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Abstract
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Criterion (BIC), we find that an extension of the Cairns, Blake & Dowd (2006b)
model that incorporates the cohort effect fits the England & Wales data best, while
for US data, the Renshaw & Haberman (2006) extension to the Lee & Carter (1992)
model that also allows for a cohort effect provides the best fit. However, we identify
problems with the robustness of parameter estimates of these models over different
time periods. A different extension to the Cairns, Blake & Dowd (2006b) model
that allows not only for a cohort effect, but also for a quadratic age effect, while
ranking below the other models in terms of the BIC, exhibits parameter stability
across different time periods for both data sets. This model also shows, for both
data sets, that there have been approximately linear improvements over time in
mortality rates at all ages, but that the improvements have been greater at lower
ages than at higher ages, and that there are significant cohort effects.
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1 Introduction

It has become increasingly clear that mortality improvements in countries where
reliable data exist are driven by an underlying process that is stochastic. Since the
early 1990s, a number of stochastic models have been developed to analyse these
mortality improvements. These include the Lee-Carter model and its extensions
(Lee and Carter (1992), Brouhns et al. (2002), Renshaw and Haberman (2003,
2006), CMI (2005, 2006)), the P-splines model (Currie et al. (2004), Currie (2006),
CMI (2005, 2006)), and the Cairns et al. (2006b) model (a stochastic version of the
Perks (1932) model). Wong-Fupuy and Haberman (2004) have compared a variety
of deterministic and stochastic mortality models in a qualitative sense, but so far as
we are aware, there have been no quantitative comparisons of these models. This
study undertakes such a comparison.

We consider a range of both new and existing models. In the early part of the
paper we compare these on the basis of a set of desirable, qualitative criteria: ease
of implementation, parsimony, transparency, the ability to generate sample paths,
the ability to generate forecast percentiles, allowance for parameter uncertainty,
the incorporation of cohort effects (see Willets (1999, 2004) and Richards et al.
(2006)), and the ability to produce a non-trivial correlation structure. The study
then pays considerable attention to two important, quantitative criteria that can
only be evaluated when the model is fitted to the data: consistency with historical
data; and robustness relative to the range of data employed.

We find that no single model dominates on the basis of all these criteria. If we rank
models using an objective model selection criterion based on the statistical quality
of fit, then an extension of the Cairns et al. (2006b) model fits the England &
Wales data best, while the Renshaw and Haberman (2006) model fits the US data
best. However, if we take the robustness of parameter estimates into account then
the preferred model is a different extension of the Cairns et al. (2006b) model that
allows for both a cohort effect and a period effect that is quadratic in age.

1.1 Notation

We consider eight models in this paper and it is important that we use consistent
and clear notation throughout.

Calendar year t is defined as running from time t to time t + 1.

We define m(t, x) to be the crude (that is, unsmoothed) death rate for age x in
calendar year t. More specifically,

m(t, x) =
#deaths during calendar year t aged x last birthday

average population during calendar year t aged x last birthday
.

The average population is usually approximated by an estimate of the population
aged x last birthday in the middle of the calendar year.

A second measure of mortality is the mortality rate q(t, x). This is the probability
that an individual aged exactly x at exact time t will die between t and t + 1.
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A third measure is the force of mortality, µ(t, x). This is interpreted as the in-
stantaneous death rate at exact time t for individuals aged exactly x at time t.
For these individuals, for small dt, the probability of death between t and t + dt is
approximately µ(t, x)× dt.

1.2 Relationship between m(t, x) and q(t, x)

The death rate, m(t, x), and the mortality rate, q(t, x), are typically very close to
one another in value. With some assumptions, we can formalise this relationship
more precisely:

• Assumption 1: For integers t and x, and for all 0 ≤ s, u < 1, µ(t + s, x + u) =
µ(t, x) – that is, the force of mortality remains constant over each year of
integer age and over each calendar year.

• Assumption 2: We assume that we have a stationary population – that is, the
size of the population at all ages remains constant over time.

These assumptions imply that

(a) m(t, x) = µ(t, x);

(b) q(t, x) = 1− exp[−µ(t, x)] = 1− exp[−m(t, x)].

Relationship (a) is often used in the analysis of death rate data (see, for example,
Brouhns et al, 2002).

Relationship (b) is useful in the analysis of parametric models for mortality that are
formulated in terms of q(t, x).

Assumptions 1 and 2 do not normally hold exactly, but the resulting relationship
between m(t, x) and q(t, x) is generally felt to provide an accurate approximation.



2 DATA 4

2 Data

We will now discuss the general characteristics of both the England & Wales and
the US males data.

The primary motivation for this study is to compare various mortality models and
determine which are best suited to forecasting mortality at higher ages. This reflects
a concern with longevity risk — the risk that experienced survival rates might be
higher than anticipated — to which pension plans and annuity providers are exposed.

As a consequence we will use data at higher ages only (ages 60 to 89 inclusive) when
we make our comparisons of the different models.

2.1 England & Wales: crude death rates

Crude mortality rates for England & Wales males between 1961 and 2004 are plotted
in Figure 1. The upper plot shows rates for all ages on the same vertical (logarithmic)
scale. This gives us a general impression of how rates at different ages are related.
The lower plot shows how death rates at selected ages have changed over time
relative to their average values over 1961 to 1965. These plots clearly show marked
improvements in mortality over time, but that the rates of improvement have been
different at different ages and have also been fairly erratic.

2.1.1 Data issues

A typical dataset consists of numbers of deaths, D(t, x), and the corresponding
exposures, E(t, x), over a range of years t and ages x. Numbers of deaths are
normally regarded as being reasonably accurate, although they become less reliable
at very high ages. The exposure E(t, x) represents the average, during calendar year
t, of the number of people alive who were aged x last birthday. This quantity is
normally not known with a high degree of accuracy, even in census years, and has to
be estimated by the Office for National Statistics (ONS) (or its equivalent in other
countries) taking account of recorded births and deaths and net immigration.

In the analysis that follows we shall exclude a number of seemingly unreliable data
points (t, x):

• The 1886 cohort (that is, t− x = 1886). Death rates became markedly out of
line with neighbouring cohorts during the 1960’s. This might be the result of
poorly calculated exposures (that is, estimates of average population size at
each age).

• Death rates at and above age 85 in the years up to including 1970. Accurate
exposures were not estimated by the ONS (or its predecessors) at these ages
until 1971.
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Figure 1: Crude mortality rates for England & Wales males between 1961 and 2004.
Top: The surface of mortality rates q(y, x) plotted on a logarithmic scale for the
years 1961 to 2004. Bottom: Mortality rates for the years 1961 to 2004 at selected
ages relative to average (baseline) mortality rates between 1961 and 1965.
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Figure 2: Data points that are included (solid dots) out of the England & Wales
males mortality data ages 60-89, years 1961-2004. Excluded data are: 1886 cohort;
1961-1970 ages 85-89; and cohorts with fewer than five observations.

Additionally, since some of the models we are fitting are cohort models, we will
exclude all cohorts that have fewer than 5 observations (after taking account of the
exclusions above).1

A graphical representation of the excluded data is given in Figure 2.

1The reliability of the estimates of the γ
(i)
t−x cohort parameters (defined later) depends on the

number of observations for each cohort. At one extreme, if we have just one observation then the
γ

(i)
t−x parameter can be chosen so that the fitted death rate is exactly equal to the observed rate,

a so-called quality of fit that can be achieved without affecting any of the other estimated death
rates. In effect, the single observation allows us to overfit the model, whereas the estimated γ

(i)
t−x

parameter is, in reality, subject to substantial parameter uncertainty. With more observations in
a given cohort, the estimated γ

(i)
t−x parameter becomes more reliable. Consequently, we wish to

exclude cohorts that have too few observations. However, if we exclude too many cohorts then
we are left with relatively little data. We therefore adopt a compromise and exclude cohorts with
fewer than 5 observations as can be seen in Figure 2.
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Figure 3: Improvement rates in mortality for England & Wales by calendar year
and age relative to mortality rates at the same age in the previous year. Red cells
imply that mortality is deteriorating; green small rates of improvement, and blue
and white strong rates of improvement. The black diagonal line follows the progress
of the 1930 cohort.

2.1.2 The cohort effect

Some of the models we employ incorporate what is commonly called the “cohort
effect”. The rationale for its incorporation lies in an analysis of the rates at which
mortality has been improving at different ages and in different years. Rates of
improvement are plotted in Figure 3 (see, also Willets, 2004, and Richards et al.,
2006). A black and white version of this graph can be found in the Appendix, Figure
38.

In line with previous authors (see, for example, Willets, 2004, Richards et al., 2006)
we can note the following points. In certain sections of the plot, we can detect
strong diagonals of similar colours. Most obviously, cohorts born around 1930 have
strong rates of improvement between ages 40 and 70 relative to, say, cohorts born
10 years earlier or 10 years later. The cohort born around 1950 seems to have worse
mortality than the immediately preceeding cohorts.

There are other ways to illustrate the cohort effect and these can be found in Ap-
pendix A.
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2.2 United States: crude death rates

This paper also analyses data for US males aged 60 to 89 over the period 1968 to
2003.2 In our introductory remarks here we will focus on those aspects of the US
data that are different from the England & Wales (EW) data.

With the EW data in a given year, t, we have identified (Cairns, Blake and Dowd,
2006b) that logit q(t, x) (that is, log q(t, x)/(1 − q(t, x))) is reasonably linear in x.
While this is approximately true for the US data, we can see that in some years (for
example, in 2003 as illustrated in Figure 4) there is a small degree of curvature in
the plot of x versus logit q(t, x). The curvature is not all that prominent, but it does
turn out to be significant when we compare models with and without a quadratic
term in logit q(t, x), and it is an effect that changes over time.

We have also seen a prominent cohort effect in the EW data. Cohort effects are
certainly evident in the US data as can be seen in Figure 5. However, above age 60
the magnitude of the effect is much smaller than the the England & Wales cohort
effect. A black and white version of this graph can be found in the Appendix, Figure
39.

2.2.1 Data issues

Accurate exposures data are not available for the period 1968 to 1979 for ages above
84. Consequently we have used data for ages 85 to 89 only after 1979.

In contrast to the EW data, the US data do not appear to have any individual
cohorts that have identifiable problems. However, we found that the exposures
data3 were, in general, less reliable as estimates of the underlying population sizes
at specific ages in specific years. This is most apparent if we follow the exposures
data for a specific cohort over time.4 Exposures data for the cohorts born in 1928,
1918, 1908 and 1898 are plotted in Figure 6. We would normally expect to see a
relatively smooth progression in the exposures data from one year to the next. The
decrease in the exposure from one year to the next should reflect the numbers of
deaths and net immigration from the cohort. If net immigration is zero this should
result in a fairly-smooth, downwards progression of values in each plot. Instead we
see for each of the cohorts in Figure 6 that the pattern is to some extent erratic,
especially for the top left plot. This might be explained by a volatile pattern of net
immigration. However, it could also be explained by errors in the underlying data
(particularly the exposures data). The corresponding plots for England & Wales are
much smoother.

Further evidence of the lower reliability of the exposures data is provided by the
correlation between the change in the cohort exposure (∆E(1967 + t, x + t)) and

2Data are available for higher ages, but (in common with most countries) age at death is often
misreported at these high ages, meaning that estimated death rates become unreliable.

3For further explanation, see Section 3.
4For example, if we follow exposures data for what is labelled as the “1920” cohort, then we

look at the sequence E(1920, 0), E(1921, 1), . . . , E(1980, 60), E(1981, 61), . . ..
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Figure 4: US mortality rates for the year 2003. Plot shows logit q(t, x) for the year
t = 2003 and ages x = 60, . . . , 89.
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Figure 5: Improvement rates in mortality for the US by calendar year and age
relative to mortality rates at the same age in the previous year. Red cells imply
that mortality is deteriorating; green small rates of improvement, and blue and
white strong rates of improvement.



2 DATA 10

1970 1980 1990 2000

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Cohort age 41 in 1968

Year

E
xp

os
ur

e 
(m

ill
io

ns
)

1970 1980 1990 2000

0.
4

0.
6

0.
8

1.
0

1.
2

Cohort age 51 in 1968

Year

E
xp

os
ur

e 
(m

ill
io

ns
)

1970 1980 1990 2000

0.
0

0.
2

0.
4

0.
6

0.
8

Cohort age 61 in 1968

Year

E
xp

os
ur

e 
(m

ill
io

ns
)

1970 1980 1990 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Cohort age 71 in 1968

Year

E
xp

os
ur

e 
(m

ill
io

ns
)

Figure 6: US Exposures for different cohorts over the period 1968 to 2003: E(1967+
t, x + t) for x = 40, 50, 60, 70.
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the corresponding change in the death rate (∆m(1967 + t, x + t)).5 If the data
were totally reliable then this correlation should be very close to zero. However, we
find that there is a strong negative correlation (around -0.6) for the age 41 and 51
cohorts in Figure 6. The interpretation of this is that if we see an abnormally high
death rate in a specific year then this can be largely explained by an abnormally
low exposure rather than an abnormally high number of deaths.

In Figure 5 we see a distinct vertical band between 1984 and 1994 at the lower ages
characterised by low mortality improvement rates (red), with high improvement
rates after 1994 (white) which might suggest inaccuracies in the data. The red
region corresponds to a period of apparently-worsening mortality rates, while the
white region after 1995 corresponds to a dramatic improvement in mortality rates
in 1996. This period sees the baby-boom generation moving through their 20’s and
30’s in the exposures data. The rise and fall in mortality rates might be linked
to the HIV/AIDS epidemic, but the fall would need to be linked to the successful
introduction of a treatment for the virus. This paper focuses on mortality above
age 60, so we do not pursue this feature of the US data.

3 Estimation

We have data covering ages x1, . . . , xna and calendar years t1, . . . , tny . For each age
x and year t we have an exposure of E(t, x) (that is, E(t, x) is the average size of
the population aged x last birthday during year t) and D(t, x) deaths during year t
recorded as age x last birthday at the date of death.

We will model the number of deaths using the Poisson model commonly employed
in the literature on mortality modelling: namely D(t, x) has a Poisson distribution
with mean E(t, x) × m(t, x) (or D(t, x) ∼ Po (E(t, x)m(t, x)) ): see, for example,
Brouhns et al. (2002).

Our analysis is complicated slightly by the fact that some of the models we consider
directly model the death rate m(t, x) while others model the mortality rate q(t, x).
In order to ensure that our comparison of the different models is carried out in a
consistent way, our analyses of the models for q(t, x) involve an additional step.
First, for a given set of parameters we calculate the q(t, x). We then transform
these into death rates using the identity m(t, x) = − log[1 − q(t, x)]. We can then
calculate the likelihood for all models consistently based on the m(t, x) values.

For a given model, we use φ to represent the full set of parameters, and the nota-
tion for m(t, x) is augmented to read m(t, x; φ) to indicate its dependence on the
parameters. Where we have a model for q(t, x) = q(t, x; φ) we define

m(t, x; φ) = − log[1− q(t, x; φ)].

For all models the log-likelihood is

l(φ; D, E) =
∑
t,x

D(t, x) log[E(t, x)m(t, x; φ)]− E(t, x)m(t, x; φ)− log[D(t, x)!],

5In these expressions ∆ is the difference operator that takes the difference between the obser-
vations at t and t− 1.
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Model formula

M1 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β(3)γ

(3)
t−x

M3 log m(t, x) = β
(1)
x + κ

(2)
t + γ

(3)
t−x

M4 log m(t, x) =
∑

i,j θijB
ay
ij (x, t)

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

M6 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x

M8 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x(xc − x)

Table 1: Formulae for the mortality models: The functions β
(i)
x , κ

(i)
t , and γ

(i)
t−x are

age, period and cohort effects respectively. The Bay
ij (x, t) are B-spline basis functions

and the θij are weights attached to each basis function. x̄ is the mean age over the
range of ages being used in the analysis. σ̂2

x is the mean value of (x− x̄)2.

and estimation is by maximum likelihood.6

4 Mortality models

The data will cover the range x1, . . . , xna and t1, . . . , tny with increments of one in
each case. Models will be labelled M1, M2 etc. and are listed in Table 1.

Additionally we will use the following conventions:

• The β
(i)
x functions will reflect age-related effects.

• The κ
(i)
t functions will reflect period-related effects.

• The γ
(i)
c functions will reflect cohort-related effects, with c = t− x.

All of the models we shall look at with the exception of the P-splines model will be
of the form log m(t, x) =

∑
i β

(i)
x κ

(i)
t γ

(i)
t−x or logit q(t, x) =

∑
i β

(i)
x κ

(i)
t γ

(i)
t−x.

The method of recording the calendar year of death and the age last birthday at
death means that the death count covers individuals born on 1 January in calendar

6Note that D(t, x)! means “D(t, x) factorial”.
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year t − x − 1 through to 31 December t − x (that is, two years) with a peak
representation on 1 January t− x. The cohort index c = t− x takes its values from
the second of these years. As an example, our previously-referred-to 1886 cohort
(Section 2.1.1) covers individuals born between 1 January 1885 and 31 December
1886.

4.1 Model M1

Lee and Carter (1992) propose the following model for death rates:

log m(t, x) = β(1)
x + β(2)

x κ
(2)
t .

For this and some of the other models there is an identifiability problem in parameter
estimation. To see this, note that the revised parametrisation

log m(t, x) = β̃(1)
x + β̃(2)

x κ̃
(2)
t

where β̃(1)
x = β(1)

x + bβ(2)
x

β̃(2)
x = β(2)

x /a

and κ̃
(2)
t = a(κ

(2)
t − b)

results in identical values for log m(t, x), and this means that we cannot distinguish
between the two parametrisations. To circumvent this problem we need to impose
two constraints on the parameters to prevent the arbitrary revaluation of the pa-
rameters a and b above. To some extent the choice of constraints is a subjective
one, although some are more natural choices than others. With the current model
we use the following constraints:

∑
t

κ
(2)
t = 0

and
∑

x

β(2)
x = 1.

The first is a natural constraint and implies that for each x the estimate for β
(1)
x

will be equal (at least approximately) to the mean over t of the log m(t, x). There
has to be a second constraint to pin down both of the parameters a and b above.
However, there is no natural choice for this constraint and, indeed, different choices
can be seen in the different applications of the Lee-Carter model in the academic
literature. The important point, here, is that the choice of the second constraint
has no impact on the quality of the fit, or on forecasts of mortality.

4.2 Model M2

Renshaw and Haberman (2006) generalised the Lee-Carter model to include a cohort
effect as follows:

log m(t, x) = β(1)
x + β(2)

x κ
(2)
t + β(3)

x γ
(3)
t−x.

Model M1 is then a special case where the β
(3)
x and γ

(3)
t−x are set to zero.
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This model has similar identifiability problems to the previous model. We therefore
impose the following constraints to ensure identifiability:

∑
t

κ
(2)
t = 0,

∑
x

β(2)
x = 1,

∑
x,t

γ
(3)
t−x = 0,

and
∑

x

β(3)
x = 1.

The first and third constraints mean that the estimate for β
(1)
x will be (at least

approximately) equal to the mean over t of the log m(t, x). The second and fourth
constraints are similar to the second constraint in model M1, in that they have no
natural choices, but the actual choice makes no difference to the quality of fit.

The original paper of Renshaw and Haberman (2006) chose to fix their estimates for

β
(1)
x at n−1

y

∑
t log m(t, x); the remaining parameters are estimated using an iterative

scheme (an approach which we adopt here). In contrast, we use the above expression

for β
(1)
x only as an initial estimate and include β

(1)
x in the iterative scheme as well.

We found that parameter values in the iterative scheme converge very slowly to
their maximum likelihood estimates. This suggests that some sort of identifiability
problem remains. It is not clear if this problem is an exact one in the sense described
above or approximate. An exact identifiability problem means that the likelihood
function will be absolutely level in certain dimensions about the maximum. An
approximate identifiability problem means that the likelihood function will be very
flat, although not absolutely level, in certain dimensions.

4.3 Model M3

Currie (2006) introduces the simpler Age-Period-Cohort (APC) model

log m(t, x) = β(1)
x + κ

(2)
t + γ

(3)
t−x.

This is a special case of model M2 with β
(2)
x = 1 and β

(3)
x = 1. Currie (2006) uses

P-splines to fit β
(1)
x , κ

(2)
t and γ

(3)
t−x to ensure smoothness. In our analysis of M3 we

do not impose any smoothness conditions.

Without loss of generality we impose the following constraints:
∑

t

κ
(2)
t = 0,

∑
x,t

γ
(3)
t−x = 0.

We need one further constraint, since we can otherwise add δ
(
(t − t̄) − (x − x̄)

)

to γ
(3)
t−x, subtract δ(t − t̄) from κ

(2)
t and add δ(x − x̄) from β

(1)
x with no impact on
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the two constraints above. We propose here that the tilting parameter, δ, be chosen
within an iterative scheme to minimise

S(δ) =
∑

x

(
β(1)

x + σ̂2
x(x− x̄)− β̄(1)

x

)2
,

where β̄
(1)
x = n−1

y

∑
t log m(t, x). This implies that

δ = −
∑

x(x− x̄)(β
(1)
x − β̄

(1)
x )∑

x(x− x̄)2
.

Given that the κ
(2)
t and γ

(3)
t−x already satisfy the first two constraints, we revise our

parameter estimates according to the formulae:

κ̃
(2)
t = κ

(2)
t − δ(t− t̄)

γ̃
(3)
t−x = γ

(3)
t−x + δ

(
(t− t̄)− (x− x̄)

)

β̃(1)
x = β(1)

x + δ(x− x̄).

Note that models M1 to M3 can be described as belonging to the family of generalised
Lee-Carter models.

4.4 Model M4

Currie et al. (2004) propose the use of B-splines and P-splines to fit the mortality
surface:

log m(t, x) =
∑
i,j

θijB
ay
ij (x, t)

with smoothing of the θij in the age and cohort directions.

Appendix B discusses the construction of B-splines and how they are fitted.

4.5 Model M5

Cairns, Blake and Dowd (2006b) (CBD) fitted the following model to mortality rates
q(t, x):

logit q(t, x) = β(1)
x κ

(1)
t + β(2)

x κ
(2)
t .

For this model simple parametric forms were assumed for β
(1)
x and β

(2)
x :

β(1)
x = 1,

and β(2)
x = (x− x̄)

where x̄ = n−1
a

∑
i xi is the mean age in the sample range (in our analysis, therefore,

x̄ = 74.5). Thus

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄).

This model has no identifiability problems.
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4.6 Model M6

This model is the first generalisation of the CBD model to include a cohort effect.

logit q(t, x) = β(1)
x κ

(1)
t + β(2)

x κ
(2)
t + β(3)

x γ
(3)
t−x

For this model, simple parametric forms were assumed for β
(1)
x , β

(2)
x and β

(3)
x :

β(1)
x = 1,

β(2)
x = (x− x̄),

and β(3)
x = 1.

Thus
logit q(t, x) = κ

(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x.

As with other models we have an identifiability problem. Here we can switch from
γ

(3)
t−x to γ̃

(3)
t−x = γ

(3)
t−x + φ1 + φ2(t − x − x̄) and, with corresponding adjustments to

κ
(1)
t and κ

(2)
t , there is no impact on the fitted values of the q(t, x). This requires two

constraints to prevent arbitrary use of φ1 and φ2. The constraint we have used here
(which acts to constrain both φ1 and φ2) is that if we use least squares to fit a linear

function of t − x to γ
(3)
t−x then the fitted linear function is identically equal to zero.

In doing so our estimates of the γ
(3)
t−x will be centred around zero and there will be

no constant trend up or down.

4.7 Model M7

This model is a generalisation of model M6 that adds a quadratic term into the age
effect. The inclusion of the quadratic term is inspired by the possibility of some
curvature identified in the logit q(t, x) plots in the US data. Thus

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t

(
(x− x̄)2 − σ̂2

x

)
+ γ

(4)
t−x.

Here the constant σ̂2
x = n−1

a

∑
i(x− x̄)2 is the mean of (x− x̄)2.

As with model M6, we have an identifiability problem and we can switch from
γ

(4)
t−x to γ̃

(4)
t−x = γ

(4)
t−x + φ1 + φ2(t − x − x̄) + φ3(t − x − x̄)2 and with corresponding

adjustments to κ(1)t, κ(2)t and κ(3)t, without there being an impact on the fitted
values of the q(t, x). This requires three constraints to prevent arbitrary choices over
φ1, φ2 and φ3. We impose the constraint that the fitted quadratic function from the
least squares fit of a quadratic function of (t−x) to γ

(4)
t−x is identically equal to zero.

This constraint fixes φ1, φ2 and φ3. In doing so our estimates of the γ
(4)
t−x will be

fluctuating around zero, there will be no obvious trend up or down and there will
be no systematic curvature.

4.8 Model M8

Our third generalisation of the CBD model builds on our experience from fitting
model M2 (see the results in Section 6). This suggested that the impact of the
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cohort effect γ
(3)
t−x for any specific cohort diminishes over time (β

(3)
x = decreasing

with x) instead of remaining constant (β
(3)
x = constant). This gives us

logit q(t, x) = β(1)
x κ

(1)
t + β(2)

x κ
(2)
t + β(3)

x γ
(3)
t−x

where

β(1)
x = 1,

β(2)
x = (x− x̄),

and β(3)
x = (xc − x)

for some constant parameter xc to be estimated. This results in

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x(xc − x).

To avoid identifiability problems we need to introduce one constraint:

∑
x,t

γ
(3)
t−x = 0.

Each of models M6 to M8 is an extension of model M5 with some allowance for the
cohort effect. Consequently models M5 to M8 can be described as members of the
family of generalised CBD-Perks models.

4.9 Philosophical differences between models

We comment here briefly on the underlying structural assumptions of different mod-
els. It is these assumptions and their general philosophy that guide us in the range
of models that we consider.

All of models M1-M3 and M5-M8 share the same underlying assumption that the
age, period and cohort effects are qualitatively different in nature. Specifically, there
is randomness from one year to the next, perhaps caused by local environmental
factors, which we do not observe between ages. In contrast, the P-splines model,
M4, assumes that there is smoothness in the underlying mortality surface in the
period effects as well as in the age and cohort effects. Models M5 to M8 differ from
M1 to M3 in that they assume a functional relationship (and hence smoothness)
between ages.

Depending on one’s personal beliefs about the underlying randomness in the age,
period and cohort effects, one might attach greater weight to models that are aligned
with these beliefs. For example, if one believes that there should be an underlying
smoothness between ages, that there is randomness between cohorts, and random-
ness from one year to the next, then greater weight might be placed on models M6
to M8.
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5 Alternative ways of evaluating and comparing

mortality models

We can evaluate and compare these eight models in a number of ways:

• We can compare their main properties against a set of desirable criteria.

• We can carry out a preliminary analysis to see if fitted models look to be
‘reasonable’. We can evaluate models on a stand-alone basis by means of their
goodness of fit. We might also derive their testable predictions and test these
predictions.

• We can rank models using ranking criteria.

• Where models are special cases of others, we can test whether the special
case restrictions are empirically acceptable. If they are accepted, then the
principle of parsimony would lead us to prefer the special case model; and if
the restrictions are not accepted, we would prefer the more general model.

• Parameter estimates should be robust relative to the range of data employed.
For example, if we use England & Wales data for 1981 to 2004 we would hope
to see similar parameter estimates to those found using data from 1961 to
2004.

We now proceed to apply each of these criteria in the sections that follow.

5.1 Comparing the main features of the different models

Table 2 lists some criteria that we might consider desirable in a mortality model.
These criteria are:

• Ease of implementation: other things being equal, we would prefer a model
that is easier to implement than one that is not.

• Parsimony: other things being equal, a model with fewer parameters is prefer-
able to a model with a large number of parameters.

• Transparency: how much of the model and its output is treated as a “black
box”?

• Whether the model has the ability to generate sample paths: this can be useful
for other tasks such as pricing longevity-linked financial instruments.7

7 We refer here to sample paths for the underlying (and unobserveable) death rates m̂(t, x). A
different type of sample path can be constructed when we look at crude (observable) death rates
under the Poisson model: m(t, x) = D(t, x)/E(t, x) where D(t, x) ∼ Po(m̂(t, x)E(t, x)).
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Model M1 M2 M3 M4 M5 M6 M7 M8
Ease of implementation Y ? Y ? Y Y Y ?
Parsimony Y ? ? Y Y ? ? ?
Transparency Y Y Y ? Y Y Y Y
Ability to generate sample paths Y Y Y N Y Y Y Y
Ability to generate percentiles Y Y Y Y Y Y Y Y
Allowance for parameter uncertainty Y Y Y Y Y Y Y Y
Incorporation of cohort effects N Y Y Y N Y Y Y
Non-trivial correlation structure N N? N? N Y Y Y Y

Table 2: The table shows whether each model satisfies each of the stated criteria.
Where a criterion cannot be answered with a simple Y(es) or N(o) the ? indicates
that the model lies somewhere in the middle, with further comments in the main
text.

• Whether the model has the ability to generate forecast percentiles.8

• Allowance for parameter uncertainty.

• Incorporation of cohort effects.

• Ability to produce a non-trivial correlation structure: that is, correlation be-
tween the year-on-year changes in mortality rates at different ages.9

The desirability of models that satisfy the first six criteria considered in Table 2 is
obvious, and we might desire the seventh criterion if we believed that cohort effects
are important and needed to be allowed for (as in fact our later results suggest). The
eighth criterion is desirable to the extent that such a correlation structure appears
in historical data. However, it is also relevant in developing hedging strategies based
on traded mortality-linked securities.

Two important, additional criteria that we can only evaluate when we fit the data
are:

• The model should be consistent with historical data.

• Parameter estimates should be robust relative to the range of data employed.

8Percentiles of future mortality rates etc. combine information about parameter uncertainty
resulting from the fitting process with uncertainty arising from the underlying stochastic dynamics.

9Statistical analysis of mortality rates points to changes in the m(t, x) at different ages being
imperfectly correlated. This is inconsistent with the dynamics of a one-factor model such as M1
under which changes in mortality rates at different ages are perfectly correlated. The existence of
a non-trivial correlation structure implies, for example, that hedging of longevity-linked liabilities
requires more than one hedging instrument.
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5.2 Further remarks

• Ease of implementation: all of the models require some programming. How-
ever, some are straightforward to program, while others require a higher level
of skill. Models M2 and M8 have ?’s in Table 2 to indicate that they take
longer to converge to the maximum likelihood estimate than the other mod-
els. Model M4 is tougher to program, but the parameter estimation algorithm
converges rapidly.

• Parsimony: Each of the models has a large number of parameters (see Table
3), so none could be described as parsimonious in any absolute sense. However,
some models are more parsimonious than others and have fewer parameters.
M1, M4 and M5 are recorded as parsimonious, therefore, in the sense that
they have fewer (effective) parameters to estimate.

• All of the models except M4 were regarded as transparent, in that their out-
puts are straightforward to analyse, allowing us to explain, from a statistical
perspective, changes in mortality over time. M4 seems less transparent: its
output is a smooth surface fitted to historical data and then projected; there
is little in the output to allow us to get a feel for the underlying dynamics.
This does not mean that M4 is not a useful model per se, just that it needs to
be used with more caution.

• Ability to generate sample paths: Only the P-splines model M4 fails on this
point. M4 assumes that there is an underlying smoothness to the mortality
surface and that the only uncertainty in forecasts (which can be substantial)
is due to parameter and model uncertainty. In other words, if the true surface
were known then we would have perfect knowledge of future underlying rates
of mortality.10

• Allowance for parameter uncertainty: It has been demonstrated by Cairns et
al. (2006b) and in CMI working paper 15 (2005) that parameter uncertainty
forms a significant element of the uncertainty in forecasts of future mortality.
Any model that does not allow for parameter uncertainty is, therefore, in
danger of significantly underestimating uncertainty in its forecasts. Not all
published works on models M1 to M8 discuss parameter uncertainty, but it
can be included if desired using methods described in Cairns et al. (2006b)
and CMI working paper 15 (2005).

• The correlation structure is described as trivial when there is perfect corre-
lation between changes in mortality rates at different ages from one year to
the next. This is the case for model M1 for example where there is a single
time series process κ

(2)
t . For models M2 and M3 we also have perfect correla-

tion (for the same reason) at all ages except at the youngest age where there
is potentially additional randomness arising from the arrival of a new cohort
with an unknown cohort effect. Models M5, M6 and M8 have two time series

10If we refer back to footnote 7 we can construct a different type of sample path under M4 by
using the Poission model to simulate actual numbers of deaths D(t, x) in the future.
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processes (and M7 three) κ
(1)
t and κ

(2)
t as drivers which affect different ages in

different ways. Consequently changes in underlying mortality rates at different
ages are not perfectly correlated.
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Model Maximum log- Effective number BIC (rank)
likelihood of parameters

M1 -8912.7 102 -9275.8 (6)
M2 -7735.6 203 -8458.1 (3)
M3 -8608.1 144 -9120.6 (5)
M4 -9245.9 74.2 -9372.9 (7)
M5 -10035.5 88 -10348.8 (8)
M6 -7922.3 159 -8488.3 (4)
M7 -7702.1 202 -8421.1 (2)
M8 -7823.7 161 -8396.8 (1)

Table 3: England & Wales males ages 60 to 89 and years 1961 to 2004. Maximum
likelihood, effective number of parameters estimated and Bayes Information Crite-
rion (BIC) for each model. Effective number of parameters takes account of the
constraints on parameters or the effect of the penalty functions in the case of model
M4. For M4 with dx = 4 and dt = 4 inter-knot distances, the BIC is optimised over
the penalty weights. The optimal value quoted here is for λa = 786, and λc = 2.8.

6 England & Wales data analysis

6.1 Estimation and preliminary data analysis

We now proceed to the more objective model comparisons.

For each model, we estimated (as appropriate) the β
(i)
x , κ

(i)
t and γ

(i)
t−x for each factor, i,

age, x, year, t, and cohort t−x by maximising the log-likelihood function. Estimates
of the β

(i)
x , κ

(i)
t and γ

(i)
t−x are plotted in Figures 7 to 13.

Values for the maximum likelihood, effective number of parameters (or degrees of
freedom in estimation), and the Bayes Information Criterion (BIC) for each model
are given in Table 3.

6.2 Model selection criteria

If one simply compares the maximum likelihoods attained by each model then it
is natural for models with more parameters to fit the data “better”. Indeed such
improvements are guaranteed if models are nested: if one model is a special case of
another then the model with more parameters will have a higher maximum likelihood
with certainty even if the true model is the model with fewer parameters.

To avoid this problem we penalise models that are over-parametrised. Specifically
for each parameter that we add into the model we need to see a “significant” im-
provement in the maximum likelihood rather than just an increase of any size. A
number of such penalties have been proposed. Here we will focus on use the Bayes
Information Criterion or BIC (see, for example, Cairns, 2000, or Hayashi, 2000).

A key point about the use of the BIC is that it provides us with a mechanism for
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striking a balance between quality of fit (which can be improved by adding in more
parameters) and parsimony. A second, and equally important point about the BIC,
is that it allows us to compare models that are not necessarily nested. For example,
M1 and M3 are nested within M2, but M1 is not nested within M3 and vice versa.

A final point is that the BIC makes no assumptions about “prior” model rankings:
that is, all models have equal status in terms of how we rank them. In contrast,
hypothesis tests start from a null hypothesis which favours one specific model over
the others.

The BIC for model r is defined as

BICr = l(φ̂r)− 1

2
νr log N

where φr is the parameter vector for model r, φ̂r is its maximum likelihood estimate,
l(φ̂r) is the maximum log likelihood, N is the number of observations (not counting
those cells that have been excluded from the analysis), and νr is the effective number
of parameters being estimated.11

The models can then be ranked, with the top model having the highest BIC.

Values for the BIC are given in Table 3 and we see that model M8 comes out top
in the BIC rankings with M7 second.

6.3 Parameter estimates

In Figures 7 to 13 we have plotted the maximum-likelihood estimates for the various
parameters in all models except for M4.

For those models that incorporate a cohort factor we can see a distinctive cohort
effect. In model M2, for example, we can see from the second kink in γ

(3)
t−x that

cohort mortality was falling at a faster rate for males born after 1920. The same
feature can be seen in M3 and M6.

For models M7 and M8 the cohort effect follows a different pattern. In M7 part of
the cohort effect has been substituted by the additional quadratic age effect. The
M8 cohort effect seems to follow a similar pattern except for the fact that it has
been tilted a little.

11For example, model M1 requires estimates for 30 values of β
(1)
x , 30 values of β

(2)
x and 44 values

of κ
(2)
t , totalling 104, but we then deduct 2 from this total to reflect the two constraints

∑
t κ

(2)
t = 0

and
∑

x β
(2)
x = 1. For the P-splines model the concept of the effective number of parameters is

more abstract, and the reader is referred to Currie et al. (2004) and references therein for further
details.
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Figure 7: England & Wales data: Parameter estimates for model M1. κ
(1)
t = 1 is

included for completeness.
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Figure 8: England & Wales data: Parameter estimates for model M2. Crosses in
the bottom right plot correspond to excluded cohorts. κ

(1)
t = 1 is included for

completeness.
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Figure 9: England & Wales data: Parameter estimates for model M3. Crosses in
the bottom right plot correspond to excluded cohorts. κ

(1)
t = 1, β

(2)
x = 1/30 and

β
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x = 1/30 are included for completeness.
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Figure 10: England & Wales data: Parameter estimates for model M5. β
(1)
x = 1 and

β
(2)
x = x− x̄ are included for completeness.
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Figure 11: England & Wales data: Parameter estimates for model M6. Crosses in
the bottom right plot correspond to excluded cohorts. β

(1)
x = 1, β

(2)
x = x − x̄ and

β
(3)
x = 1 are included for completeness.
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Figure 12: England & Wales data: Parameter estimates for model M7. Crosses in
the bottom right plot correspond to excluded cohorts. β

(2)
x = x − x̄ and β
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x are included for completeness.
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Figure 13: England & Wales data: Parameter estimates for model M8. Crosses in
the bottom right plot correspond to excluded cohorts. β

(1)
x = 1 and β

(2)
x = x− x̄ are

included for completeness.
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6.4 Robustness of parameter estimates

We can consider how robust parameter estimates are relative to changes in the
period of data that we use to fit a given model.

We focus here on the highest BIC-ranked models M2, M7 and M8. For each model
we have plotted (Figures 14 to 16) parameter estimates based on data from 1961 to
2004 (represented by dots) or from 1981 to 2004 (solid line). The plots reveal that
out of the three models, M7 seems to be the most robust relative to changes in the
period of data used: that is, the parameter estimates hardly change even if we use
much less data. M8 looks reasonably robust, and the differences that we do see are,
in fact, consequences of the constraint that

∑
t,x γ

(3)
t−x = 0 when we are summing

over different years. M2 on the other hand seems clearly to produce results that
lack robustness, since the parameter estimates change very significantly when we
use less data. This means that we must question the reliability of projections made
using M2.

6.5 Other methods of comparison

6.5.1 Standardised residuals

We can also analyse standardised residuals:

Z(t, x) =
D(t, x)− E(t, x)m̂(t, x; φ̂)√

E(t, x)m̂(t, x; φ̂)
. (1)

Our construction of the likelihood assumes that these are i.i.d. and approximately
N(0, 1).

Models that have higher likelihood have a lower variance of the standardised resid-
uals. However, for each model the variance of the standardised residuals is signifi-
cantly greater than 1 (for Models M2 and M8 it is around 1.6, taking account of the
number of parameters estimated). Where this happens, the data are often referred
to as having an overdispersed Poisson distribution. This overdispersion seems to
be a general feature of mortality data in many countries. A possible source of this
overdispersion lies in the fact that the exposures data are estimated.

What does this mean for forecasting? We conjecture that this overdispersion does
not have a significant impact on our estimates of the future dynamics of the un-
derlying mortality rates q(t, x). However, a Poisson model might underestimate the
future variability of the actual death rates relative to the underlying rates.

6.5.2 Pattern of standardised residuals

Embedded within our modelling hypothesis is an assumption that the death counts
are independent for each age and year. If we add the Poisson assumption to this
and if our hypothesis is also true, the standardised residuals (equation 1) will be
approximately i.i.d. standard normal random variables.
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Figure 14: England & Wales data: Parameter estimates for model M2 derived from
(a) data from 1961 to 2004 (dots) or (b) data from 1981 to 2004 (solid lines).
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Figure 15: England & Wales data: Parameter estimates for model M7 derived from
(a) data from 1961 to 2004 (dots) or (b) data from 1981 to 2004 (solid lines).
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Figure 16: England & Wales data: Parameter estimates for model M8 derived from
(a) data from 1961 to 2004 (dots) or (b) data from 1981 to 2004 (solid lines).
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A simple means of considering the i.i.d. assumption is to look at the pattern of
positive and negative standardised residuals.12 These are plotted in Figures 17 to
20.13 Red cells imply that Z(x, t) > 0 while blue implies a standardised residual
is negative. The i.i.d. hypothesis implies that there should be a random pattern of
reds and blues. If the plots, in contrast, reveal some form of pattern or clumping of
reds and blues then the i.i.d. assumption becomes inappropriate.

For models M1, M3 and M5 we can see strong clustering of reds and blues. Models
M1 and M5 do not incorporate a cohort effect and the clustering of reds and blues
show up strong diagonals: strong evidence for the existence of the cohort effect. M6
shows a little bit of clustering. M4, on first glance, looks reasonably random, but
closer inspection reveals distinct vertical bands which suggest that there is a genuine
random period effect that is being smoothed out too much under M4. M2, M7 and
M8 all look reasonably random, and so all pass this “visual” test.

12Renshaw and Haberman (2006) use a helpful alternative graphical method to investigate the
independence of residuals.

13Black and white versions of these figures can be found in the appendices in Figures 42 to 45.
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Figure 17: England & Wales data: Standardised residuals Z(t, x) for Models M1
(top) and M2 (bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white
means the cell was excluded from the analysis. Light red and light blue cells indicate
Z(t, x) is far from zero. Dark red and blue indicate Z(t, x) is closer to zero.
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Figure 18: England & Wales data: Standardised residuals Z(t, x) for Models M3
(top) and M4 (bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white
means the cell was excluded from the analysis. Light red and light blue cells indicate
Z(t, x) is far from zero. Dark red and blue indicate Z(t, x) is closer to zero.



6 ENGLAND & WALES DATA ANALYSIS 38

1970 1980 1990 2000

60
65

70
75

80
85

90

Model M5

1970 1980 1990 2000

60
65

70
75

80
85

90

Model M6

Figure 19: England & Wales data: Standardised residuals Z(t, x) for Models M5
(top) and M6 (bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white
means the cell was excluded from the analysis. Light red and light blue cells indicate
Z(t, x) is far from zero. Dark red and blue indicate Z(t, x) is closer to zero.
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Figure 20: England & Wales data: Standardised residuals Z(t, x) for Models M7
(top) and M8 (bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white
means the cell was excluded from the analysis. Light red and light blue cells indicate
Z(t, x) is far from zero. Dark red and blue indicate Z(t, x) is closer to zero.
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H0: restricted model H1: general model LR test statistic d.f. p-value
M1 M2 2354.3 101 < 0.000001
M3 M2 1745.0 59 < 0.000001
M5 M6 4226.5 71 < 0.000001
M5 M7 4666.8 114 < 0.000001
M6 M7 440.3 43 < 0.000001
M5 M8 4423.7 74 < 0.000001
M6 M8 197.2 2 < 0.000001

Table 4: England & Wales data: Likelihood Ratio test results for various pairs of
general and nested models.

6.5.3 Comparing models that are nested

Some models are nested within one of the others: that is, they are special cases
of more general models. For example, model M1 is nested within model M2 being
a special case of M2 with β

(3)
x = 0 for all x and γ

(3)
t−x = 0 for all t − x. In such

circumstances we can use the likelihood ratio test to test the null hypothesis that
the nested or restricted model is the correct model versus the alternative hypothesis
that the more general model is correct. For the nesting above, let l̂1 be the maximum
log likelihood for model M1 and l̂2 be the maximum likelihood for model M2. Model
M1 requires the estimation of ν1 = 102 parameters, while M2 requires ν2 = 203.
The likelihood-ratio test statistic is

2(l̂2 − l̂1).

If the null hypothesis is true this should have approximately a chi-squared distribu-
tion with ν2 − ν1 degrees of freedom (d.f.). Thus we reject the null hypothesis in
favour of the more general model if the test statistic is too large: specifically, if

2(l̂2 − l̂1) > χ2
ν2−ν1,α,

where α is the significance level. Alternatively we can calculate the p-value for this
test as

p = 1− χ2
ν2−ν1

−1
(
2(l̂2 − l̂1)

)
.

The eight models consider here include seven nested pairs. Each pair is considered
in Table 4. In each case the null hypothesis is rejected overwhelmingly in favour of
the more general model.

These results support our earlier results based on the BIC. Additionally their decisive
rejection of models M1 and M5, in particular, gives a clear indication that the cohort
effect is a key feature of England & Wales males mortality data.
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6.6 Model risk: robustness of projections

We will now carry out a number of tests to assess the impact of model choice on key
outputs associated with projections of mortality rates into the future. We focus on
models M2, M5, M7 and M8.

We first consider the impact of model choice on projected values of the survivor
index S(t, 65): the proportion out of the cohort aged 65 (and still alive) in 2004 who
are still alive in year 2004 + t.14 In Figure 21 (top) we have plotted the mean and
90% confidence interval for the survivor index S(t, 65) for a cohort aged 65 in 2004.
It can be seen that these forecasts are little affected by the choice between models
M5, M7 and M8. M2 is slightly more out of line but consistent with the others. In
Figure 21 (bottom) we have plotted the variance of log S(t, 65) over time. Again the
differences are relatively small between M5, M7 and M8, although they are perhaps
more prominent at 25 years. M2 stands out as having a much lower variance, with
the implication that model risk might be an issue. For example, a financial contract
that contains some optionality based on S(t, x) might have quite a different value
under M2 from M5, M7 and M8.

6.7 Model risk: annuity values

As a second exercise we calculated the value in 2004 of an annuity payable until age
90 (the maximum age in our projection model) for males aged 60, 65, 70 and 75 in
2004 at a constant rate of interest of 4%:15

ax(2004) =
90−x∑
t=1

1.04−tE[S(t, x)].

For ages 65, 70, 75, we have already estimated the cohort effect for models M2, M7
and M8. For age 60, γ

(3/4)
1944 is not known (that is the value of γ

(3)
t−x or γ

(4)
t−x for the

cohort born in t− x = 1944). Since a single value is required we adopt a subjective

approach and consider two values for γ
(3/4)
1944 for each model with the aim of assessing

the sensitivity of results to this parameter. The values that we choose fall at the
upper and lower ends of what we regard as the plausible range of outcomes for the
1944 cohort based on the historical estimates for earlier cohorts. Looking at Figure
12 we might speculate that extreme high and low values for γ

(4)
1944 in model M7

might be the final value plus and minus 0.04. Similarly, the information in Figure
13 suggests that γ

(3)
1944 in model M8 might lie between the final value plus and minus

0.01. Finally for M2 we choose values of -8 and -4 based on information in Figure 8.

Values for these ages are given in Table 5. The four models turn out to give relatively
similar annuity values at all of the ages considered. At age 60 the differences in value

14Projections are based on fitted parameters and use a random walk model in simulations based
on the historical estimates of the κ

(i)
t , as proposed in Cairns, Blake and Dowd (2006b) for model

M5. Further details are given in appendix C.
15The aim here is to identify differences in values between models. We make no attempt therefore

to introduce a market price of longevity risk as proposed by Cairns, Blake and Dowd (2006b).
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Figure 21: England & Wales data: Top: 5% and 95% quantiles for the survivor
index S(t, 65) for models M2, M5, M7 and M8, with the mean of S(t, 65) running
down the middle. Bottom: V ar[log S(t, 65)] for models M2, M5, M7 and M8.

Model M2 M2 M5 M7 M7 M8 M8

γ
(3)
1944 γ

(3)
1944 γ

(4)
1944 γ

(4)
1944 γ

(3)
1944 γ

(3)
1944

= −8 = −4 = −0.0398 = 0.0402 = −0.0209 = −0.0009
x = 60 13.220 13.659 13.472 13.557 13.350 13.669 13.363
x = 65 11.591 11.449 11.451 11.427
x = 70 9.505 9.325 9.354 9.314
x = 75 7.270 7.220 7.240 7.190

Table 5: England & Wales data: Annuity values for various ages based on data from
1984 to 2004. Values for γ

(3/4)
1944 , are estimated.
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are slightly bigger (2.4% between the largest and the smallest). This is not surprising
given we are now having to estimate a cohort effect at this age. However, despite
the fact that we have used a relatively-extreme range of values for γ

(3/4)
1944 the range of

annuity values is not that wide. We therefore conclude that the cohort effect, while
statistically significant (in the sense of Table 3), has an economically small effect,
for the annuity values considered here.
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Model Maximum log- Effective number BIC (rank)
likelihood of parameters

M1 -12265.4 94 -12590.0 (6)
M2 -9737.4 187 -10383.2 (1)
M3 -11854.2 128 -12296.3 (3)
M5 -16121.3 72 -16370.00 (7)
M6 -11948.4 135 -12414.7 (5)
M7 -11631.7 170 -12218.9 (2)
M8 -11841.1 137 -12314.3 (4)

Table 6: US males ages 60 to 89 and years 1968 to 2003. Maximum likelihood,
effective number of parameters estimated and Bayes Information Criterion (BIC)
for each model. Effective number of parameters takes account of the constraints on
parameters.

7 Analysis of US data

7.1 Estimation and preliminary data analysis

The US males’ mortality data were analysed using models M1 to M3 and M5 to
M816 using the data from 1968 to 2003 and for males aged 60 to 89. Over the period
1968 to 1979 ages 85-89 were excluded on the basis that the data at those ages in
those years are not reliable.

For each model we estimated the β
(i)
x , κ

(i)
t and γ

(i)
t−x parameters using maximum

likelihood using data covering the period 1968 to 2003. Maximum likelihoods are
given in Table 6. Estimates of the parameters themselves are plotted in Figures 22
to 28. In these plots the dots are parameter estimates based on data from 1968 to
2003, while lines are based on data from 1980 to 2003.

7.2 Model selection criteria

Section 6.2 describes how and why we choose to penalise the maximum likelihood
according to the number of parameters estimated, resulting in the Bayes Information
Criterion (BIC).

The BIC for each model is given in the final column in Table 6. In contrast to
the results in Table 3 for the England & Wales (EW) data, model M2 now comes
out significantly better than the other models. However, in the subsections that
follow we will discuss graphical diagnostic tests that suggest M2 might be over-
fitting the data (especially when it is suspected – Section 2.2.1 – that the exposures
data contain significant errors), and lead us to doubt its robustness.

16Model M4 is a popular one used in the UK but not currently in the USA. Our earlier analysis
of the EW data did not find that M4 fitted very well in comparison with M2, M7 and M8. We
have not therefore used it in our analysis of the US data.
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Figure 22: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M1.
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Figure 23: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M2. Crosses in the bottom right plot correspond to excluded
cohorts.
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Figure 24: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M3. Crosses in the bottom right plot correspond to excluded
cohorts.
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Figure 25: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M5.
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Figure 26: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M6. Crosses in the bottom right plot correspond to excluded
cohorts.
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Figure 27: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M7. Crosses in the bottom right plot correspond to excluded
cohorts.
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Figure 28: US data: (a) 1968 to 2003 (dots) (b) 1980 to 2003 (solid lines). Parameter
estimates for model M8. Crosses in the bottom right plot correspond to excluded
cohorts.
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7.3 Parameter estimates

Parameter estimates for the seven models are plotted in Figures 22 to 28. For those
that incorporate a cohort effect, this is quite prominent. However, the form of the
effect does seem to vary from one model to another (for example, M3 versus M7).
We will focus our remaining remarks on models M2, M7 and M8.

Figure 23 should be contrasted with its EW counterpart, Figure 8. The patterns
here are quite different. The strong, almost linear trend in γ

(3)
t−x is rather indicative

of a steady period effect which is independent17 of the κ
(2)
t period effect. Con-

squently, although M2 scores the highest BIC, Figure 23 suggests that a model with
an additional period factor might be required.

A further concern about the suitability of M2 form comes to mind when we look at
estimates for β

(2)
x and β

(3)
x . These display a much higher degree of randomness than

we saw in the EW data. As we have discussed in Section 4.9 we would expect to
see smoothness in each of the age effects: it is difficult to think of any biological or
environmental factors that would result in this level of randomness in β

(2)
x and β

(3)
x .

This randomness might suggest M2 is overfitting the US data.

Now compare Figure 27 (model M7) with its EW counterpart Figure 12. The pattern
of development of the various parameters in M7 is relatively consistent between the
two countries. The main difference that we can identify under model M7 is that γ

(4)
t−x

has a less well-defined pattern in the US results, and a greater degree of randomness.
This suggests that cohort-related trends in mortality are less important in the US
than in England & Wales. What remains of a cohort effect in the US data might be
the result of over-fitting or perhaps due to genuine environmental factors that affect
each cohort in their year of birth and which vary randomly from year to year (e.g.
influenza epidemics).

For model M8 (Figure 28 compared with Figure 13) we see similar issues to M2 in

terms of the trend in γ
(3)
t−x. Again this trend points to a systematic period effect that

is independent of the existing period effects modelled by κ
(1)
t and κ

(2)
t .

7.4 Robustness of parameter estimates

Figures 22 to 28 also include parameter estimates for each model based on data
from 1980 to 2004 (solid lines in the plots). If we compare these with the original
parameter estimates based on data from 1968 to 2003 (dots) we can make similar
points to the England & Wales data for each of the models.

The simpler models, M1, M3 and M5, tend to show greater robustness.18

M7 again seems to be the most robust out of M2, M7 and M8 while M2 again has
problems, leading us to question its reliability as a means of projecting mortality
rates.

17That is, β
(2)
x and β

(3)
x are not identical.

18Much of the shifts we see in M1 and M3 could be eliminated by adjusting the constraints.
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H0: restricted model H1: general model LR test statistic d.f. p-value
M1 M2 5056.0 93 < 0.000001
M3 M2 4233.8 59 < 0.000001
M5 M6 8345.7 63 < 0.000001
M5 M7 8979.2 98 < 0.000001
M6 M7 633.4 35 < 0.000001
M5 M8 8560.5 66 < 0.000001
M6 M8 214.7 2 < 0.000001

Table 7: US data: Likelihood Ratio test results for various pairs of general and
nested models.

7.5 Other methods of comparison

7.5.1 Standardised residuals

Recall that the likelihood function assumes that the standardised residuals (see
equation 1) are approximately i.i.d. N(0, 1): and specifically should have variance
1.

The variances of the standardised residuals for the US data are very much higher
than for England & Wales. Using 1968 to 2003 data the variance is around 7.5
for model M2 and 11.5 for M7 and M8 (this size of difference being consistent, of
course, with the differences between the log-likelihoods). Using data from 1980 to
2003 these fall to about 3.3 and 7.5 respectively. If the data were wholly reliable, the
Poisson assumption the right one and the model the correct one, then this variance
should be around one. The high values we see here, therefore, lend weight to our
earlier remarks concerning inaccuracies in the exposures data.

7.5.2 Patterns of standardised residuals

In Figures 29 to 32 we have plotted standardised residuals for each of the models.
For the underlying model to be valid the positive and negative residuals should be
randomly distributed.

All seven plots exhibit some degree of clustering. Out of these M2 looks the most
random but comparison of this with its England & Wales counterpart (Figure 17)
suggests that M2 fits the US data less well in terms of the i.i.d. assumption.

7.5.3 Comparing models that are nested

We carried out likelihood ratio tests on models that are nested (that is, where one
model is a special case of another), as an alternative to model selection using the
BIC.

Test results for all seven nested pairs are presented in Table 7. These results support
our earlier conclusions based on the BIC: namely that the more complex models
succeed in fitting the data better than the simpler models. Unfortunately the nesting
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Figure 29: US data. Standardised residuals Z(t, x) for Models M1 (top) and M2
(bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white means the cell
was excluded from the analysis. Light red and light blue cells indicate Z(t, x) is far
from zero. Dark red and blue indicate Z(t, x) is closer to zero.
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Figure 30: US data. Standardised residuals Z(t, x) for Models M3 (top) and M5
(bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white means the cell
was excluded from the analysis. Light red and light blue cells indicate Z(t, x) is far
from zero. Dark red and blue indicate Z(t, x) is closer to zero.
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Figure 31: US data. Standardised residuals Z(t, x) for Models M6 (top) and M7
(bottom). Red cells mean Z(t, x) > 0, blue means Z(t, x) < 0, white means the cell
was excluded from the analysis. Light red and light blue cells indicate Z(t, x) is far
from zero. Dark red and blue indicate Z(t, x) is closer to zero.
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Figure 32: US data. Standardised residuals Z(t, x) for Models M8. Red cells mean
Z(t, x) > 0, blue means Z(t, x) < 0, white means the cell was excluded from the
analysis. Light red and light blue cells indicate Z(t, x) is far from zero. Dark red
and blue indicate Z(t, x) is closer to zero.
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requirements of the test prevent us from comparing M2, M7 and M8.

One can compare Tables 4 and 7 to investigate the relative importance of specific
model features. For example, compare M6 with M7. With the US data, the test
statistic is larger than the EW test statistic with fewer degrees of freedom, and this
indicates that the quadratic age-effect is more prominent in the US data. For the
same reason, model M5 performs much more poorly with the US data relative to
the other models.

We also compared M7 with a special case that constrained the cohort effect γ
(4)
t−x to

be zero. The unconstrained case was found to be very significantly better: that is,
both the quadratic age effect and the cohort effect in M7 are significant.

7.6 Model risk: robustness of projections

It is interesting and informative to consider the differences between projections using
different models. In Figure 33 (top) we have plotted the mean and 90% confidence
intervals for the survivor index S(t, 65): that is the proportion out of those alive
and aged 65 in 2003 surviving to year 2003 + t.19 Models M2, M5 and M7 produce
relatively similar projections although the confidence interval for M2 is narrower: a
feature that is more obvious if we look at the variance of log S(t, 65) in the lower
half of the figure.

M8 stands out as being substantially different, and is a consequence of the fitted
cohort effect under M8. The steepening of γ

(3)
t−x around 1920 in combination with the

negative fitted values for β
(3)
x imply that cohorts born after 1920 have increasingly

poor mortality relative to the κ
(1)
t improving trend. This form of cohort effect also

appears in model M6, but not in any of the other models. As a consequence M8
relative to M2, M5 and M7 has substantially lower survivor rates in the 2003 age-65
cohort.

7.7 Model risk: annuity values

We calculated the value of a 25-year annuity payable to a male aged 65 in 2003.
Values for models M2, M5, M7 and M8 based on 1968-2003 and 1980-2003 data are
given in Table 8.

From this table we can see that the relative lack of robustness in parameter estimates
for M2 and M8 means that values under those two models are moderately sensitive
to changes in the period of data used. More noticeable is how relatively low the
M8 values are and this reflects the adverse cohort effect discussed in the previous
subsection.

19See appendix C for further details.
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Figure 33: US data: Top: 90% confidence intervals for the survivor index S(t, 65)
for models M2, M7 and M8, with the mean of S(t, 65) running down the middle.
Bottom: V ar[log S(t, 65)] for models M2, M7 and M8.

Model M2 M5 M7 M8
1968-2003 11.213 11.101 11.107 9.962
1980-2003 11.524 11.101 11.119 9.685

Table 8: 25-year annuity values for 65-year-old US male calculated under different
models and based on different periods of historical data.
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8 Conclusions

We have attempted to explain mortality improvements for males aged 60 to 89 in
England & Wales and the US using eight stochastic mortality models that decompose
mortality improvements into one or more age-, period-, and cohort-related effects.
No single model stands out as being best in all aspects. However, different models
have different strengths. For example, the Lee-Carter class of models allows for
greater flexibility in the age effects, β

(i)
x . One-dimensional P-splines can be exploited

to smooth these age effects if the roughness of the β
(i)
x is seen as a drawback. The

CBD-Perks family of models by contrast imposes smoothness in the age effects as
an assumption, but allows for richer period effects than the Lee-Carter class. We
therefore need to balance up the pros and cons of each model in order to form a
conclusion. To some extent it is up to the reader to decide the weights they place
on the different selection criteria.

If the reader looks only at the BIC ranking criterion, then model M8 for the England
& Wales data and model M2 for the US data dominate. However, if the reader
takes into account the robustness of the parameter estimates, then model M7 is
preferred for both data sets. This model fits both data sets well and the stability
of the parameter estimates over time enables one to place some degree of trust in
its projections of mortality rates. The lack of robustness in the other models means
that we cannot wholly rely on projections produced by them.

Model M7 shows that mortality rates in both England & Wales and the US have
the following features in common (see Figures 15 and 27):

• Mortality rates have been improving over time at all ages: the ‘intercept’
period term (κ

(1)
t ) has been declining over time, so that the upward-sloping

plot of the logit of mortality rates against age has been shifting downwards
over time.

• These improvements have been greater at lower ages than at higher ages: the
‘slope’ period term (κ

(2)
t ) has been increasing over time, so that the plot of the

logit of mortality rates against age has been steepening as it shifts downwards
over time. This phenomenon has been noted by the studies surveyed in Wong-
Fupuy and Haberman (2004, secs. 5.2 and 5.3), for example.

• The changes over time in κ
(1)
t and κ

(2)
t have been approximately linear and such

linear improvements have been noted in previous studies (e.g., Wong-Fupuy
and Haberman (2004, sec. 5.1), for example).

• The logit of mortality rates plotted against age have a slight curvature over
the 60 to 89 age range that can be modelled using a quadratic function of age.
The quadratic period term (κ

(3)
t ) is statistically significant, but very small. It

is time varying and has generally been increasing over time: having started
the data period negative, it ends the period positive. When combined with the
quadratic age term, ((x− x̄)2− σ̂2

x), its contribution to mortality rate dynamics
is highly complex.
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• There is a significant cohort effect (γ
(4)
t−x) in mortality improvements, although

this is more prominent and systematic in the UK than the US.

To a large extent these commonalities are also features of the other models consid-
ered.

A good stochastic mortality model must take these features into account when
forecasting mortality improvements and confidence intervals around these forecasts.
This is important for quantifying longevity risk, for providing benchmarks for longevity-
linked financial instruments, for pricing such instruments (Cairns et al. 2006a, b),
and for designing longevity risk hedging positions, as suggested in recent studies
such as Blake and Burrows (2001), Blake et al. (2006a,b), and Dowd et al (2006).
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Appendices

A The cohort effect

Alternative ways of identifying the cohort effect in the England & Wales data are
plotted in Figures 34 to 36. The cohort effect was clear enough in Figure 3 but there
is a certain amount of noise between calendar years. The effect of the calendar year
has been removed in Figure 34. This seems to smooth things out but also makes
the cohort diagonals more prominent.

In Figure 35 we take a rather different approach. Here we take the annual im-
provements at each age x from year t to t + 1 and then we deduct from that the
improvement predicted by the Lee-Carter model (see Section 4).20 The results are
then smoothed before plotting. The cohort diagonals are still clear although the
patterns of colour look somewhat different from Figures 3 and 34.

Finally in Figure 36 we plot the difference between actual death rates and the rates
predicted by the Lee-Carter model. These average out at about zero, but the cohort
effect is more evident here than in any of the other plots. The 1925 cohort (the
white/blue diagonal just above the black diagonal) is more prominent in having
actual death rates significantly higher than predicted rates. For other cohorts the
effect seems to be less persistent over long periods of time, but blocks of colour still
have a prominent diagonal pattern except at the lowest and highest ages.

Each of these plots gives clear evidence for a cohort effect. Out of the eight models
that we examine here, six make allowance in some form for a cohort effect; the
remaining two models do not. Our analysis includes a rigorous analysis of the quality
of fit of the eight models. Amongst other things, therefore, we can investigate how
significant the cohort effect is from a statistical perspective.

The equivalent plot for US data is given in Figure 37 and we can see that this looks
quite different from the England & Wales data. Above age 60 the cohort effect is less
prominent. At younger ages there are very strong deviations from the Lee-Carter
model predictions: an issue that is discussed in more detail in the main text.

Black and white representations of the cohort effect are presented in Figures 38
(England & Wales) and 39 (US).

20We use the Lee-Carter model as the basis for these calculations because it is the oldest and
best known out of the models we consider in this paper.
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Figure 34: England & Wales data: As Figure 3 except that the average mortality
improvement for each year has been deducted.
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Figure 35: England & Wales data: As Figure 3 except that we plot the smoothed
average mortality improvement in excess of the improvement predicted by the Lee-
Carter model M1 (see Section 4).
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Figure 36: England & Wales data: As Figure 3 except that we plot the smoothed
average of the difference between the actual death rates and the death rate predicted
by the Lee-Carter model M1. Blue and white cells imply higher death rates than
predicted; red cells lower.
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Figure 37: US data: As Figure 3 except that we plot the smoothed average of the
difference between the actual death rates and the death rate predicted by the Lee-
Carter model M1. Blue and white cells imply higher death rates than predicted; red
cells lower.
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Figure 38: England & Wales data: Improvement rates in mortality by calendar year
and age relative to mortality rates at the same age in the previous year. Dark cells
imply that mortality is deteriorating; light grey small rates of improvement, and
white strong rates of improvement. The black diagonal line follows the progress of
the 1930 cohort.
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Figure 39: US data: Improvement rates in mortality by calendar year and age
relative to mortality rates at the same age in the previous year. Dark cells imply
that mortality is deteriorating; light grey small rates of improvement, and white
strong rates of improvement. The black diagonal line follows the progress of the
1930 cohort.
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Figure 40: A set of one-dimensional B-splines with a distance of 8 between knots.

B B-splines

We will begin this appendix by looking at B-splines (or Basis-Splines) in one dimen-
sion. Suppose that we have data in the range ξ0 to ξn. B-splines are a set of basis
functions each of which depends on the placement of a set of “knot” points. For
B-splines we require knots outside the range ξ0 to ξn to provide full coverage of this
range.

Thus we have knots at ξ−3 < ξ−2 < . . . < ξn+2 < ξn+3.

For k = −3, . . . , n− 1 spline k is defined as

Bk(x) =
k+4∑

i=k

k+4∏

j=k,j 6=i

1

(ξj − ξi)
(x− ξi)

3
+

where (x− ξi)+ is equal to max{x− ξi, 0}.
Note that Bk(x) = 0 outside the range ξk < x < ξk+4, and that it has continuous
first and second derivatives for all −∞ < x < ∞.

Typically the knots for B-splines are evenly spaced. Where this is the case, with
ξk+1 − ξk = δ we have for all k:

Bk(x) = δ−4

{
1

24
(x− ξk)

3
+ −

1

6
(x− ξk+1)

3
+ +

1

4
(x− ξk+2)

3
+ −

1

6
(x− ξk+3)

3
+ +

1

24
(x− ξk+4)

3
+

}
.

A typical set of one-dimensional B-splines is plotted in Figure 40.

Defining B-splines in 2-dimensions is straightforward. We have two dimensions: age
(a), x, and year (y), t. In the age dimension we have knots at ξa

−3 < . . . < ξa
ma+3,

and in the year dimension we have knots at ξy
−3 < . . . < ξy

my+3. The knots in the
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Figure 41: A subset of two-dimensional B-splines. The surface plotted is the sum
of every third B-spline in each direction.

year and age dimensions give rise respectively to By
k(t) for k = −3, . . . ,my − 1 and

B-splines Ba
l (x) for l = −3, . . . , ma − 1.

The two-dimensional B-splines are then

Bkl(x, t) = By
k(t)Ba

l (x)

for k = −3, . . . ,my − 1 and l = −3, . . . , ma − 1. Each B-spline can be thought of as
an individual, small hill, and the complete set of B-splines as a set of hills arranged
symmetrically. A subset of these hills is plotted in Figure 41.

If we use a large number of knots in the year and age dimensions then we can use
B-splines to fit a set of data extremely accurately. However, this tends to result
in a rather lumpy fit that might not accurately reflect what we believe to be the
underlying reality. Often in cases like this, if the existing data have been overfitted,
forecasts become less reliable.

P-splines (or Penalised Splines) is the term we use when B-splines are fitted to set
of data where the likelihood or regression function is adjusted by a penalty function.
The penalty function smoothes out the lumpiness mentioned above. The inclusion
of a penalty with appropriate weight means that we can increase the number of
knots without radically altering the smoothness of the fit.

If our fitted function is f(x, t) =
∑

k,l θklBkl(x, t) then possible 2nd-order smoothing
penalties can be calculated separately in each dimension. Thus smoothing across
ages:

P a = λa

my−1∑

l=−3

ma−1∑

k=−1

(θk,l − 2θk−1,l + θk−2,l)
2 = λa

my−1∑

l=−3

ma−1∑

k=−1

(∆2
aθkl)

2

where ∆aφkl = φkl − φk−1,l is the difference operator on the k (age) dimension.
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Similarly, in the year dimension:

P y = λy

ma−1∑

k=−3

my−1∑

l=−1

(θk,l − 2θk,l−1 + θk,l−2)
2 = λy

ma−1∑

k=−3

my−1∑

l=−1

(∆2
yθkl)

2

where ∆yφkl = φkl − φk,l−1 is the difference operator on the l (year) dimension.

Finally, if we choose to apply a penalty across cohorts then we have:

P c = λc

ma−2∑

k=−2

my−2∑

l=−2

(θk+1,l−1 − 2θk,l + θk−1,l+1)
2.

In the analyses that follow we will use age-cohort penalties Pa + Pc as suggested in
CMI (2005) working paper 15.
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C Simulation model

For projection of the survivor index, S(t, x) we need to take the fitted parameter
values illustrated in Figures 7 to 13 and 22 to 28 and use these to develop a stochastic
projection model.

For model M5 we use the method described in Cairns, Blake and Dowd (2006)

(CBD): thus we fitted a 2-dimensional random-walk model to (κ
(1)
t , κ

(2)
t ) using the

the final 21 years of data (that is, 20 observations of the change in (κ
(1)
t , κ

(2)
t ). The

form of β
(2)
x in this paper is different from the original CBD paper so parameter

estimates are different.

In the main body of this paper we report on simulation results for M2, M5, M7 and
M8. For M2, M7 and M8 the β

(i)
x effects are fixed. For each of M2, M7 and M8

we adopt the same principles for simulation of the κ
(i)
t and γ

(i)
t−x. For model M7, for

example, we take the following approach for England & Wales data from 1961 to
2004.

• Fit the β
(i)
x , κ

(i)
t and γ

(i)
t−x to the full set of data from age 60 to 89.

• Then take κ
(1)
t , κ

(2)
t and κ

(3)
t for years 1984 to 2004 inclusive, and fit a 3-

dimensional random walk with drift.

• For the cohorts aged 65, 70 and 75 in 2004 we already have an estimate of the
cohort effect, γ

(4)
1939, γ

(4)
1934, and γ

(4)
1929, so no model is required for these values.

• For the cohort aged 60 in 2004 we need to project the estimated γ
(4)
t−x series.

Our results clearly suggest that a random walk model is inappropriate, but
development of a model for γ

(4)
t−x is beyond the scope of this paper. In the

context of projecting S(t, 60) and calculating an annuity value it suffices for

us to specify a single value for γ
(4)
1944. Based on the historical development of

γ
(4)
t−x we try out two values for γ

(4)
1944 (one high and one low) to cover what we

feel is the likely range of values that might be taken by γ
(4)
1944.

Once we have our simulation model for S(t, x) we can calculate annuity values
according to the formula

ax(2004) =
90−x∑
t=1

1.04−tE[S(t, x)].

D Standardised residuals: black and white

Black and white versions of Figures 17 to 20 are presented in Figures 42 to 45.
Figures 42 to 45
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Figure 42: England & Wales males. Standardised residuals Z(t, x) for Models M1
(top) and M2 (bottom). Grey cells mean Z(t, x) > 0, black means Z(t, x) < 0,
white means the cell was excluded from the analysis.
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Figure 43: England & Wales males. Standardised residuals Z(t, x) for Models M3
(top) and M4 (bottom). Grey cells mean Z(t, x) > 0, black means Z(t, x) < 0,
white means the cell was excluded from the analysis.
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Figure 44: England & Wales males. Standardised residuals Z(t, x) for Models M5
(top) and M6 (bottom). Grey cells mean Z(t, x) > 0, black means Z(t, x) < 0,
white means the cell was excluded from the analysis.
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Figure 45: England & Wales males. Standardised residuals Z(t, x) for Models M7
(top) and M8 (bottom). Grey cells mean Z(t, x) > 0, black means Z(t, x) < 0,
white means the cell was excluded from the analysis.
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