d. Bernoulli random variables. The test statistic
is given by

LR2 = 2 log

(
π̂n0(1 − π̂)n1

αn0(1 − α)n1

)
, (2.18)

which follows theχ2
1 -distribution when the sample size is large. Again, theP-value is a measure

of deviation from the null hypothesis, which is closely related to the ER.
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Table 2.Comparisons of several volatility estimation methods.

Country Index In-sample period Post-sample period

Australia AORD 1988–1996 1997–2000

France CAC 40 1990–1996 1997–2000

Germany DAX 1990–1996 1997–2000

H.K. HSI 1988–1996 1997–2000

Japan Nikkei 225 1988–1996 1997–2000

UK FTSE 1988–1996 1997–2000

USA S&P 500 1988–1996 1997–2000

USA Dow Joes 1988–1996 1997–2000

Example 1 (Stock indices).We first apply the five volatility estimators to the daily returns of
eight stock indices (Table 2). For each stock index, the in-sample period terminated on December
30 1996 and the post-sample period starts from January 1 1997 to December 29 2000 (n = 1014).
The results are summarized in Table 3. The initial period is set toT0 = 250.

From Table 3, the smallest two MADE and RADE are always achieved by using semipara-
metric methods and GARCH methods. In fact, SEV, AVE and GARCH methods are the best
three methods in terms of MADE and RADE. Of these, the semiparametric method with a decay
parameter that is selected automatically by the data (SEV) performs the best. It achieved the two
smallest MADE in eight out of eight times, and the two smallest RADE in four out eight times.
This demonstrates that it is important to allow the algorithm to choose decay factors according
to the dynamics of stock prices. The AVE and GARCH methods perform comparably with the
SEV in terms of MADE and RADE. The GARCH method slightly outperforms the AVE ac-
cording to MADE and RADE measures, but AVE outperforms the GARCH method for other
measures such as ER andP-value from independence. This demonstrates the advantage of us-
ing a time-dependent decay parameter that adapts automatically to any changes in stock price
dynamics. These results also indicate that our proposed methods for selecting decay parameters
are effective. As shown in (2.13), both measures contain a large amount of stochastic error. A
small improvement in MADE and RADE measures indicates a large improvement in terms of
estimated volatilities.

Presented in Table 3 are theP-values for testing independence and for testing whether the
exceedance ratio is significantly different from 5%. Since the post sample size is more than 1000,
we consider whether the deviations are significant at the 1% level. Most methods have a correct
exceedance ratio except the GARCH method which tends to underestimate the risk. However,
the GARCH method performs particularly well in terms of testing against independence. Its
correspondingP-values tend to be large. Other method performs reasonably well in terms of
independence.

As an illustration, Figure 2 presents the estimated volatilities for six stock indices in the post-
sample period by using SEV and AVE. Theβ ’s parameters in model (2.11) depend on the stock
prices and can vary substantially. Since they together predict the volatility, it is more meaningful
to present the volatility plots. The volatility predicted by AVE is more variable than that by
the SEV.

Example 2 (GARCH(1,1)-model).Next consider simulations from the GARCH model:

r t = σtεt , σ 2
t = c + aσ 2

t−1 + br2
t−1,
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Table 3.Comparisons of several volatility estimation methods.
Index Method ER MADE RADE P-value P-value

(×10−2) (×10−4) (×10−3) (indep) (ER= 5%)
Historical 5.23 0.85 4.33 0.01a 0.76
RiskMetrics 4.93 0.848 4.25 0.01a 0.92

AORD Semipara 4.93 0.84 4.231 0.01a 0.92
SEV 5.23 0.803 4.30 0.02 0.76
AEV 4.93 0.835 4.213 0.00a 0.92
GARCH 5.52 0.786 4.168 0.12 0.46

Historical 6.16 2.177 7.272 0.11 0.10
RiskMetrics 6.36 2.157 7.102 0.33 0.06

CAC 40 Semipara 6.55 2.15 7.094 0.20 0.03
SEV 6.45 2.077 7.035 0.17 0.04
AEV 6.36 2.138 7.069 0.91 0.06
GARCH 8.24 1.931 6.883 0.20 0.00

Historical 6.55 2.507 7.814 0.18 0.03
RiskMetrics 5.46 2.389 7.37 0.59 0.51

DAX Semipara 5.56 2.389 7.342 0.90 0.43
SEV 6.06 2.368 7.457 0.03 0.14
AEV 5.96 2.377 7.330 0.90 0.18
GARCH 7.94 2.200 7.174 0.78 0.00a

Historical 6.08 5.71 11.167 0.00a 0.12
RiskMetrics 5.99 5.686 10.818 0.00a 0.15

HSI Semipara 5.89 5.567 10.685 0.00a 0.19
SEV 5.61 5.523 10.743 0.00a 0.37
AEV 6.55 5.578 10.686 0.00a 0.03
GARCH 7.3 5.293 10.565 0.03 0.00a

Historical 5.78 2.567 7.824 0.90 0.27
RiskMetrics 5.78 2.526 7.656 0.35 0.27

Nikkei 225 Semipara 6.09 2.507 7.631 0.48 0.13
SEV 5.68 2.457 7.610 0.68 0.34
AEV 6.19 2.479 7.565 0.25 0.10
GARCH 5.88 2.563 7.693 0.80 0.22

Historical 6.83 1.369 5.761 0.05 0.01
RiskMetrics 5.94 1.342 5.594 0.45 0.18

FTSE Semipara 6.24 1.328 5.567 0.58 0.08
SEV 6.93 1.299 5.598 0.02 0.01
AEV 6.04 1.328 5.571 0.90 0.14
GARCH 7.43 1.256 5.497 0.78 0.00a

Historical 6.34 1.613 6.027 0.65 0.06
RiskMetrics 5.55 1.647 6.056 0.62 0.44

S&P 500 Semipara 5.55 1.62 5.995 0.62 0.44
SEV 5.85 1.539 5.888 0.46 0.23
AEV 5.75 1.611 5.984 0.51 0.29
GARCH 4.46 1.689 6.163 0.89 0.43

Historical 6.15 1.493 5.84 0.25 0.11
RiskMetrics 5.65 1.507 5.784 0.56 0.35

Dow Jones Semipara 5.75 1.489 5.739 0.16 0.29
SEV 5.75 1.460 5.743 0.51 0.29
AEV 5.85 1.480 5.731 0.90 0.23
GARCH 4.46 1.575 5.96 0.68 0.43

Note: GARCH refers to the GARCH(1,1) model. Numbers with bold face are the two smallest.
a Means statistically significant at the 1% level.
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Figure 2. Predicted volatility in the out of sample period for several indices. Thin curves—AVE method;
thick curves—SEV method.

whereεt is the standard Gaussian noise. The first two hundred random series of length 3000
were simulated using the parametersc = 0.000,000,38,a = 0.957,513 andb = 0.038,455.
These parameters are from the GARCH(1,1) fit to the SP500 index from January 4, 1988 to
December 29, 2000. The parametera is reasonably close toλ = 0.94 of the RiskMetrics. The
second 200 time series of length 3000 were simulated using the parametersc0 = 0.000,009,025,
a = 0.9 andb = 0.09. The choice ofc is to make resulting series have approximately the
same standard deviation as the returns of the SP500. The first 2000 data points were used as
the in-sample period, namelyT = 2000, and the last 1000 data points were used as the post-
sample, namelyn = 1000. The performance of six volatility estimators of two models is shown
in Tables 4 and 5 respectively.

The performance of each volatility estimator can be summarized by using the average and
standard deviation of MADE and RADE over 200 simulations. However, MADE and RADE
show quite large variability from one simulation to another. In order to avoid taking averages
over different scales, for each simulated series, we first standardize the MADE using the median
MADE in that series of the six methods and then average them across 200 simulations. The
results are presented as the column ‘score’ in Tables 4 and 5. In addition, the frequency of each
method that achieved the best MADE among 200 simulations was recorded, and is presented
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Table 4.Comparisons of several volatility estimation methods [the first GARCH(1,1) model].

Method ER Score Best Best two Reject times Reject times

(×10−2) (×10−2) (indep) (ER= 5%)

Historical 5.32 (0.92) 103.48 (4.87) 13.5 18 14 29

RiskMetrics 5.43 (0.56) 100.17 (0.49) 2 11.5 21 8

Semipara 5.67 (0.61) 99.81 (0.42) 11 35 18 20

SEV 5.44 (0.66) 99.73 (0.50) 16.5 51.5 15 17

AVE 5.94 (0.63) 99.30 (0.58) 51 75 12 53

GARCH(1,1) 4.41 (0.86) 103.67 (4.97) 6 9 23 42

Note: The values in the brackets are their corresponding standard deviations.

Table 5.Comparisons of several volatility estimation methods [the second GARCH(1,1) model].

Method ER Score Best Best two Reject times Reject times

(×10−2) (×10−2) (indep) (ER= 5%)

Historical 5.58 (0.98) 109.64 (9.92) 3.5 4 65 49

RiskMetrics 5.54 (0.60) 100.30 (0.60) 1 10.5 14 14

Semipara 5.72 (0.62) 99.75 (0.37) 11.5 47 14 30

SEV 5.75 (0.62) 99.73 (0.42) 14 41 15 33

AVE 6.06 (0.61) 99.53 (0.69) 37 60.5 11 63

GARCH(1,1) 5.03 (0.78) 100.67 (2.65) 33 37 15 14

Note: The values in the brackets are their corresponding standard deviations.

in the column ‘best’. Further, the frequency of each volatility estimator achieving the smallest
two MADE in each simulation was also counted. More precisely, among 200 simulations, we
computed the percentage of times a method performed the best as well as the percentage of times
the methods ranked in the top two positions. The results are presented in the column ‘best two’ of
Tables 4 and 5. For clarity, we omit similar presentations using the RADE measure—the results
are nearly the same as the MADE. The numbers of rejections of null hypotheses are recorded in
the column of ‘reject times (indep)’ and ‘reject times (ER= 5%)’.

Using MADE or RADE as a measure, AVE and SEV consistently outperform other methods.
GARCH performs quite reasonably in terms of MADE for the second GARCH(1,1) model, but
not the first GARCH(1,1) model. Since the sum of the parametersa andb is close to one, the
parameters in GARCH(1,1) cannot be estimated without large variability. This results in large
variances in the computation of standardized MADE. In terms of ER or measure 5, which are
closely related, RiskMetrics performs consistently well. Since the models used in the simulations
are all stationary time-homogeneous models, AVE does not have much of its advantage while
SEV performs better in terms of ER and measure 5. Except for the historical simulation method,
all methods behave well in the independence tests (measure 4).

Example 3 (Continuous-time SV-model).Instead of simulating the data from GARCH(1,1)
models, we simulate data from a continuous-time diffusion process with stochastic volatility

d log(St ) = αdt + σtdWt , dσ 2
t = κ(θ − σ 2

t )dt + ωσtd Bt ,
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Table 6.Comparisons of several volatility estimation methods (SV model).

Method ER Score Best Best two Reject times Reject times

(×10−2) (×10−2) (indep) (ER= 5%)

Historic 5.05 (0.74) 100.02 (1.94) 16.5 34 5 14

RiskMetrics 5.45 (0.59) 100.62 (0.59) 0 3 11 12

Semipara 5.90 (0.65) 100.38 (0.67) 0 5 10 45

SEV 5.64 (0.71) 98.69 (1.42) 34 66 11 30

AVE 6.06 (0.63) 99.02 (0.64) 32 72 8 60

GARCH(1,1) 4.10 (1.77) 108.73 (13.54) 17.5 20 9 116

Note: The corresponding standard deviations are in the brackets.

where Wt and Bt are two independent standard Brownian motions. See, for example,
Barndorff-Nielsen and Shephard (2001, 2002). The parameters are chosen asα = 0, κ =

0.214,59,θ = 0.085,71,ω = 0.078,30, following Chapman and Pearson (2000) and Fan and
Zhang (2003). Two hundred series of 3000 daily data were simulated using the exact simulation
method (see, e.g. Genon-Catalotet al. (1999), Fan and Zhang (2003)).

This simulation tests the performance of the six volatility estimators when the underlying
dynamics differs from GARCH(1,1) and our semiparametric models. The same performance
measures as those in Example 2 are used. Table 6 summarizes the results. Similar conclusions
to those in Example 2 can be drawn. The AVE and SEV consistently outperform RiskMetrics
using MADE as a measure even when the model is mis-specified. This is due, mainly, to the
flexibility of the semiparametric model approximating the true dynamics, in addition to the data-
driven smoothing parameter that enhanced the performance. The historical simulation method
performs better in this example than those in the previous example. This is partially due to the fact
that the stochastic volatility model produces more volatile returns and hence a larger smoothing
parameter in the historical simulation method gives some advantages.

3. ESTIMATION OF QUANTILES

The conditional distribution of the multiple period returnRt,τ does not necessarily follow a
normal distribution. Indeed, even under the IGARCH(1,1) model (2.1) with a normal error dis-
tribution in (2.4), Wong and So (2003) showed that the conditional distributionRt,τ given �t

is not normal. This was also illustrated numerically by Lucas (2000). Thus, a direct application
of 8−1(α)σ̂t+1,τ will provide an erroneous estimate of multiple period VaR, whereσ̂t+1,τ is an
estimated multiple period volatility of returns. In order to provide empirical evidence of non-
normality of multiple period returns, the distributionsRt,τ /σ̂t,τ for the S&P500, Hang-Seng,
Nikkei 225, and FTSE 100 indices are shown in Figure 3. The multiple period volatility is com-
puted by using the RiskMetricŝσt+1,τ =

√
τ σ̂t+1. The densities are estimated by the kernel

density estimator with the rule of thumb bandwidthh = 1.06n−1/5s, wheren is the sample
size ands is the sample standard deviation (taken as one to avoid outliers, since the data have
already been normalized). See, for example, Chapter 2 of Fan and Gijbels (1996). It is evident
that the one-period distributions are basically symmetric and have heavier tails than the standard
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Figure 3. Estimated densities for the rescaled multiple period returns for several indices. Solid curves—
estimated densities using the kernel density estimator; dashed curves—standard normal densities; thick
dashed curves—normal densities centered at the median of data with standard deviation 1.

normal distribution. The deviations from normal are quite substantial for multiple period return
processes. Indeed, the distribution is not centered around zero; the centered normal distributions
(using medians of the data as the centers and one as the standard deviation) fit the data better.

3.1. Nonparametric estimation of quantiles

As discussed previously, the distributions of multiple period returns deviate from normality.
Their distributions are generally unknown. In fact, Dieboldet al. (1998) reported that convert-
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ing 1-day volatility estimates toτ -day estimates by a scale factor
√

τ is inappropriate and pro-
duces overestimates of the variability of long time horizon volatility. Danielsson and de Vries
(2000) suggested using the scaling factorτ1/β with β being the tail index of extreme value
distributions. Nonparametric methods can naturally be used to estimate the distributions of the
residuals and correct the biases in the volatility estimation (the issue of whether the scale fac-
tor is correct becomes irrelevant when estimating the distribution of standardized return pro-
cesses).

Let σ̂t,τ be an estimatedτ -period volatility andε̂t,τ = Rt,τ /σ̂t,τ be a residual. Denote by
q̂(α, τ ), the sampleα-quantile of the residuals{ε̂t,τ , t = T0 + 1, . . . , T − τ }. This yields an
estimated multiple period VaR as VaRt+1,τ = q̂(α, τ )σ̂t+1,τ . Note that the choice of constant
factor q̂(α, τ ) is the same as selecting the constant factorc such that the difference between the
exceedance ratio of the estimated VaR and confidence level is minimized in the in-sample period.
More precisely,̂q(α, τ ) minimizes the function

ER(c) =

∣∣∣∣(T − τ − T0 + 1)−1
T−τ∑
t=T0

I (Rt+1,τ < cσ̂t+1,τ ) − α

∣∣∣∣.
The nonparametric estimates of quantiles are robust against the possible mis-specification of

parametric models and insensitive to a few large market movements for moderateα. Yet, they are
not as efficient as parametric methods when parametric models are correctly given. To improve
the efficiency of nonparametric estimates, we assume the distribution of{ε̂t,τ } is symmetric about
the point 0. This implies that

q(α, τ ) = −q(1 − α, τ),

whereq(α, τ ) is the population quantile. Thus, an improved nonparametric estimator is

q̂[1](α, τ ) = 2−1
{q̂(α, τ ) − q̂(1 − α, τ)}. (3.1)

Denote by

VaR[1]

t+1,τ = q̂(α, τ )[1]σ̂t+1,τ

the corresponding estimated VaR. It is not difficult to show that the estimatorq̂[1](α, τ ) is a factor
(2− 2α)/(1− 2α) as efficient as the simple estimateq̂(α, τ ) for α < 0.5 (see Appendix A.1 for
derivations).

When the distribution of the standardized return process is asymmetric, (3.1) will introduce
some biases. For moderateα whereq(α, τ ) ≈ −q(1−α, τ), the biases are offset by the variance
gain. As shown in Figure 3, the asymmetry for returns is not very severe for moderateα. Hence,
the gain can still be materialized.

3.2. Adaptive estimation of quantiles

The above method assumes that the distribution of{ε̂t,τ } is stationary over time. To accommodate
possible nonstationarity, for a given timet , we may use only the local data{ε̂i,τ , i = t −τ −h, t −
h + 1, . . . , t − τ }. This model was used by several authors, including Wong and So (2003) and
Pant and Chang (2001). Let the resulting nonparametric estimator (3.1) beq̂[1]

t (α, τ ). To stabilize
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the estimated quantiles, we smooth further this quantile series to obtain the adaptive estimator of
quantilesq̂[2]

t (α, τ ) via the exponential smoothing

q̂[2]

t (α, τ ) = bq̂[2]

t−1(α, τ ) + (1 − b)q̂[1]

t−1(α, τ ). (3.2)

In our implementation, we tookh = 250 andb = 0.94.

3.3. Parametric estimation of quantiles

Based on empirical observations, one possible parametric model for the observed residuals{ε̂t,τ ,

t = T0 + 1, . . . , T − τ } is to assume that the residuals follow a scaledt-distribution:

ε̂t,τ = λε∗
t , (3.3)

whereε∗
t ∼ tν , the Student’st-distribution with degree of freedomν. The parametersλ andν

can be obtained by solving the following equations that are related to the sample quantiles:{
q̂(α1, τ ) = λt (α1, ν)

q̂(α2, τ ) = λt (α2, ν),

wheret (α, ν) is theα quantile of thet-distribution with degree of freedomν. A better estimator
to use isq̂[1](α, τ ) in (3.1). Using the improved estimator and solving the above equations yields
the estimateŝν andλ̂ as follows:

t (α2, ν̂)

t (α1, ν̂)
=

q̂[1](α2, τ )

q̂[1](α1, τ )
, λ̂ =

q̂[1](α1, τ )

t (α1, ν̂)
. (3.4)

Hence, the estimated quantile is given by

q̂[3](α, τ ) = λ̂t (α, ν̂) =
t (α, ν̂)q̂[1](α1, τ )

t (α1, ν̂)
. (3.5)

and the VaR ofτ -period return is given by

VaR[3]

t+1,τ = q̂[3](α, τ )σ̂t+1,τ . (3.6)

In our implementation, we takeα1 = 0.15 andα2 = 0.35. This choice is near optimal in terms
of statistical efficiency (Figure 4).

The above method of estimating quantiles is robust against outliers. An alternative approach
is to use the method of moments to estimate the parameters in (3.3). Note that ifε ∼ tν with
ν > 4, then

Eε2
=

ν

ν − 2
and Eε4

=
3ν2

(ν − 2)(ν − 4)
.

The method of moments yields the following estimates:{
ν̂ = (4µ̂4 − 6µ̂2

2)/(µ̂4 − 3µ̂2
2)

λ̂ = {µ̂2(ν̂ − 2)/ν̂}
1/2,

(3.7)
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Figure 4. The efficiency functiongν(α) for degree of freedomν = 2, ν = 3, ν = 5, ν = 10 andν = 40
(from solid, the shortest dash to the longest dash). For allν, the minimum is almost attained at the interval
[0.1, 0.2].

whereµ̂ j is the j th moment, defined aŝµ j = (T − τ − T0)
−1∑T−τ

t=T0+1 ε̂
j
t,τ . See Pant and

Chang (2001) for similar expressions. Using these estimated parameters, we obtain the new esti-
mated quantile and estimated VaR similarly to (3.5) and (3.6). The new estimates are denoted by
q̂[4](α, τ ) and VaR[4]

t+1,τ , respectively. That is,

q̂[4](α, τ ) = λ̂t (α, ν̂), VaR[4]

t+1,τ = q̂[4](α, τ )σ̂t+1,τ .

The method of moments is less robust than the method of quantiles. The former also requires
the assumption thatν > 4. We will compare their asymptotic efficiency in Section 3.4.

3.4. Theoretical comparisons of estimators for quantiles

Of the three methods for estimating the quantiles, the estimatorq̂[1](α, τ ) is the most robust
method. It imposes very mild assumptions on the distribution ofε̂t,τ and, hence, is robust against
model mis-specification. The two parametric methods rely on the model (3.3), which could lead
to erroneous estimation if the model is mis-specified. The estimatorsq̂[1], q̂[2] and q̂[3] are all
robust against outliers, butq̂[4] is not.

In order to give a theoretical study on the properties of the aforementioned three methods
for estimation of quantiles, we assume that{ε̂t,τ , t = T0, . . . , T − τ } is an independent random
sample from the densityf . Under this condition, for 0< α1 < · · · < αk < 1,

{
√

m[q̂(αi , τ ) − q(αi , τ )], 1 ≤ i ≤ k}
L

−→ N(0, 6), (3.8)

wherem = T − τ − T0 + 1, q(αi , τ ) is the population quantile off , and6 = (σi j ) with

σi j = αi (1 − α j )/ f (q(αi , τ )) f (q(α j , τ )), for i > j andσ j i = σi j .

See Prakasa Rao (1987).
To compare this with parametric methods, let us now assume for a moment that the model

(3.3) is correct. Using the result in Appendix A.1, the nonparametric estimatorq̂[1](α, τ ) follows
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asymptotically a normal distribution with meanλt (α, ν) and variance (forα < 1/2)

V1(α, ν, λ) =
λ2α(1 − 2α)

2 fν(t (α, ν))2m
, (3.9)

where fν is the density of thet-distribution with degree of freedomν given by

fν(x) =
0((ν + 1)/2)
√

νπ0(ν/2)
(1 + x2/ν)−(ν+1)/2.

Sinceν is an integer, any consistent estimator ofν is equal toν with probability tending to
one. For this reason,ν can be treated as known in the asymptotic study. It follows directly from
(3.8) that the estimator̂q[3](α, τ ) has the asymptotic normal distribution with meanλt (α, ν) and
variance

V2(α, α1, ν, λ) =
λ2t (α, ν)2α1(1 − 2α1)

2 fν(t (α1, ν))2t (α1, ν)2m
. (3.10)

The efficiency ofV2 depends on the choice ofα1 through the function

gν(α) =
α(1 − 2α)

fν(t (α, ν))2t (α, ν)2
.

The functiongν(α) for several choices ofν is presented in Figure 3. It is clear that the choices
of α1 in the range[0.1, 0.2] are nearly optimal for all values ofν. For this reason,α1 = 0.15 is
chosen throughout this paper.

As explained previously,ν can be treated as known. Under this assumption, as shown in
Appendix A.2, the method of moment estimatorq̂[4](α, τ ) is asymptotically normal with mean
λt (α, ν) and variance

V3(α, ν, λ) =
λ2(ν − 1)t (α, ν)2

2(ν − 4)m
. (3.11)

Table 7 depicts the relative efficiency among the three estimators. The nonparametric estim-
atorq̂[1] always outperforms the parametric quantile estimatorq̂[2], unless theα andν are small.
The former is more robust against any mis-specification of the model (3.3). The nonparametric
estimatorq̂[1] is more efficient than the method of momentq̂[3] when the degree of freedom is
small, and has reasonable efficiency whenν is large. This, together with the robustness of the
nonparametric estimatorq̂[1] to mis-specification of models and outliers, indicates that our newly
proposed nonparametric estimator is generally preferable to the method of moment estimator.
This finding is consistent with our empirical studies.

In summary, in consideration of the fact that the return series have heavily tails and contain
outliers due to large market movements, and in light of its high statistical efficiency even in the
parametric models, the symmetric nonparametric estimatorq̂[1] is the most preferred forα = 5%.
Among the two parametric methods, the method of moments may be preferred because of its high
efficiency when the degree of freedom is large.

3.5. Empirical comparisons of quantile estimators

We compared, empirically, the performances of three different methods for quantile estimation
by using the eight stock indices in Example 1. To make the comparison easier, the same volatility
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Table 7.Relative efficiency for three estimators of quantiles.

α = 5% α = 1% α = 10%

ν V1/λ2 V2/V1 V3/V1 V2/V1 V3/V1 V2/V1 V3/V1

2 26.243 1.071 ∞ 0.253 ∞ 1.708 ∞

3 10.928 1.348 ∞ 0.394 ∞ 1.873 ∞

4 7.117 1.532 ∞ 0.518 ∞ 1.965 ∞

5 5.528 1.659 1.469 0.621 0.550 2.024 1.792

6 4.682 1.750 1.008 0.706 0.406 2.064 1.189

7 4.164 1.820 0.862 0.775 0.367 2.093 0.992

10 3.381 1.952 0.729 0.922 0.344 2.146 0.801

20 2.666 2.119 0.663 1.138 0.356 2.210 0.691

40 2.373 2.208 0.647 1.266 0.371 2.242 0.657

100 2.214 2.263 0.642 1.351 0.383 2.261 0.641

estimator was applied to all indices and holding periods. The multi-period estimation of volati-
lity in the RiskMetrics is employed forτ = 10, τ = 25 andτ = 50. The estimated quantiles
q̂[ j ](α, τ ) ( j = 1, 2, 3, 4) are used to obtain the estimated VaR. The effectiveness of the esti-
mated VaR is measured by the exceedance ratio

ER = (n − τ)−1
T+n−τ∑
t=T+1

I (Rt,τ < VaRt,τ )

in the post-sample period (January 1, 1997 to December 31, 2000 withn = 1014). Note that due
to the insufficient number of non-overlappingτ -day intervals in the post-sample period, over-
lapping intervals are used. This has two advantages: (1) increasing the number of intervals by a
factor of approximatelyτ and (2) making the results insensitive to the starting date of the post-
sample period (not the case for non-overlapping intervals). The confidence level 1− α = 95% is
used. To compare with the performance of RiskMetrics, we also form VaR[0]

t+1,τ = 8−1(α)σ̂t+1,τ .
This follows exactly the recommendations of J. P. Morgan’s RiskMetrics. The results are pre-
sented in Table 8.

To summarize the performance presented in Table 8, we computed the average and standard
deviation of exceedance ratios for holding periodτ = 10, 25, 50 for each of the eight stock
indices. In addition, the mean absolute deviation errors from the nominal levelα = 5% are also
computed. Table 9 depicts the results of these computations.

For a holding period of 10 days, the adaptive nonparametric estimator VaR[2] has the smallest
bias as well as the second smallest standard deviation of the five competing methods. RiskMet-
rics has a comparable amount of bias, yet its variability is larger. The nonparametric estimator
VaR[1] has the smallest standard deviation, though its bias is the third largest. The adaptive non-
parametric method has, also, the smallest mean absolute deviation error from 5%. For a holding
period of 25 days, RiskMetrics has the smallest biases, but its reliability is quite poor. Its vari-
ability is ranked third out of the five competing methods. The overall deviation (measured by
MADE) from the nominal level is, again, achieved by the two nonparametric methods of estima-
tion of quantiles. For a holding period of 50 days, the variability of the RiskMetrics are, again,
very large. The adaptive nonparametric method is the best in terms of bias, variance and overall
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Table 8.Comparisons of exceedance ratios of several VaR estimators (×10−2).

Index Holding period (τ ) VaR[0] VaR[1] VaR[2] VaR[3] VaR[4]

10 5.42 3.55 5.52 2.37 1.28

AORD 25 5.52 2.56 5.23 1.08 0.99

50 1.28 0.10 3.75 0.10 0.00

10 3.67 3.67 3.48 3.48 2.88

CAC 40 25 4.47 4.57 4.07 3.57 3.48

50 2.78 3.38 2.48 2.78 2.38

10 4.87 4.27 5.06 5.06 4.67

DAX 25 5.66 4.97 5.06 6.95 5.36

50 4.07 3.97 3.77 4.27 3.97

10 6.55 4.49 4.96 5.52 4.40

HS 25 9.17 6.08 8.04 5.89 5.71

50 7.11 2.99 5.14 3.46 3.55

10 4.97 4.26 5.98 3.65 4.06

Nikkei 225 25 6.59 4.56 7.20 4.46 4.67

50 11.76 2.54 11.56 8.22 5.17

10 4.75 4.06 5.05 3.47 4.06

FTSE 25 3.96 2.48 5.35 3.17 2.77

50 2.67 2.48 4.95 2.08 2.67

10 3.77 3.67 5.05 2.38 4.36

S&P500 25 3.17 3.57 5.05 3.96 3.67

50 2.78 3.77 5.95 3.87 3.77

10 5.06 4.96 5.95 3.77 5.16

DJ 25 4.86 5.16 7.24 6.65 5.75

50 3.47 3.87 4.66 3.67 4.07

deviation from the target level of 5%. It is also worthwhile to note that the variability increases
as the holding period gets longer. This is understandable since the prediction involves a longer
time horizon.

The above performance comparisons show convincingly that the newly proposed nonpara-
metric methods for estimation of quantiles outperform the two parametric methods and the
RiskMetrics.

4. ESTIMATION OF VALUE AT RISK

We have proposed three new volatility estimators based on semiparametric model (2.8). These,
together with the RiskMetrics and the GARCH model estimator, give rise to five volatility
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Table 9.Summary of performance of several VaR estimators (×10−2).

Measure Holding period (τ ) VaR[0] VaR[1] VaR[2] VaR[3] VaR[4]

AVE 10 4.88 4.12 5.13 3.71 3.86

STD 10 0.91 0.48 0.79 1.12 1.23

MADE 10 0.63 0.88 0.52 1.43 1.18

AVE 25 5.42 4.24 5.90 4.47 4.05

STD 25 1.85 1.27 1.39 1.97 1.66

MADE 25 1.31 1.07 1.18 1.66 1.41

AVE 50 4.49 2.89 5.28 3.56 3.20

STD 50 3.39 1.27 2.75 2.30 1.55

MADE 50 2.73 2.11 1.63 2.25 1.85

estimators. Further, we have introduced four new quantile estimators, based on parametric and
nonparametric models. These and the normal quantile give five quantile estimators. Combina-
tions of these volatility estimators and quantile estimators yield 25 methods for estimating VaR.
To make comparisons easier, we eliminate a few unpromising combinations. For example, our
previous studies indicate that the semiparametric volatility estimator withλ = 0.94 does not
work very well and that the parametric methods for quantile estimation do not perform as well
as their nonparametric counterparts. Therefore, these methods are not considered. Instead, a few
promising methods are considered to highlight the points that we advocate. Namely, that the de-
cay parameter should be determined by data and that the time-dependent decay parameter should
have a better ability to adapt to changes in market conditions. In particular, we select the follow-
ing procedures:

RiskMetrics: Normal quantile and volatility estimator (2.1)
Nonparametric RiskMetrics (NRM): Nonparametric quantileq[1] and (2.1)
Semiparametric Risk Estimator (SRE): Nonparametric quantileq[1] and SVE
Adaptive Risk Estimator (ARE): Adaptive nonparametric quantileq[2] and AVE
GARCH estimator (GARCH): Normal quantile and GARCH(1,1) model.

The SRE and ARE are included in the study because they are promising. The former has time-
independent decay parameters and quantiles, while the latter has time-dependent parameters and
quantiles. NRM is also included in our study because of its simplicity. It possesses a very similar
spirit to RiskMetrics. GARCH is included because of its popularity in analyzing financial data.

To compare these five methods, we use simulated data sets and the eight stock indices. We
begin with the simulated data. Two hundred series of length 3000 were simulated from the
continuous-time SV model in Example 3. As in Example 2, the first 2000 data points were re-
garded as the in-sample period and the last 1000 data points were treated as the post-sample pe-
riod. The exceedance ratios were computed for each series for the holding periodsτ = 1, 10, 25
and 50. The results are summarized in Table 10. Using the mean absolute deviation error from
the nominal confidence level 5% as an overall measure, the RiskMetrics and ARE perform the
best. One reason for the RiskMetrics to perform well is that the stochastic noises are generated
from a normal distribution. It is easy to understand that if the noise does not follow a normal
distribution, the RiskMetrics will not perform well.
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Table 10.Summary of the performance of five VaR estimators.

Measure Holding period (τ ) RiskMetrics NRM SRE ARE GARCH

AVE 1 5.45 4.95 4.99 4.99 4.29

STD 1 0.55 0.58 0.66 0.62 2.16

MADEa 1 0.61 0.47 0.54 0.49 1.81

AVE 10 5.19 5.12 5.16 5.12 4.29

STD 10 1.60 1.82 1.83 1.75 2.52

MADE 10 1.24 1.45 1.41 1.37 2.12

AVE 25 5.00 5.18 5.18 5.18 4.17

STD 25 2.53 2.76 2.80 2.71 3.16

MADE 25 1.96 2.14 2.16 2.04 2.73

AVE 50 5.41 5.41 5.37 5.33 4.21

STD 50 3.89 3.89 3.94 3.77 3.70

MADE 50 3.07 3.07 3.10 2.98 3.16

aMean absolute deviation error from the nominal confidence level 5%.

We now apply the five VaR estimators to the eight stock indices depicted in Example 1. As
in Example 1 and shown in Table 2, the post-sample was from January 1, 1997 to December 31,
2000. The exceedance ratios are computed for each method. The results are shown in Table 11.
To make the comparison easier, Table 12 shows the summary statistics of Table 11.

Table 12 shows that the ARE is the best procedure among the five VaR estimators for all
holding periods. For one-period, SRE outperforms RiskMetrics, but for multi-period, RiskMet-
rics outperforms the SRE. NRM improves somewhat the performance of RiskMetrics. For the
real data sets, it is clear that it is worthwhile to use the time-dependent methods such as ARE.
Indeed, the gain is more than the price that we have to pay for the adaptation to the changes of
market conditions. The results also provide stark evidence that the quantile of standardized return
should be estimated and the decay parameters should be determined from data.

Table 13 shows the results for hypothesis testing, as in the performance measures 4 and 5.
The results are shown for a 1-day holding period. As indicated before, for multiple-day VaR
prediction, overlapping intervals are used. Hence, hypothesis testing cannot be applied. Except
for the HSI, there is little evidence against the hypothesis of independence and the hypothesis
that ER = 5%. TheP-values for AORD also tend to be small.

5. CONCLUSIONS

We have proposed semiparametric methods for estimating volatility, as well as nonparametric
and parametric methods for estimating the quantiles of scaled residuals. The performance com-
parisons are studied both empirically and theoretically. We have shown that the proposed semi-
parametric model is flexible in approximating stock price dynamics.

For volatility estimation, it is evident from our study that the decay parameter should be
chosen from data. Our proposed method of choosing the decay parameter has been demonstrated
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Table 11.Comparisons of exceedance ratios of five VaR estimators.

Index Holding period(τ ) RiskMetrics NRM SRE ARE GARCH

1 4.93 4.93 4.73 5.23 5.42

AORD 10 5.42 3.85 4.34 4.73 5.13

25 5.52 3.25 3.55 5.33 4.93

50 1.28 0.39 1.28 4.34 1.38

1 6.36 6.45 6.06 5.56 8.24

CAC 40 10 3.67 3.67 2.68 3.28 4.57

25 4.47 4.57 3.87 3.67 5.46

50 2.78 3.38 2.78 2.28 3.28

1 5.46 5.46 5.56 5.76 7.85

DAX 10 4.87 4.27 4.47 4.47 6.26

25 5.66 4.97 4.47 5.06 6.95

50 4.07 3.97 3.48 3.58 4.27

1 5.99 5.71 6.27 4.96 7.30

HSI 10 6.55 4.49 5.43 5.05 9.17

25 9.17 6.08 7.95 8.98 12.25

50 7.11 2.99 4.40 5.15 11.23

1 5.78 5.68 5.68 5.27 5.88

Nikkei 225 10 4.97 4.26 3.96 5.58 4.97

25 6.59 4.56 3.96 6.90 6.69

50 11.76 2.54 1.22 10.75 10.85

1 5.94 6.04 6.04 6.14 7.43

FTSE 10 4.75 4.06 3.96 5.05 4.95

25 3.96 2.48 2.97 6.63 4.65

50 2.67 2.48 2.38 5.15 2.87

1 5.55 5.25 5.15 4.96 4.46

S&P500 10 3.77 3.67 3.87 5.35 2.78

25 3.17 3.57 3.47 4.96 1.98

50 2.78 3.77 4.36 6.64 2.28

1 5.65 5.65 5.65 5.65 4.96

Dow Jones 10 5.06 4.96 4.96 5.85 4.17

25 4.86 5.16 4.46 6.15 4.37

50 3.47 3.87 4.27 5.16 3.37

to be quite effective. An adaptive procedure has also been proposed, which allows automatic
adaptation to periodic changes in market conditions. It is shown that the AVE outperforms the
other procedures, while the SVE also performs competitively.
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Table 12.Summary of the performance of five VaR estimators.

Measure Holding period(τ ) RiskMetrics NRM SRE ARE GARCH

AVE 1 5.71 5.65 5.64 5.44 6.44

STD 1 0.42 0.46 0.51 0.41 1.43

MADE 1 0.73 0.66 0.71 0.46 1.59

AVE 10 4.88 4.15 4.21 4.92 5.25

STD 10 0.91 0.44 0.82 0.80 1.86

MADE 10 0.63 0.85 0.90 0.55 1.14

AVE 25 5.43 4.33 4.34 5.96 5.91

STD 25 1.85 1.16 1.54 1.60 2.99

MADE 25 1.31 0.98 1.40 1.30 1.93

AVE 50 4.49 2.92 3.02 5.38 4.94

STD 50 3.39 1.17 1.32 2.52 3.86

MADE 50 2.73 2.08 1.98 1.58 3.08

For quantile estimation, our study shows that the nonparametric method has a very high
efficiency compared to its parametric counterparts. Furthermore, it is robust against model mis-
specifications. An adaptive procedure was introduced to accommodate the changes in market
conditions over time and allows it to outperform other competing approaches.

For VaR estimation, it is natural to combine the adaptive volatility estimator with the adap-
tive quantile estimator (ARE), and to combine the semiparametric estimator of volatility with the
nonparametric estimator of quantiles (SRE), to yield effective estimators for VaR. The former is
designed to accommodate changes in market conditions over time while the latter is introduced
for situations where the market conditions do not change abruptly. Both methods perform out-
standingly although preference is given to the ARE method, due partially to its ability to adapt
to the changes in market conditions over time.

Some parameters in the the adaptive volatility and adaptive nonparametric quantile estimators
were chosen arbitrarily. The performance of our proposed procedure can further be ameliorated
if these parameters are optimized. An advantage of our procedure is that it can be combined with
other volatility estimators and quantile estimators to yield new and more powerful procedures
for prediction of VaR.
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Table 13.Comparisons of exceedance ratios and the test results of five VaR estimators.

Index Holding period RiskMetrics NRM SRE ARE GARCH

ER 4.93 4.93 4.73 5.23 5.42

AORD P-value(indep) 0.01 0.01 0.01 0.02 0.12

P-value(ER= 5%) 0.92 0.92 0.71 0.76 0.46

ER 6.36 6.45 6.06 5.56 8.24

CAC 40 P-value(indep) 0.33 0.37 0.90 0.12 0.36

P-value(ER= 5%) 0.06 0.04 0.14 0.43 0.00a

ER 5.46 5.46 5.56 5.76 7.85

DAX P-value(indep) 0.59 0.59 0.90 0.16 0.78

P-value(ER= 5%) 0.51 0.51 0.43 0.28 0.00a

ER 5.99 5.71 6.27 4.96 7.30

HSI P-value(indep) 0.00a 0.00a 0.00a 0.00a 0.03

P-value(ER= 5%) 0.15 0.30 0.07 0.96 0.00a

ER 5.78 5.68 5.68 5.27 5.88

Nikkei 225 P-value(indep) 0.35 0.32 0.32 0.19 0.80

P-value(ER= 5%) 0.27 0.34 0.34 0.71 0.22

ER 5.94 6.04 6.04 6.14 7.43

FTSE P-value(indep) 0.45 0.49 0.82 0.11 0.78

P-value(ER= 5%) 0.18 0.14 0.14 0.11 0.00a

ER 5.55 5.25 5.15 4.96 4.46

S&P500 P-value(indep) 0.62 0.88 0.32 0.89 0.89

P-value(ER= 5%) 0.44 0.73 0.85 0.96 0.43

ER 5.65 5.65 5.65 5.65 4.96

Dow Jones P-value(indep) 0.56 0.56 0.18 0.56 0.68

P-value(ER= 5%) 0.35 0.35 0.35 0.35 0.43

Note: Means statistically significant at the 1% level.
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APPENDIX

In this Appendix, we give some theoretical derivations on the relative efficiencies of several
nonparametric and parametric estimators of quantiles. The basic assumption is that{ε̂t,τ , t =

T0, . . . , T − τ } is an independent random sample from a population with probability densityf .

A.1. Relative efficiency of estimator (3.1)

By the symmetry assumption,f (q(α, τ )) = f (q(1−α, τ)). By using (3.8), we obtain that the es-
timatorsq̂(α, τ ) andq̂(1−α, τ) are joint asymptotically normal with mean(q(α, τ ),−q(α, τ ))T

and covariance matrix

f (q(α, τ ))−2
(

α(1 − α) α2

α2 α(1 − α)

)
.

It follows thatq̂[3](α, τ ) has the asymptotic normal distribution with meanq(α, τ ) and variance

4−1 f (q(α, τ ))−2
[α(1 − α) − 2α2

+ α(1 − α)] = 2−1 f (q(α, τ ))−2α(1 − 2α),

and thatq̂(α, τ ) is asymptotically normal with meanq(α, τ ) and variance

f (q(α, τ ))−2α(1 − α).

Consequently, the estimatorq̂[3](α, τ ) is a factor of 2(1 − α)/(1 − 2α) as efficient aŝq(α, τ ).

c© Royal Economic Society 2003



290 Jianqing Fan and Juan Gu

A.2. Asymptotic normality for the method of moments estimator

Recall that the variance of the squaredt-random variable with degree of freedomν is given by
2ν2(ν − 1)/(ν − 2)2(ν − 4). By the central limit theorem,

√
m

(
µ̂2 −

ν

ν − 2
λ2
)

L
−→ N

(
0,

2ν2(ν − 1)

(ν − 2)2(ν − 4)
λ4

)
.

Using the delta method, we deduce that

√
m

(√
µ̂2 −

√
ν

ν − 2
λ

)
L

−→ N

(
0,

ν(ν − 1)

2(ν − 2)(ν − 4)
λ2
)

.

Hence, the estimated quantile

q̂[4](α, τ ) =

√
µ̂2

√
ν − 2

ν
t (α, τ )

has the asymptotic normal distribution with meanλt (α, τ ) and variance

λ(ν − 1)t (α, τ )2

2(ν − 4)
.
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