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Testing and Comparing Value-at-Risk Measures*

Peter Christoffersen†, Jinyong Hahn‡, Atsushi Inoue§

Résumé / Abstract

La valeur exposée au risque (value at risk - VaR) est devenue un outil
standard de mesure et de communication des risques associés aux marchés
financiers. Plus de quatre-vingts fournisseurs commerciaux proposent
actuellement des systèmes de gestion d’entreprise ou de gestion des risques
commerciaux fournissant des mesures de type VaR. C’est donc souvent aux
gestionnaires des risques qu’incombe la tâche difficile d’opérer un choix parmi
cette pléthore de modèles de risques. Cet article propose un cadre utile pour
déterminer par quel moyen le gestionnaire des risques peut s’assurer que la
mesure de VaR dont il dispose est bien définie, et, dans un deuxième temps,
comparer deux mesures de VaR différentes et choisir la meilleure en s’appuyant
sur des données statistiques utiles. Dans l’application, différentes mesures de VaR
sont calculées à partir soit de mesures de volatilité historiques ou de mesures de
volatilité implicites dans le prix des options; les VaR sont également vérifiées et
comparées.

Value-at-Risk (VaR) has emerged as the standard tool for measuring and
reporting financial market risk. Currently, more than eighty commercial vendors
offer enterprise or trading risk management systems which report VaR-like
measures. Risk managers are therefore often left with the daunting task of having
to choose from this plethora of risk models. Accordingly, this paper develops a
framework for asking, first, how a risk manager can test that the VaR measure at
hand is properly specified. And second, given two different VaR measures, how
can the risk manager compare the two and pick the best in a statistically
meaningful way? In the application, competing VaR measures are calculated from
either historical or option-price based volatility measures, and the VaRs are
tested and compared.
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1 Motivation

Sparked by the stock market crash in 1987, the past decade has witnessed a surge in the e�ort

�nancial market participants devote to risk management. In a recent survey of risk management

software, Risk (1999) lists more than eighty commercial vendors o�ering enterprise or trading

risk management information systems. This e�ort has been encouraged by regulatory authorities

imposing risk-based capital adequacy requirements on �nancial institutions (see Dimson and Marsh,

1995, and Wagster, 1996). The recent turbulence in emerging markets, starting in Mexico in

1995, continuing in Asia in 1997, and spreading to Russia and Latin America in 1998 has further

extended the interest in risk management to companies outside the traditional sphere of banking

and insurance.

Two important developments, one in academia and one on Wall Street have facilitated the

advancement in knowledge about risk management. First, the development of volatility models for

measuring and forecasting volatility dynamics began in academics with Engle (1982). The hundreds

of papers following Engle's original work � many of them �nding applications to �nancial data �

have had important implications for modern risk management techniques. Second, the introduction

of RiskMetrics by JP Morgan (1996) has enabled companies with just a minimum of computational

power and technical ability to compute simple measures of market risk for a given portfolio of assets.

RiskMetrics has also aroused the interest of academics as it o�ers a benchmark methodology upon

which improvements can be made, and against which alternatives can be tested. Research in this

tradition is reported in Jorion (1996), Du�e and Pan (1997), Dowd (1998), and the November 2000

special issue of this Journal.

An important contribution of the RiskMetrics methodology is the introduction of the Value-

at-Risk (VaR) concept which collapses the entire distribution of the portfolio returns into a single

number which investors have found useful and easily interpreted as a measure of market risk. The

VaR is essentially a p-percent quantile of the conditional distribution of portfolio returns.

In RiskMetrics, the VaR measure has only a few unknown parameters, which are simply cali-

brated to values found to work quite well in common situations. However, several studies such as

Danielsson and de Vries (1997), Christo�ersen (1998), and Engle and Manganelli (1999) have found

signi�cant improvements possible when deviations from the relatively rigid RiskMetrics framework

are explored. But, when one attempts to apply the results which have emerged from the GARCH

and related literatures to risk management, several questions remain open. We ask, �rst, given a

VaR measure, how can the risk manager test that the particular measure at hand is appropriately

speci�ed? And second, given two di�erent VaR measures, say one using GARCH and one using

implied volatility, how can the risk manager compare the two and pick the best in a statistically

meaningful way?

Choosing an appropriate VaR measure is an important and di�cult task, and risk managers

have coined the term Model Risk to cover the hazards from working with potentially misspeci�ed

models. Beder (1995), for example, compares simulation-based and parametric models on �xed

income and stock option portfolios and �nds apparently economically large di�erences in the VaRs
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from di�erent models applied to the same portfolio. Hendricks (1996) �nds similar results analyzing

foreign exchange portfolios. Even more strikingly, Marshall and Siegel (1997) �nd that commercial

risk management software from di�erent vendors all using the same RiskMetrics model report

apparently very di�erent VaR measures for identical portfolios. They refer to this phenomenon

as Implementation Risk. Unfortunately none of the papers contain formal statistical tests of the

di�erences between the models, and a key purpose of our work is exactly to equip the risk managers

with the tools necessary to assess the statistical signi�cance of the di�erences between di�erent VaR

measures.

We illustrate the usefulness of our approach in an application to daily returns on the S&P500

index. We test and compare VaR measures based on GARCH-type volatilities estimated from

historical returns with measures based on implied and estimated volatilities from options contracts

written on the S&P500 index. We use the volatility measures constructed by Chernov and Ghysels

(2000).

The development of a speci�cation testing methodology is complicated by the fact that the VaR

concept introduces an important nondi�erentiability which invalidates existing statistical testing

procedures. In addition, when comparing two competing measures, it is essential to allow for them

to be nonnested. We tackle these challenges by extending the results in Kitamura (1997) to allow

for nondi�erentiability.

The remainder of our paper is structured as follows: In Section 2, we establish some notation

and develop a moment-based framework for VaR speci�cation and comparison testing. In Section 3,

we introduce the econometric methodology and show how it can be applied to testing VaR models.

In Section 4, we apply our methodology to returns on the S&P500 index, comparing traditional

time series based VaR measures to VaRs based on implied volatilities from options prices. Section

5 concludes and gives directions for future research.

2 Value-at-Risk with Conditional Moment Restrictions

We set out by de�ning the notation necessary for establishing our testing framework.

2.1 De�ning Value-at-Risk

Let the asset return process under consideration be denoted by

yt = �t + "t;

where "tj	t�1 �
�
0; �2t

�
; and where 	t�1 is the time t�1 information set. Then the Value-at-Risk

measure with coverage probability, p; is de�ned as the conditional quantile, Ftjt�1 (p) ; where

Pr
�
yt � Ftjt�1 (p)

��	t�1
�
= p:

The conditionality of the VaR measure is key. Throughout this paper, we will assume that yt is

appropriately demeaned so that �t = 0 and yt = "t. But volatility will be allowed to be time-

varying.
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2.2 Specifying Volatility

Risk managers have a plethora of volatility measures to choose from when calculating Value-at-Risk

(VaR) measures. Time series models of volatility range from exponentially smoothed and simple

autoregressive models, over single-shock GARCH models, to two-shock stochastic volatility models.

Furthermore, the risk manager can use option based measures of volatility to measure risk. Let us

therefore �rst give a brief overview of available volatility models.

The benchmark measure advocated in JP Morgan's (1996) RiskMetrics sets the conditional

mean constant, and speci�es the variance as an exponential �lter

�2t = (1� �) "2t�1 + ��2t�1; (1)

where � is simply set to .94 for daily data. The innovations are assumed to be Gaussian, thus the

VaR measure is

FRM
tjt�1 (p) = �+��1 (p)�t:

Obviously, for p = :05, we would have ��1 (p) = �1:64. In the standard Gaussian GARCH(1,1)

case (Bollerslev 1986) the conditional variance evolves as

�2t = ! + �"2t�1 + ��2t�1; (2)

and the one-step ahead conditional quantile with coverage p is

FG
tjt�1 (p) = �tjt�1 +��1 (p)�t:

Stochastic Volatility models instead assume volatility is driven by an unobserved factor. In the

simplest case,

yt � �tjt�1 = "t exp
��t
2

�
;

where

�t = 0 + 1�t�1 + �t�1:

Within each type of volatility model, many variants exist, based on considerations regarding long

versus short memory, nonlinear versus linear speci�cations, and exogenous variables such as seasonal

and trading volume e�ects.

GARCH, RiskMetrics and stochastic volatility models are all based solely on the history of

the return yt itself. But information on volatility may also be obtained from current market data

such as option prices. In an e�ort to incorporate the market's belief about future returns, the risk

manager can apply implied volatilities from options prices. Given data options contracts traded,

the Black and Scholes (1972) implied volatility of a European call option can be found as the �

which solves

C = S � �(d1)� exp (�r (T � t))K � �(d2) ; (3)
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where C is the quoted options price, �(�) is the standard normal c.d.f., and

d1 =
log S

K +
�
r + �2

2

�
(T � t)

�
p
T � t

; d2 = d1 � �
p
T � t:

where K;S; r; T � t; and � denote the strike price, the underlying asset price, the risk-free interest

rate, the time-to-maturity, and the implied volatility respectively. Jorion (1995), for example, has

found implied volatilities to work well as predictors of future volatility when using a standard mean

squared error criterion.

One can also use option prices and asset returns to estimate a more realistic model of returns

allowing for time-varying volatility. A benchmark model in this tradition is found in Heston (1993),

who assumes that the price of the underlying asset, S(t), evolves according to

dS(t) = �Sdt+
p
v(t)Sdz1(t);

and volatility, v(t), evolves according to

dv(t) = �[� � v(t)]dt+ �
p
v(t)dz2(t); (4)

where the two Wiener process innovations, dz1(t) and dz2(t) are allowed to be correlated. Heston

(1993) derives a closed-form solution for a European call option price which is similar in structure

to equation (3). Chernov and Ghysels (2000) show how the parameters can be estimated using

data on options and returns.

Other measures of volatility, which di�er in the return data applied, include Garman and Klass

(1980), and Gallant and Tauchen (1998) who incorporate daily high and low quotes, and Andersen

and Bollerslev (1998) and Andersen, Bollerslev, Diebold and Labys (1999), who average intraday

squared returns to estimate daily volatility.

In the empirical application at the end of the paper we will study VaR measures based on

volatility measures from equations (1), (2), (3), and (4) respectively.

2.3 Conditional Moment Restrictions

Implicit in the context of risk management and the related pursuit of a good measure of volatility

is an assumption that the return standardized by its conditional mean and some transformation

of volatility, say � (�t), is i.i.d.: If (yt � �t)/ � (�t) is not i.i.d. for any transformation � (�) of

volatility, then volatility alone would not be su�cient for characterization of conditional quantile.

Typically, we make an implicit assumption that yt belongs to a location-scale family : We assume

that (yt � �t)/ �t is i.i.d., which would imply that the conditional quantile is some linear function

of volatility, where the relevant coe�cients of such a linear function is determined by the common

distribution of the standardized return. Therefore, one can think of the VaR measure as the

outcome of a quantile regression. Treating volatility as a regressor, and ignoring conditional mean

dynamics, we have for example, that

Ftjt�1
�
�p
�
= �p;1 + �p;2�t
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for some �p;1 and �p;2. Notice that the parameters will vary with the chosen coverage, p. A di�erent

VaR measure, based on a di�erent volatility model ��t , or a di�erent distributional assumption, or

both, could be written as

F �tjt�1 (�p) = �p;1 + �p;2�
�
t :

Two questions now arise: First, �How do we evaluate the appropriateness of the speci�cation of

these measures?� And second, �How do we compare them?�

In order to answer these questions, we apply the following conditional moment framework:

Consider �rst the speci�cation testing question. Given the risk manager's information set, 	t�1,
and under the null that the VaR measure is correctly speci�ed, the following must hold:

De�nition 1 The VaR is e�cient with respect to the information set,	t�1; when

E
�
I
�
yt < Ftjt�1

�
�p
��� p

��	t�1
�
= 0;

where I (�) is the indicator function.

This moment condition states that no information available to the risk manager at time t� 1

should help predict whether time t's return falls above or below the VaR measure reported at time

t � 1. The VaR measure should in other words be e�cient with respect to the information set

	t�1. We will refer to this as the e�cient VaR condition. The �rst question can now be restated

as, �Does a particular VaR measure satisfy the e�cient VaR condition?�

It seems plausible that most VaRs are potentially misspeci�ed. After all, it is hard to imagine

that any econometric model underlying a VaR is an exact description of the data generating process.

This would for instance be the case if the true distribution did not belong to a location-scale

family. Under these circumstances, the conditional quantile of interest may not be a function of

the conditional variance only, and conditional kurtosis, for example, may play an additional role in

characterizing the conditional quantile. It is then likely that every VaR measure would be rejected

given a su�ciently large amount of observations. We therefore want our testing methodology to

allow for the possibility of misspeci�cation.1

It is of clear interest for the risk manager to test the appropriateness of an individual VaR

measure in a conditional fashion as suggested above. However, testing a number of di�erent VaR

models individually does not resolve the potential problem of ties. One could easily imagine a

situation where speci�cation tests were run on a set of models and for example half of the models

passed the tests but the other half did not. This would leave open the question of choosing the

best model among the ones which passed the speci�cation tests. This section suggests a testing

framework which allows pairwise comparisons of a set of models. Using a given VaR model as

the benchmark, the risk manager can use the test to statically compare the benchmark models

1Of course, in �nite samples, even statistical acceptance of the e�cient VaR condition for some particular VaR

measure does not neccesarily imply that the e�cient VaR condition is satis�ed in population, as a lack of power

against the relevant alternative could be the culprit.
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to all other models in a set. Alternatively, one can of course simply test all the possible pairwise

combinations.

Our second research question may be stated as, �How do we compare misspeci�ed VaR mea-

sures?� In order to answer this question, consider now again the competing VaR measure, F �tjt�1 (�p) :
We can write

E
h�
I
�
yt < F �tjt�1 (�p)

�
� p
�
j	t�1

i
= 0:

We then want to test whether Ftjt�1
�
�p
�
is signi�cantly better than F �tjt�1 (�p) in a statistically

meaningful way, using these moment conditions.

We have now established a moment condition framework for VaR measures but we still need

to �nd the distribution of the moment conditions. This task is complicated by the presence of the

indicator function. As it always takes on a value of either zero or one, it introduces a nondi�eren-

tiability into the moment conditions. We will resolve this complication partly by using the results

of Pakes and Pollard (1989), and partly by extending the framework of Kitamura (1997).

3 Methodology

Recall that, if the VaR measure is correctly speci�ed, we must have

E
�
I
�
yt < Ftjt�1

�
�p
��� p

��	t�1
�
= 0: (5)

Suppose that the instruments fzt�1; zt�2; : : : g are contained in the information set 	t�1. Note

that, by the law of iterated expectations, we should have

E
��
I
�
yt < Ftjt�1

�
�p
��� p

�� k (zt�1; zt�2; : : : )
�
= 0 (6)

for every measurable vector-valued function k(�) of fzt�1; zt�2; : : : g. For simplicity, omitting the

time and p-subscripts, we may write equation (6) generically as E [f(x; �)] = 0, where the vector x

contains the elements of zt and yt as well as �t.

3.1 VaR Speci�cation Testing

Hansen's (1982) GMM overidenti�cation test, sometimes known as the J-test, can be used to test

the implication in (6). The test statistic is de�ned as

T �fT

�b��0W �fT

�b�� ; (7)

where

b� = argmin
�

fT (�)
0WfT (�) ; fT (�) =

1

T

TX
t=1

f (xt;�) ;

and W is the optimal weighting matrix making GMM a consistent and asymptotically e�cient

estimator. It is clear that, due to the presence of the indicator function, I (�), the moment function
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f (x; �) is not di�erentiable in �, which presents an econometric challenge. For speci�cation testing,

this challenge has been resolved by Pakes and Pollard (1989) who apply simulation-based techniques.

Although the standard GMM framework is thus suitable for speci�cation testing of VaR measures,

it is ill suited for nonnested comparisons of possibly misspeci�ed models. This is the topic to which

we now turn.

3.2 Nonnested VaR Comparison

For the speci�cation test described at the end of the preceding subsection, we could in principle

have relied on the information theoretic alternative to GMM due to Kitamura and Stutzer (1997),

who consider solving the sample analog of the unconstrained problem

�� = argmax
�

min


E�

�
exp

�
0f (x; �)

��
i.e.,

b�T = argmax
�

min


MT (�; ) = argmax
�

min


1

T

TX
t=1

exp
�
0f (xt; �)

�
: (8)

Their estimator is based on the intuition that, under correct speci�cation, �� minimizes the

Kullback-Leibler Information criterion (KLIC), where KLIC � � log min


M (�; ), and M is the

population counterpart of MT as de�ned in Theorem 1 below. Interestingly, their interpretation

has a nice generalization to the nonnested hypothesis testing as discussed by Kitamura (1997).

Suppose now that we are given two VaR measures, Ftjt�1
�
�p
�
, and F �tjt�1 (�p), the moment

conditions of which can be written as:

E
�
f
�
x; �p

�� � E
��
I
�
yt < Ftjt�1

�
�p
��� p

�� k (zt�1)
�
= 0

and

E [g (x; �p)] � E
h�
I
�
yt < F �tjt�1 (�p)

�
� p
�
� k (zt�1)

i
= 0;

where k (�) is a given �nite-dimensional vector-valued function. Note that neither VaR measure

nests the other, and traditional nested hypothesis testing cannot be used for comparing these two

VaR measures. This alone presents a theoretical challenge for VaR comparisons. We take an even

more ambitious position by assuming that both speci�cations are potentially incorrect.

Kitamura (1997) proposed to deal with such nonnested hypothesis testing by comparing the

KLIC distance of the two moment restrictions in population. Under his proposal, the moment

restriction with smaller KLIC distance will be accepted: Our test will be based on the di�erence

between the KLIC distances

MT

�b�T ; bT� = max
�

min


MT (�; )

 
=

1

T

TX
t=1

exp
�
0f (xt; �)

�!
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and

NT

�b�T ; b�T� = max
�

min
�

NT (�; �)

 
=

1

T

TX
t=1

exp
�
�0g (xt; �)

�!
:

Kitamura (1997) established the properties of such nonnested hypothesis testing for the case where

both f and g are di�erentiable. Due to the indicator function, di�erentiability is violated in our

application. We therefore generalize his result to our nondi�erentiable case, and obtain the following

result.

Theorem 1 Let

M (��; �) = max
�

min


M (�; )
�

= E
�
exp

�
0f (xt; �)

���
N (��; ��) = max

�
min
�

N (�; �)
�

= E
�
exp

�
�0g (xt; �)

���
:

Under the null that M (��; �) = N (��; ��), we have

p
T
�
MT

�b�T ; bT��NT

�b�T ; b�T��! N
�
0; �21

�
;

where �21 = limT!1Var
�

1p
T

PT
t=1 exp[

�0f(xt; ��)]� exp[��0g(xt; ��)]
�
.

Proof. See the Appendix.

Thus, a signi�cantly large value of the test statistic will cause a rejection of the hypothesis that the

two measures match the e�cient VaR condition equally well in favor of the VaR model denoted by

E [g (x; ��)] = 0.

4 Application to Daily Returns on the S&P500

The focus of this application is to assess and compare the usefulness of di�erent volatility measures

in risk management. We apply our testing methodology to a portfolio consisting of a long position

in the S&P500 index with an investment horizon of one day. The data applied was graciously

provided to us by Chernov and Ghysels (2000). They provide us with S&P500 index returns which

are recorded daily from November 1985 to October 1994, corresponding to 2209 observations. They

also supply a daily European options price on the at-the-money, nearest to maturity, call option

contract on the S&P500 index. Using the e�cient GMM methodology of Gallant and Tauchen

(1996), Chernov and Ghysels (2000) estimate the Heston's (1993) model in equation (4), and obtain

a series of daily ��tted� volatilities, using the reprojection algorithm in Gallant and Tauchen (1998).

We shall refer to these as reprojected volatilities below. In addition to the reprojected volatilities

from Heston's model, Chernov and Ghysels produce a set of daily implied Black-Scholes volatilities

de�ned from equation (3).

In addition to the two volatility series calculated from option prices, we apply two volatility

measures based on the historical daily returns data. One is an estimated GARCH(1,1) volatility

8



as in equation (2), the other is the so called RiskMetrics volatility which is constructed simply

as an exponential �lter of the squared returns, as in equation (1). As in RiskMetrics, we set the

smoothing parameter, �; to .94. The four standard deviation series are plotted in Figure 1.

For each of the volatility series, and at each desired VaR coverage, p; we run a simple quantile

regression of returns on a constant and the time-varying standard deviation to get initial parameter

estimates. We then optimize this �rst estimate using equation (8) to get a �nal parameter estimate,

and thus a �nal VaR(p) measure for each model. We then turn to the testing of the four volatility

measures for VaR purposes across a range of coverage values, p:

4.1 VaR Speci�cation Testing

When testing each of the four VaRs for misspeci�cation, we could of course use the well-known

GMM J-test suggested in equation (7). However, in order to maintain continuity with the ensuing

comparison tests, we will instead apply Kitamura and Stutzer's (1997) ��test. The ��test is the
information theoretic version of the J-test, and it takes the form

�̂T = �2T logMT

�b�T ; bT� = �2T log

 
1

T

TX
t=1

exp
h
̂0f

�
xt; �̂

�i!
! �2r�m;

where r is the number of moments, and m is the number of estimated parameters. We will test the

VaR measures constructed from GARCH volatilities, RiskMetrics volatilities, implied volatilities,

and reprojected volatilities from the daily S&P500 returns. We use a constant as well as the �rst

lag of the four volatility measures as our linear conditioning information, thus r = 1 + 4 = 5: As

we are estimating two parameters: the constant and the slope on volatility, we have m = 2; and

therefore r�m = 5�2 = 3 degrees of freedom in the asymptotic �2 distribution. The speci�cation

testing results are summarized in the following table.

Table 1: Speci�cation Testing Across VaR Coverage Rates

VaR Measure p = :01 p = :05 p = :10 p = :25

GARCH Volatility 3.84 4.85 3.41 11.35

RiskMetrics 0.33 8.09 7.58 10.40

Implied Volatility 4.76 9.72 10.07 14.44

Reprojected Volatility 7.20 8.02 7.44 9.04

The �2(3) distribution has a 5 percent critical value of 7.82 and a 10 percent critical value

of 6.25. Choosing the 5 percent level of signi�cance, we see that no VaRs are rejected when the

coverage rate p = :01, all but the GARCH VaR are rejected when p = :05; the implied volatility

VaR is rejected when p = :10; and all VaRs are rejected when p = :25:

An important implication of these results is that di�erent VaRs might be optimal for di�erent

levels of coverage. This is not surprising as all the VaR models are no doubt misspeci�ed. The

important thing to note is that our testing framework allows the user to assess the quality of a
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VaR measure given the desired coverage probability, p: Should a risk manager want to test a model

across a set of coverage rates, he or she could simply stack the moment conditions corresponding

to each p in the set and run the test on all the conditions simultaneously.

4.2 Nonnested VaR Comparison Testing

In this section we perform the nonnested VaR comparison tests using the asymptotic result in

Theorem 1. The results from performing pairwise comparison testing of the four competing VaRs

are as follows:

Table 2: VaR Comparisons Across Coverage Rates

VaR Model 1 vs VaR Model 2: p = :01 p = :05 p = :10 p = :25

GARCH vs RiskMetrics -0.88 0.54 1.32 -0.24

GARCH vs Implied 0.21 0.65 0.93 0.48

GARCH vs Reprojected 0.59 0.40 0.55 -0.34

RiskMetrics vs Implied 1.30 0.17 0.32 1.06

RiskMetrics vs Reprojected 1.67 -0.01 -0.02 -0.28

Implied vs Reprojected 0.63 -0.44 -0.62 -1.90

Each entry in the table represents the test value from the null hypothesis of VaR Model 1 and

VaR Model 2 being equally suitable. A value larger than 1.96 in absolute terms denotes a rejection

of the null hypothesis at the 5 percent signi�cance level, and a value larger than 1.65 denotes a

rejection at the 10 percent level. A positive value indicates that VaR Model 1 is preferred, and a

negative value that VaR Model 2 is preferred.

From the table, only a few rejections are possible, and only at the 10 percent signi�cance level.

At a VaR coverage of 1 percent, the RiskMetrics VaR is preferred to the reprojected volatility VaR.

For p = :25; the reprojected volatility VaR is preferred to the implied volatility VaR.

Notice that the comparison testing results in general correspond well to the inference drawn

from the speci�cation testing exercise above. For example, two VaRs which were both rejected

in the speci�cation tests typically receive a comparison test value close to zero. Notice also that

even though we do not �nd a lot of evidence to signi�cantly discern between VaR measures in the

comparison tests, the test values will allow for an informal pairwise ranking of nonnested VaRs,

even if their di�erences are not statistically signi�cant.

5 Summary and Directions for Further Work

Risk managers have an abundance of Value-at-Risk methodologies to choose from. Consequently,

we have considered speci�cation tests of various VaR measures. From the perspective that relevant

VaR measures should satisfy an e�cient VaR condition, which we de�ne, we have provided various

methodologies with which such relevance can be tested. The methodology can (i) test whether a

10



VaR measure satis�es the e�cient VaR condition; and (ii) compare two misspeci�ed VaR measures.

The usefulness of the new methodology was illustrated in an application to daily returns on the

S&P500 index.

Several issues are left for future research. We have implicitly assumed away estimation errors

in the volatility measures which is not always justi�ed. We have also assumed that the volatility

measures are stationary. This is not without loss of generality, but we do not yet found an adequate

yet theoretically rigorous way of incorporate such problems.

Finally, we note that we might be able to signi�cantly rank more models if we change the

investment horizon from one to �ve or ten trading days. The GARCH and RiskMetrics models

typically provide very similar short-term variance forecasts, but they have very di�erent implications

for the longer term. In future work, we intend to address these issues.
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A Appendix: Proof of Theorem 1

A.1 Assumptions

1. The process xt is stationary.

2. � 2 �, a compact, m-dimensional set.

3. There exists a unique solution, (��; �), to the problem max�min E [exp (0f (x; �))].

4. For su�ciently small � > 0, E
h
sup�02�(�;�) exp

�
0f

�
x; �0

��i
< 1 for all vectors  in the

neighborhood of �. Here, � (�; �) denotes an open ball of radius � around �.

5. E[f(x; �)f(x; �)0] is nonsingular for all � in �.

6. f(x; �) belongs to a measurable V-C subgraph class of functions the p-th moment of which

envelope function is �nite.

7. The process xt is � mixing with � mixing coe�cients �k satisfying k
p=(p�2) (log k)2(p�1)=(p�2) �k !

0 for some 2 < p <1.

8. D � @2

@@�0E[exp(�
0

f(x; ��))] is of full column rank.

V � limT!1Var
h
1
T

PT
t=1 exp(

�0f(xt; ��))f(xt; ��)
i
is positive de�nite.

9. xt is a continuous random variable, and there is an integrable <r�valued function F (x) such

that ��exp( 0f(x; �))f(x; �)�� � F (x);��exp(0f(x; �))f(x; �)2�� � F (x);��exp( 0f(x; �))f(x; �)3�� � F (x);

for all x in a neighborhood of (��; �), where j�j, power, and � are element-by-element.

We also impose conditions on �, �, and g (x; �) which correspond to Assumptions 2-8.

A.2 Theorem

Under Assumptions 1-8,

(a)
�b�T ; bT� p! (��; �).

(b)
p
T
�b�T � ��

�
= Op (1), and

p
T (bT � �) = Op (1).

(c) Under the null hypothesis that M (��; �) = N (��; ��),
p
T
�
MT

�b�T ; bT��NT

�b�T ; b�T�� d! N
�
0; �21

�
;

where �21 = limT!1Var
�

1p
T

PT
t=1

�
exp

�
(�)0 f (xt; ��)

�� exp
�
(��)0 g (xt; ��)

���
.
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A.3 Sketch of Proof

In this section we will sketch the main steps of the proof. The complete proof is available upon

request.

A.3.1 (a): consistency

The proof of (a) takes the following steps. First, it follows from Kitamura and Stutzer's (1997)

consistency proof, which does not require di�erentiability, that

1. Let  (�) � argminM (�; ) ; then  (�) is continuous in � under Assumption 5.

2. Let L � E
�
exp

�
 (��)0 f (x; ��)

�	
. We have

E
�
exp

�
 (�)0 f (x; �)

�	
< L

and

lim
�!0

E

"
sup

�02�(�;�)
exp

�

�
� 0
�0
f
�
x; � 0

��#
= E

�
exp

�
 (�)0 f (x; �)

�	
:

3. For all � > 0, there exists some h > 0 such that

lim
T!1

Pr

"
sup

�02���(��;�)

1

T

TX
t=1

exp
�

�
�0
�0
f
�
xt; �

0�� > L� h

#
= 0: (9)

4. By de�nition,

1

T

TX
t=1

exp
�bT (�)0 f (xt; �)� � 1

T

TX
t=1

exp
�
 (�)0 f (xt; �)

�
;

which, when combined with (9), yields

lim
T!1

Pr

"
sup

�02���(��;�)

1

T

TX
t=1

exp
�bT �� 0�0 f �xt; �0�� > L� h

#
= 0: (10)

Second, by using Pollard's (1991) arguments, one can show that ̂T (�
�) = (��) + op(1), and

lim
n!1Pr

"
1

T

TX
t=1

exp
�bT (��)0 f (xt; ��)� < L� h

#
= 0; (11)

where bT (��) = 1
T

PT
t=1 exp (

0f (xt; ��)).
Third, combining (10) and (11) delivers the consistency of b�T . Lastly, it follows from Theorem

2.1 of Arcones and Yu (1994) and Theorem 10.2 of Pollard (1990) that

1

T

TX
t=1

exp
�
0f

�
xt; b��� p! E

�
exp

�
0f (x; ��)

��
:

An application of Pollard's (1991) convexity lemma completes the proof of the consistency of ̂T .
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A.3.2 (b):
p
T -consistency

First, by using quadratic approximations, the de�nition of minimization and the convexity lemma,

one can show that

1

T

TX
t=1

f
�
xt; b�T� exp h�0f �xt; b�T�i = Op

�
1p
T

�
:

Next, we obtain

1

T

TX
t=1

exp
h
�0f

�
xt; b�T�i f �xt; b�T�

=
1

T

TX
t=1

exp
�
�0f (xt; ��)

�
f (xt; �

�) +D
�b�T � ��

�
+ op

�
1p
T

�
by the usual stochastic equicontinuity argument, where the stochastic equicontinuity follows from

Theorem 2.1 of Arcones and Yu and Theorem 10.2 of Pollard (1990). Because

1p
T

TX
t=1

f
�
xt; b�T� exp h�0f �xt; b�T�i = Op (1) ;

1p
T

TX
t=1

exp
�
�0f (xt; ��)

�
f (x; ��) = Op (1) ;

we obtain

p
T
�b�T � ��

�
= Op (1) :

By applying Pollard's (1991) argument to quadratic approximations, one can also show that

p
T
�bT �b�T�� �

�
= S�1 �

"
1p
T

TX
t=1

exp
�
�0f (xt; ��)

�
f (xt; �

�) +D
p
T
�b�T � ��

�#
+ op (1) ;

Because 1p
T

PT
t=1 exp [

�0f (xt; ��)] f (x; ��) = Op (1) and
p
T
�b�T � ��

�
= Op (1), we obtain

p
T (bT � �) = Op (1) :

A.3.3 (c): nonnested hypothesis testing

Suppose we want to compare

p
T
�
MT

�b�T ; bT��NT

�b�T ; b�T�� :
Note that

p
T
�
MT

�b�T ; bT��M (��; �)
�
=
p
T
�
M
�b�T ; bT��MT (�

�; �)
�
+ op (1)
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by the usual stochastic equicontinuity argument. Since

p
T
�
M
�b�T ; bT��M (��; �)

�
=
@M

@� 0
�
p
T
�b�T � ��

�
+
@M

@ 0
�
p
T (bT � �) + op (1) = op (1) ;

and

@M

@� 0
= 0;

@M

@0
= 0

by the �rst order condition in population, it follows that

p
T
�
MT

�b�T ; bT��M (��; �)
�
=
p
T (MT (�

�; �)�M (��; �)) + op (1) :

Similarly, we obtain

p
T
�
NT

�b�T ; b�T��N (��; ��)
�
=
p
T (NT (�

�; ��)�N (��; ��)) + op (1) :

Therefore, under the null that

M (��; �) = N (��; ��) ;

we have

p
T
�
MT

�b�T ; bT��NT

�b�T ; b�T�� =
p
T (MT (�

�; �)�NT (�
�; ��)) + op (1)

d! N
�
0; �21

�
:
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Figure 1: Four Volatility Measures of Daily S&P500 Returns
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