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CH-8092 Zürich Switzerland

http://www.math.ethz.ch/~valerie/

http://www.math.ethz.ch/~embrechts/

http://www.math.ethz.ch/~johanna/

Abstract

Due to the new regulatory guidelines known as Basel II for banking and Solvency 2 for

insurance, the financial industry is looking for qualitative approaches to and quantitative

models for operational risk. Whereas a full quantitative approach may never be achieved,

in this paper we present some techniques from probability and statistics which no doubt

will prove useful in any quantitative modelling environment. The techniques discussed are

advanced peaks over threshold modelling, the construction of dependent loss processes

and the establishment of bounds for risk measures under partial information, and can be

applied to other areas of quantitative risk management1.
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1 Introduction

Managing risk lies at the heart of the financial services industry. Regulatory frameworks, such

as Basel II for banking and Solvency 2 for insurance, mandate a focus on operational risk. In

the Basel framework, operational risk is defined as the risk of loss resulting from inadequate or

failed internal processes, people and systems or from external events. This definition includes

legal risk, but excludes strategic and reputational risk. A fast growing literature exists on

the various aspects of operational risk modelling; see for instance Cruz (2002), Cruz (2004)

and King (2001) for some textbook treatments. For a discussion very much in line with our

paper, see Chapter 10 in McNeil et al. (2005).

In this paper we discuss some of the more recent stochastic methodology which may be useful

towards the quantitative analysis of certain types of operational loss data. We stress the

“certain types” in the previous sentence. Indeed, not all operational risk data lend themselves

easily to a full quantitative analysis. For example, legal risk defies a precise quantitative

analysis much more than, say, damage to physical assets. The analytic methods discussed

cover a broad range of issues which may eventually enter in the development of an advanced

measurement approach, AMA in the language of Basel II. Moreover, in the case of market

and credit risk, we have witnessed a flurry of scientific activity around the various regulatory

guidelines. Examples include the work on an axiomatic approach to risk measures and the

development of advanced rating models for credit risk. This feedback from practice to theory

can also be expected in the area of operational risk. Our paper shows some potential areas

of future research. Under the AMA approach, banks will have to integrate internal data

with relevant external loss data, account for stress scenarios, and include in the modelling

process factors which reflect the business environment and the internal control system; see

EBK (2005). Moreover, the resulting risk capital must correspond to a 99.9%-quantile (VaR)

of the aggregated loss data over the period of a year. Concerning correlation, no specific rules

are given (for instance within EBK (2005)) beyond the statement that explicit and implicit

correlation assumptions between operational loss events as well as loss random variables used

have to be plausible and need to be well founded.
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In Section 2, we first present some more advanced techniques from the realm of extreme value

theory (EVT). EVT is considered as a useful set of tools for analyzing rare events; several of

the operational risk classes exhibit properties which in natural way call for an EVT analysis.

To the ongoing discussion on the use of EVT, we add some techniques which could address

non-stationarity in (some of) the underlying data.

In Section 3 we turn to the issue of dependence modelling. In a first instance, we assume no

dependence information is given and, using the operational risk data introduced in Section 2,

work out the so-called worst-VaR case for the aggregate data.

In Section 4, we then turn to the problem of modelling the interdependence between various

operational risk processes. Here, several approaches are possible. We concentrate on one

approach showing how copula-based techniques can be used to model dependent loss processes

which are of the compound Poisson type. As already stated above, there is so far no agreement

on how to model correlation. The methodology we offer is sufficiently general and contains

many of the approaches already found in the literature on operational risk as special cases.

This section puts some of these developments in a more structured context and indicates how

future research on this important topic may develop further.

2 Advanced EVT Models

2.1 Why EVT?

The key attraction of EVT is that it offers a set of ready-made approaches to a challenging

problem of quantitative (AMA) operational risk analysis, that is, how can risks that are both

extreme and rare be modelled appropriately? Applying classical EVT to operational loss

data however raises some difficult issues. The obstacles are not really due to a technical

justification of EVT, but more to the nature of the data. As explained in Embrechts et al.

(2003) and Embrechts et al. (2004), whereas EVT is the natural set of statistical techniques

for estimating high quantiles of a loss distribution, this can be done with sufficient accuracy

only when the data satisfy specific conditions; we further need sufficient data to calibrate

the models. Embrechts et al. (2003) contains a simulation study indicating the sample size

needed in order to reliably estimate certain high quantiles, and this under ideal (so called

iid = independent and identically distributed) data structure assumptions. From the above
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two papers we can definitely infer that, though EVT is a highly useful tool for high-quantile

(99.9%) estimation, the present data availability and data structure of operational risk losses

make a straightforward EVT application somewhat questionable. Nevertheless, for specific

subclasses where quantitative data can be reliably gathered, EVT offers a useful tool. An

ever returning issue is the level at which a threshold has to be set beyond which the EVT

asymptotics (in the GPD-POT form, say) can be fitted. There is no easy ready-made solution

to this question. The issues raised in Diebold et al. (2001) still stand and some of them

were raised before in Embrechts et al. (1997); see especially Figures 4.1.13, 6.4.11 and 5.5.4.

The mathematical reasons why optimal threshold selection is very difficult indeed can best be

appreciated by Example 4.1.12 in Embrechts et al. (1997): one needs second order information

on the underlying (unknown) model. As soon as larger public databases on operational risk

become available, hopefully more can be said on this issue. By now, numerous papers have

been written on optimal threshold selection; see for instance Beirlant et al. (2004). We shall

not address this issue further in this paper.

The current discussion on EVT applications to the AMA modelling of operational risk data

will no doubt have an influence on the future research agenda in that field. Besides the

threshold problem, other issues to be discussed already include risk capital point and interval

estimation at (very) high quantile levels, the comparison of different estimation procedures

(Hill, POT, DEdH etc.), the use of robust and Bayesian approaches to EVT, and EVT for

non-stationary data. In this paper, we concentrate on the latter.

Consider Figure 1 taken from Embrechts et al. (2004). The data reflect a loss database

of a bank for three different types of losses and span a 10-year period. The original data

were transformed in such a way as to safeguard anonymity; the main characteristics however

have been kept. This transformation unfortunately takes away the possibility to discuss the

underlying practical issues at any greater length. For our paper we therefore only discuss the

resulting statistical modelling issues. Also note that the number of losses is fairly small.

Besides the apparent existence of extremes (hence EVT matters), the data seem to increase

in frequency over time, with a fairly radical change around 1998 (hence non-stationarity may

be an issue). One obvious reason for this apparent change-in-frequency could be that quan-

tification of operational risk only became an issue in the late nineties. This is referred to as

reporting bias. Such structural changes may also be due to an internal change (endogenous
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Figure 1: Operational risk losses. From left to right: Type 1 (n = 162), Type 2 (n = 80),

Type 3 (n = 175).

effects, management action, M&A) or changes in the economic/political/regulatory environ-

ment in which the company operates (exogenous effects). As far as we are aware, no detailed

studies reflecting non-stationarity in the loss frequency exist. From the calculation of a global

risk measure for operational risk, we expect however that the frequency issue is secondary.

Especially for the bigger losses, a clean time stamp may not be readily available, also banks

use clumping of smaller claims at the end of certain time periods. Nevertheless, we find it

useful to show how EVT has been extended taking more general loss frequency processes into

account.

We adapt classical EVT to take both non-stationarity and covariate modelling (different types

of losses) into account. Chavez-Demoulin (1999), Chavez-Demoulin and Davison (2005) con-

tain the relevant methodology. In the next subsection, we first review the Peaks over Threshold

(POT) method and the main operational risk measures to be analysed. In Subsection 2.3, the

adapted classical POT method, taking non-stationarity and covariate modelling into account,

is applied to the operational risk loss data from Figure 1.
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2.2 The basic EVT methodology

Over the recent years, EVT has been recognized as a useful set of probabilistic and statistical

tools for the modelling of rare events and its impact on insurance, finance and quantitative

risk management is well recognized. Numerous publications have exemplified this point.

Embrechts et al. (1997) detail the mathematical theory with a number of applications to

insurance and finance. The edited volume Embrechts (2000) contains an early summary

of EVT applications to risk management, whereas McNeil et al. (2005) contains a concise

discussion with quantitative risk management applications in mind. Reiss and Thomas (2001),

Falk et al. (2004), Coles (2001) and Beirlant et al. (2004) are very readable introductions to

EVT in general. Numerous papers have looked at EVT applied to operational risk; see for

instance Moscadelli (2004), Cruz (2004) and the references therein.

Below, we give a very brief introduction to EVT and in particular to the peaks over threshold

(POT) method for high-quantile estimation. A more detailed account is to be found in the list

of references; for our purpose, i.e. the modelling of non-stationarity, Chavez-Demoulin and

Davison (2005) and Chavez-Demoulin and Embrechts (2004) contain relevant methodological

details.

From the latter paper, we borrow the basic notation (see also Figure 2):

• ground-up losses are denoted by Z1, Z2, . . . , Zq;

• u is a typically high threshold, and

• W1, . . . ,Wn are the excess losses from Z1, . . . , Zq above u, i.e. Wj = Zi − u for some

j = 1, . . . , n and i = 1, . . . , q, where Zi > u.

Note that u is a pivotal parameter to be set by the modeller so that the excesses above u,

W1, . . . ,Wn, satisfy the required properties from the POT method; see Leadbetter (1991) for

the basic theory. The choice of an appropriate u poses several difficult issues in the modelling

of operational risk; see the various discussions at a meeting organized by the Federal Reserve

Bank of Boston, Implementing an AMA for Operational Risk, Boston, May 18–20, 2005

(www.bos.frb.org/bankinfo/conevent/oprisk2005) and the brief discussion in Section 1. For

iid losses, the conditional excesses W1, . . . ,Wn, asymptotically for u large, follow a so-called
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Generalized Pareto Distribution (GPD):

Gκ,σ(w) =





1− (1 + κw/σ)
−1/κ
+ , κ 6= 0,

1− exp(−w/σ) , κ = 0 ,

(1)

where (x)+ = x if x > 0 and 0 otherwise. The precise meaning of the asymptotics is explained

in Embrechts et al. (1997), Theorem 3.4.13. Operational loss data seem to support κ > 0

which corresponds to ground-up losses Z1, . . . , Zq following a Pareto-type distribution with

power tail with index 1/κ, i.e. P (Wi > w) = w−1/κh(w) for some slowly varying function h,

i.e. h satisfies

lim
t→∞

h(tw)

h(t)
= 1, w > 0. (2)

For instance, in a detailed study of all the losses reported to the Basel Committee during the

third Quantitative Impact Study (QIS), Moscadelli (2004) finds typical Pareto-type behavior

across most of the risk types, even some cases with κ > 1, i.e. infinite mean models.

From Leadbetter (1991) it also follows that for u high enough, the exceedance points of

Z1, . . . , Zq of the threshold u follow (approximately) a homogeneous Poisson process with

intensity λ > 0. Based on this, an approximate log-likelihood function l(λ, σ, κ) can be derived;

see Chavez-Demoulin and Embrechts (2004) for details. In many applications, including the

modelling of operational risk, it may be useful to allow the parameters λ, σ, κ in the POT

method to be dependent on time and explanatory variables allowing for non-stationarity. In

the next section (where we apply the POT method to the data in Figure 1), we will take

for λ = λ(t) a specific function of time which models the apparent increase in loss intensity

in Figure 1. We moreover will differentiate between the different loss types and adjust the

severity loss parameters κ and σ accordingly.

Basel II requires banks using the AMA to measure risk using a one-year 99.9 % Value-at-Risk.

In Section 3 we will discuss some of the consequences coming from this requirement. For the

moment it suffices to accept that the high-quantile level of 99.9 % opens the door for EVT

methodology. Given a loss distribution F , we denote VaRα = F−1(α), where F−1 can be

replaced by the generalized inverse F← when necessary; see Embrechts et al. (1997), p. 130.

In cases where the POT method can be applied, for given u, this measure can be estimated

as follows:

V̂aRα = u+
σ̂

κ̂

{(
1− α
λ̂

)−κ̂
− 1

}
. (3)
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Figure 2: The point process of exceedances (POT).

Here λ̂, κ̂, σ̂ are the maximum likelihood estimators of λ, κ and σ. Interval estimates can be

obtained by the delta method or by the profile likelihood approach and has been programmed

for instance into the freeware EVIS by Alexander McNeil, available under

www.math.ethz.ch/˜mcneil; see McNeil et al. (2005) for details.

2.3 POT analysis of the operational loss data

Consider the operational risk data of Figure 1 pooled across the three risk types. The main

features of the pooled data hence are risk type, extremes and indication of non-stationarity

in the loss-frequency. Consequently, any EVT analysis of the pooled data should at least take

the risk type τ as well as the non-stationarity (switch around 1998, say) into account. Using

the advanced POT modelling, including non-stationarity and covariates, the data pooling

has the advantage to allow for testing interaction between explanatory variables: is there

for instance an interaction between type of loss and change in frequency, say? In line with

Chavez-Demoulin and Embrechts (2004), we fix a threshold u = 0.4. The latter paper also

contains a sensitivity analysis of the results with respect to this choice of threshold u, though

again, the same fundamental issues exist concerning an “optimal” choice of u. A result from

such an analysis is that for these data, small variations in the value of the threshold have no

significant impact.
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Figure 3: Operational risk losses. From left to right: Estimated Poisson intensity λ̂ and

95% confidence intervals for data of loss type 1, 2, 3. The points are the yearly numbers of

exceedances over u = 0.4.

Following the non-parametric methodology summarized in the above paper, we fit different

models for λ, κ and σ allowing for:

• functional dependence on time g(t), where t refers to the year over the period of study;

• dependence on τ , where τ defines the type of loss data through an indicator Iτ = 1, if

the type equals τ and 0 otherwise, with τ = 1, 2, 3, and

• discontinuity modelling through an indicator I(t>tc) where tc = 1998 is the year of

possible change point in the frequency and

I(t>tc) =





1, if t > tc,

0, if t ≤ tc.

Of course a more formal test on the existence and value of tc can be incorporated. We apply

different possible models to each parameter λ, κ and σ. Using specific tests (based on the

likelihood ratio statistics), we compare the resulting models and select the most significant

one.

The selected model for the Poisson intensity λ(t, τ) turns out to be

log λ̂(t, τ) = γ̂τ Iτ + β̂I(t>tc) + ĝ(t). (4)

Inclusion of the first component γ̂τ Iτ on the right hand side indicates that the type of loss

τ is important to model the Poisson intensity; that is the number of exceedances over the

threshold differs significantly for each type of loss 1, 2 or 3. The selected model also contains

the discontinuity indicator I(t>tc) as a test based on the hypothesis that the simplest model

“β = 0 suffices” is rejected at a 5% level. We find β̂ = 0.47(0.069) and the intensity is rather
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Figure 4: Estimated GPD parameters for the operational risk losses from Figure 1: upper κ̂,

lower σ̂ and 95% confidence intervals for different loss types.

different in mean before and after 1998. Finally, it is clear that the loss intensity parameter

λ is dependent on time (year). This dependence is modelled through the estimated function

ĝ(t). For the reader interested in fitting details, we use a smoothing spline with 3 degrees

of freedom selected by AIC (see Chavez-Demoulin and Embrechts (2004)); see also Green

and Silverman (1994) for further support on the use of cubic splines. Figure 3 represents

the resulting estimated intensity λ̂ for each type of losses and its 95% confidence interval

based on bootstrap resampling schemes (details in Chavez-Demoulin and Davison (2005)).

The resulting curves seem to capture the behaviour of the number of exceedances (points of

the graphs) for each type rather well. The method would also allow to detect any seasonality

or cyclic patterns which may exist; see Brown and Wang (2005). Similarly, we fit several

models for the GPD parameters κ = κ(t, τ) and σ = σ(t, τ) modelling the losssize through

(1) and compare them. For both κ and σ, the model selected depends only on the type τ of

the losses but not on time t. Their estimates κ̂(τ) and σ̂(τ) and 95% confidence intervals are

given in Figure 4. Point estimates for the shape parameter κ (upper panels) are κ1 = 0.7504,

κ2 = 0.6607 and κ3 = 0.2815; this suggests a loss distribution for type 3 with a less heavy

tail than for types 1 and 2. Tests based on likelihood ratio statistics have shown that the

effect due to the switch in 1998 is not retained in the models for κ and σ, i.e. the loss size
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distributions do not switch around 1998. Finally, note that, as the GPD parameters κ and

σ are much harder to estimate than λ, the lack of sufficient data makes the detection of any

trend and/or periodic components difficult. Also for this reason, the resulting 95 % confidence

intervals are wide.

To assess the model goodness-of-fit for the GPD parameters, a possible diagnostics can be

based on the result that, when the model is correct, the residuals

Rj = κ̂−1 log {1 + κ̂Wj/σ̂} , j = 1, . . . , n, (5)

are approximately independent, unit exponential variables. Figure 5 gives an exponential

quantile-quantile plot for the residuals using the estimates κ̂(τ) and σ̂(τ) for the three types

of loss data superimposed. This plot suggests that our model is reasonable.

The potential importance of using models including covariates (representing type) instead of

pooling the data and finding unique overall estimated values of λ, κ, σ is clearly highlighted

here. In a certain sense, the use of our adapted model allows to exploit all the information

available on the data, a feature which is becoming more and more crucial, particularly in the

context of operational and credit risk. Other applications may be found at the level of a regu-

lator where pooling across different banks may be envisaged or for comparing and contrasting

internal versus external loss data. Using the estimated parameters λ̂, κ̂, σ̂ it is possible to

estimate VaR (see (3)) or related risk capital measures; for this to be done accurately much

larger data bases must become available. The data displayed in Figure 1 are insufficient for

such an estimation procedure at the 99.9 % confidence level, leading to very wide confidence

regions for the resulting risk capital.

3 Aggregating (Operational) Risk Measures

3.1 The risk aggregation problem; an example

The risk aggregation issue for operational risk in the Advanced Measurement Approach within

the Basel II framework typically, though not exclusively, starts with a number d (7 risk types,

8 business lines, 56 classes) of loss random variables L1, . . . , Ld giving the total loss amount for

a particular type/line/class for the next accounting year, say. By the nature of operational

risk data (see Section 2), these random variables are often of the type Lk =
∑Nk

i=1Xi(k),
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Figure 5: QQ-plot of fitted residuals (5) against exponential plotting positions.

k = 1, . . . , d where Nk is a frequency random variable assumed to be independent of the iid

severity random variables Xi(k); the rvs Lk are referred to as of the compound type. If Nk has

a Poisson distribution, then Lk is called a compound Poisson random variable. For general

compound rvs and heavy-tailed severity distributions, it is known that P(Lk > x) inherits the

tail-properties of P(Xi(k) > x), in particular, if P(Xi(k) > x) = x−1/κkhk(x) for some slowly

varying function hk and E(Nk) < ∞, then lim
x→∞

P(Lk > x)/P(Xi(k) > x) = E(Nk). For the

exact conditions on Nk, see Embrechts et al. (1997), Theorem A 3.20. Although the precise

modelling of Nk in the case of Figure 1 needs more data, it seems reasonable to assume,

as a first approximation, that the tail behavior of P(Lk > x) is Pareto-type with index κk,

k = 1, 2, 3 as given in Section 2.3. To highlight the problem at hand, and for notational

convenience, we will assume more precisely that

P(Lk > x) = (1 + x)−1/κk , κ ≥ 0, k = 1, 2, 3, (6)

and denote the corresponding VaR measures by VaRα(k) where we are typically interested in

the α-range (0.99, 0.9999), say. Note that we left out the (asymptotic) frequency correction

E(Nk); on this issue, more work is needed.

In this particular case, d = 3, the total loss to be modelled is L =
∑3

k=1 Lk; this random

variable in general may be very complex as it typically contains components with rather

different frequency as well as severity characteristics. Moreover, the interdependence between
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α VaRα(L1) VaRα(L2) VaRα(L3) I C DB SB

0.9 4.6 3.6 0.9 8.8 9.1 18.0 18.5

0.99 30.7 19.9 2.7 43.6 53.3 90.5 93.4

0.999 177.3 95.0 6.0 165.3 278.3 453.1 461.5

0.9999 1002.7 438.3 12.4 299.9 1453.4 2303.5 2327.7

Table 1: Bounds on Value-at-Risk: comonotonicity (C), independence (I), dual bound (DB)

and standard bound (SB).

the various Lk’s is largely unknown. In Section 4, we will return to this important issue.

Under the Basel II AMA guidelines for operational risk, a capital charge can be calculated as
∑3

k=1 VaR99.9%(Lk). However, because of the possible non-coherence of VaR, it is not clear

whether indeed subadditivity holds in this case, i.e. whether

VaR99.9%(L) = VaR99.9%

(
3∑

k=1

Lk

)
≤

3∑

k=1

VaR99.9%(Lk). (7)

Indeed, the typical examples where the inequality (≤) may reverse (>) occur when the distri-

bution functions of the Lk’s are very skewed, when the rvs Lk have a very special dependence

or when the underlying distribution functions are (very) heavy-tailed; see McNeil et al. (2005),

Chapter 6 for details and references to the underlying examples. For our purposes, i.e. for

the quantitative modelling of operational risk, all three potential non-coherence preconditions

are relevant. Hence the important question then becomes: by how much can (7) be violated?

In particular, given the marginal loss distributions (6), what is the maximal value of the risk

capital VaR99.9%

(∑3
k=1 Lk

)
under all possible dependence assumptions for the loss vector

(L1, L2, L3). Though this question is in general difficult to answer, there are several numeri-

cal solutions yielding bounds to this quantity. A detailed discussion on the background of such

so-called Fréchet-type problems is to be found in Puccetti (2005) and in McNeil et al. (2005).

For our purposes, relevant is Embrechts and Puccetti (2006b) and in particular Embrechts and

Puccetti (2006a). The latter paper computes numerically upper bounds for VaRα

(∑d
i=1Xi

)

for d one-period risks X1, . . . , Xd with possibly different dfs FXi , i = 1, . . . , d. This is compu-

tationally non-trivial; in that paper it is shown how a so-called dual bound (DB in Table 1)

improves on the easier-to-calculate standard bound (SB). For this terminology from the the-

ory of Fréchet problems and Mass Transportation Theory, we refer to Embrechts and Puccetti
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Figure 6: Bounds on the df P(L1 +L2 +L3 ≤ x) for the Pareto loss dfs of Section 2.3, i.e. (6).

(2006a) as well as Rachev and Rüschendorf (1998a) and Rachev and Rüschendorf (1998b).

In Table 1 we have summarized the results from the above optimization problem in the case

of the assumption (6) for the loss rvs L1, L2, L3 from Figure 1, i.e. with κ1, κ2 and κ3 as

given in Section 2.3. We report the standard and (improved) dual bounds computed using

the results from Embrechts and Puccetti (2006a) and compare and contrast these bounds

with the exact values under the assumptions of independence and comonotonicity. Recall

that L1, L2, L3 are comonotone if there exist a rv Z and increasing functions f1, f2, f3 so that

Lk = fk(Z), k = 1, 2, 3. Under this strong assumption of (so-called perfect) dependence,

Value-at-Risk is additive, i.e. VaRα

(∑3
k=1 Lk

)
=
∑3

k=1 VaRα(Lk); see McNeil et al. (2005),

Proposition 6.15. So for example if α = 0.999 and (6) is assumed, one immediately finds that

VaRα(L1) = 177.3, VaRα(L2) = 95.0 and VaRα(L3) = 6.0, so that under the assumption

of comonotonicity, VaR99.9%

(∑3
k=1 Lk

)
= 278.3, as reported in Table 1. For L1, L2, L3 in-

dependent, one finds the value 165.3, whereas the dual bound on VaR99.9%(L) equals 453.1.

Though the construction of sharp bounds for d ≥ 3 is still an open problem, using copula

techniques as explained in Embrechts et al. (2005), one can construct models for (L1, L2, L3)

with VaR-values in the interval (278.3, 453.1). Note that VaR-values in the latter interval al-
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ways correspond to a non-coherence (i.e. non-subadditive) situation for Value-at-Risk. Figure

3.1 contains a graphical presentation of the results in terms of the df P(L1 + L2 + L3 ≤ x).

3.2 Discussion

As already stated above, the loss characteristics of operational loss data, as summarized

by heavy-tailedness, skewness and unknown interdependence between the various loss rvs,

imply that the Value-at-Risk measure for risk capital may not be subadditive. Due to a

lack of publicly available data, it is not yet clear to what extend correlation issues can be

taken into account which may lead to a reduction of the calculated risk capital based on
∑d

k=1 VaR99.9 %(Lk). The results from Embrechts and Puccetti (2006a) as exemplified in

Section 3.1, yield an upper bound for the worst case. The tools of Section 4 may help in

understanding the modelling of the dependence between the compound rvs L1, . . . , Ld. By

nature of the (loss) data, the loss dfs are typically skewed to the right. This leaves the

Pareto-type (power) behavior of P(Lk > x), k = 1, . . . , d as a distinct possibility. Support for

this assumption is obtained from Moscadelli (2004) and in part from de Fontnouvelle (2005).

Again, these preliminary statistical analyses on summarised banking industry data cannot be

considered as a proof of power-like behavior, the several results we have seen however contain

a strong indication in that direction. It will be of crucial importance to investigate this more

deeply in the (near) future; especially the issue of infinite mean GPD models for most of

the Basel II business lines, as reported in Moscadelli (2004), calls for special attention. The

relatively little data underlying Figure 1, though obviously heavy-tailed, does not allow for a

statistically conclusive answer to this issue. The reader interested in consequences of extreme

heavy-tailedness of portfolio losses is advised to consult Embrechts et al. (1997), especially

Chapter 1, Section 8.2. and 8.3, and Asmussen (2000); look for the “one loss causes ruin”

problem on p. 264. For strong support on and consequences of the power-tail behavior in

finance, see for instance Mandelbrot (1997) and Rachev et al. (2005).
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4 Dependent Risk Processes

4.1 The point process approach

Apart from handling non-stationarity and extremes in operational loss data, the understanding

of diversification effects in operational risk modelling is of key importance, especially in the

light of the discussions of the previous section. For each of d risk types to be modelled, one

may obtain operational loss series; for the purpose of this section assume that we are able

to model them appropriately. It is however intuitively clear that risk events may be related

across different classes. Consider for example effects with a broad impact, such as mainframe

or electricity failure, weather catastrophes, major economic events or terrorist attacks like

September 11. On such severe occasions, several business lines will typically be affected and

cause simultaneous losses of different risk types.

In this section, we present two methods for modelling dependent loss processes based on

Pfeifer and Nešlehová (2004). A key point here is to view loss processes in an equivalent, yet

mathematically more tractable way, namely as point processes. This approach may appear

less appealing at first sight because of its rather complicated theoretical background. This is

however more then compensated for by the clear advantages it has when it comes to more

advanced modelling. In the context of EVT for instance, the point process characterization

not only unifies several well-known models such as block maxima or threshold exceedances

but also provides a more natural formulation of non-stationarity; see McNeil et al. (2005),

Coles (2001) and especially Resnick (1987). The techniques presented in Section 2 very much

rely on point process methodology. Point process theory also forms the basis for the intensity

based approach to credit risk; see Bielecki and Rutkowski (2002). A detailed discussion of

the use of point process methodology for the modelling of multivariate extremes (multivariate

GPDs and threshold models) with the modelling of so-called high risk scenarios in mind, is

Balkema and Embrechts (2006). In this section, we show that also the issue of dependence

can be tackled in a very general, though elegant way when using this methodology. We also

show how recent models proposed for describing dependence within operational loss data can

be viewed as special cases.

To lessen the theoretical difficulties, we devote this subsection to an informal introduction to

the basics of the theory of point processes in the context of operational risk. For information

beyond this brief introduction, we refer to Chapter 5 in Embrechts et al. (1997), Reiss (1993),
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Kingman (1993) or the comprehensive monograph by Daley and Vere-Jones (2003).

The key ingredients of loss data in operational, credit and underwriting risk, for instance, are

the occurrence of the event and the loss size/severity. We first concentrate on the occurrences,

i.e. frequency (see Subsection 4.4 for the severities). Loss occurrences will typically follow

a Poisson counting process; the aim of the discussion below is to show that an alternative

representation as a point process is possible, which more naturally allows for dependence.

Suppose that a loss event happens at a random time T in some period under study [0,∆],

say. In our case, ∆ will typically be one (year). For every set A ⊂ [0,∆], we can evaluate the

easiest point process IT :

IT (A) =





1, if T ∈ A,

0, otherwise,

also referred to as an elementary random measure. Next, let T1, . . . Tn be n random loss

events, then the point process ξn given by

ξn(A) :=

n∑

i=1

ITi(A) (8)

counts the number of losses in the observation period A ⊂ [0,∆]. There are several ways in

which we can generalize (8) in order to come closer to situations we may encounter in reality.

First, we can make n random, N say, which leads to a random number of losses in [0,∆].

In addition, the Ti’s can be multivariate, T i d-dimensional, say. The latter corresponds to

occurrences of d loss types (all caused by one effect for instance). This leads to the general

point process

ξN :=
N∑

i=1

IT i . (9)

Recall that all components of T i are assumed to lie in [0,∆], i.e. ξN ([0,∆]d) = N . As a

special case, consider d = 1 and N Poisson with parameter λ∆ and independent of the Ti’s,

which themselves are assumed mutually independent and uniformly distributed on [0,∆]. If

A = [0, t] for some 0 ≤ t ≤ ∆, then one can verify that

{
N(t) := ξN

(
[0, t]

)
: t ∈ [0,∆]

}

is the well known homogeneous Poisson counting process with rate (intensity) λ > 0, restricted

to [0,∆]. Recall that in this case

E
(
N(t)

)
= E(N)P[Ti ≤ t] = λ∆

t

∆
= λt.
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Note that, in contrast to the classical construction of {N(t) : t ≥ 0} as a renewal process, the

sequence of the loss occurrence times Ti is not necessarily ascending. The restriction to the

finite time period [0,∆], which is not needed in the traditional counting process approach,

can also be overcome in the point process world; we come back to this issue in the discussion

below.

The advantage of the point process modelling now becomes apparent as it naturally leads to

further generalizations. The time points can still occur randomly in time, but with a time

variable intensity. Moreover, the loss occurrences can be d-dimensional like in (9), or replaced

by (T i,X i) where the X i’s denote the corresponding severities (see Subsection 4.4). Note

however that to this point, we assume the total number of losses to be the same for each

component. A construction method which relaxes this will be the subject of Subsection 4.3.

If the common counting variable N has a Poisson distribution and is independent of the iid

loss occurrences, which follow some unspecified distribution F , then (9) is a (finite) Poisson

point process, which we from now on denote by ξ. In that case ξ(A) is an ordinary Poisson

random variable with parameter E ξ(A) = E(N)F (A). As a function of A, E ξ(·) is referred

to as the intensity measure of ξ. Whenever this measure has a density then this is called the

intensity of the point process. Moreover, if A1, . . . , An are mutually disjoint time intervals,

the numbers of occurrences within those intervals, ξ(A1), . . . , ξ(An), are independent.

From now on assume that the process of loss occurrences is a Poisson point process of the form

(9). Below, we list three properties of Poisson point processes which are key for modelling

dependence; for proofs and further details, we refer to the literature above.

Let ξ =
∑N

i=1 IT i be a finite Poisson point process with d-dimensional event points T i =

(Ti(1), . . . , Ti(d)). For example, for d = 2, Ti(1) and Ti(2) can denote occurrence time points

of losses due to internal and external fraud in the same business line. Each of the projections

or, marginal processes,

ξ(k) =

N∑

i=1

ITi(k), k = 1, . . . , d, (10)

is then a one-dimensional Poisson point process, i.e. a process describing internal and external

fraud losses, respectively. The intensity measure E ξ(k)(·) of the marginal processes is given

by E(N)Fk(·), where Fk denotes the k-th margin of the joint distribution F of the Ti. Figure

7 (left) shows a two-dimensional homogeneous Poisson point process with intensity 20. The

one-dimensional projections are displayed on the axes as well as in Figure 7 (right).
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Figure 7: Projections of a two dimensional homogeneous Poisson point process on [0.5, 1.5]×
[0.5, 1.5].

Conversely, if ξ(k) =
∑N

i=1 ITi(k), k = 1, . . . , d, are one-dimensional Poisson point processes,

then ξ =
∑N

i=1 IT i with T i = (Ti(1), . . . , Ti(d)) is a d-dimensional Poisson point process with

intensity measure E ξ(·) = E(N)F (·) where F denotes the joint distribution of T i. This

result, also called embedding, is of particular use for modelling dependent losses triggered by

a common effect, as we will soon see.

Above, we considered only Poisson point processes on a finite period of time [0,∆]. It is

however sometimes necessary to work on an infinite time horizon, such as e.g. [0,∞). To

accomplish this, the definition of Poisson point processes can be extended, see e.g. Embrechts

et al. (1997) or Reiss (1993). The resulting process is no longer given by the sum (9), but can

be expressed as a sum of finite Poisson processes, a so-called superposition. Let ξ1 and ξ2 be

independent Poisson point processes with (finite) intensity measures E ξ1 and E ξ2. Then the

superposition of ξ1 and ξ2, i.e. the process ξ = ξ1 + ξ2, is again a Poisson point process with

intensity measure E ξ = E ξ2 + E ξ1.

Figure 8 shows a superposition of two homogeneous Poisson processes with different intensities

defined on different time intervals. Another example would be a superposition of indepen-

dent Poisson processes corresponding to different risk classes over the same time period (see

Figure 13). Extending this result to a superposition of countably many independent Poisson

processes yields a Poisson point process (in a wider sense) with an intensity measure that is
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Figure 8: Superposition of a homogeneous Poisson process with intensity 5 over [0, 1] and a

homogeneous Poisson process with intensity 20 over [1, 2].

not necessarily finite. For example, if ξk is a homogeneous Poisson point process with con-

stant intensity λ > 0 (independent of k) on [k − 1, k) for a non-negative integer k, then the

superposition ξ =
∑∞

k=1 ξk is a (locally) homogeneous Poisson point process on [0,∞). It

moreover corresponds to the classical time-homogeneous Poisson counting process or renewal

counting process with iid random interarrival times following an exponential distribution with

expectation 1/λ.

A final important technique is thinning, which splits a Poisson point process into two (or more)

independent Poisson processes. It is accomplished by marking the event points with “1” or

“0” using a random number generator and subsequent grouping of the event time points with

identical marks. For instance, considering the point process of exceedances over a threshold

u, we can mark by “1” those losses which exceed an even higher threshold u + x. Suppose

ξ =
∑N

i=1 IT i is some (finite) Poisson point process and {εi} a sequence of iid {0, 1}-valued

random variables with P[εi = 1] = p. Then the thinnings of ξ are point processes given by

ξ1 :=

N∑

i=1

εi · IT i and ξ2 :=

N∑

i=1

(1− εi) · IT i . (11)

The so-constructed processes ξ1 and ξ2 are independent Poisson point processes with intensi-

ties E ξ1 = pE ξ and E ξ1 = (1−p) E ξ. Moreover, the original process arises as a superposition

of the thinnings, ξ = ξ1 + ξ2.

As we will soon see, there are two kinds of dependence which play an important role for the

Poisson point processes, ξ1 =
∑N1

i=1 ITi(1) and ξ2 =
∑N2

i=1 ITi(2), say:

• dependence between the events such as time occurrences of losses, e.g. between Ti(1)

and Ti(2), and

• dependence between the number of events or event frequencies, e.g. between the count-

ing (Poisson distributed) random variables N1 and N2.
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Before presenting the models for dependent Poisson point processes, we first address these

two issues.

4.2 Dependent counting variables

Modelling of multivariate distributions with given marginals can be accomplished in a partic-

ularly elegant way using copulas. This approach is based upon the well-known result of Sklar

that any d-dimensional distribution function F with marginals F1, . . . , Fd can be expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for any (x1, . . . , xd) ∈ Rd. (12)

The function C is a so-called copula, a distribution function on [0, 1]d with uniform marginals.

It is not our intention to discuss copulas in greater detail here; we refer to monographs by

Nelsen (1999) or Joe (1997) for further information. McNeil et al. (2005) and Cherubini et al.

(2004) contain introductions with a special emphasis to applications in finance. It is sufficient

to note that C is unique if the marginal distributions are continuous. Moreover, combining

given marginals with a chosen copula through (12) always yields a multivariate distribution

with those marginals. For the purpose of illustration of the methods presented below, we will

use copulas of the so-called Frank family. These are defined by

Cθ(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ [−∞,∞],

where the cases θ = −∞, 0 and ∞, respectively, are understood as limits. The choice of

the Frank family is merely motivated by its mathematical properties. It is in particular

comprehensive, meaning that Cθ models a wide class of dependence scenarios for different

values of the parameter θ: perfect positive dependence, or comonotonicity (for θ = ∞),

positive dependence (for θ > 0), negative dependence (for θ < 0), perfect negative dependence,

or countermonotonicity (for θ = −∞) and independence (for θ = 0).

In the situation of point processes, there are two situations where the copula modelling is

particularly useful. First, if the event-time points Ti(1), . . . , Ti(d) have fixed and continuous

distributions, say F1, . . . , Fd, then choosing some suitable copula CT yields the distribution F

of the d-dimensional event-time point T i = (Ti(1), . . . , Ti(d)) via (12).

Secondly, the copula approach can be used for constructing multivariate distributions with

Poisson marginals (see also Joe (1997) and Nelsen (1987)). Although such distributions may



4 DEPENDENT RISK PROCESSES 22

G1(0) G1(1) G1(2)

G2(0)

G2(1)

G2(2)

G2(3)

�

u1

u2

0 1

0

1

Figure 9: Generation of random variables with Poisson marginals and Frank copula.

not possess nice stochastic interpretations and have to be handled with care because of the non-

continuity of the marginals, they cover a wide range of dependence possibilities; see Griffiths

et al. (1979), Nešlehová (2004), Pfeifer and Nešlehová (2004) and Denuit and Lambert (2005)

for further details. Our focus here lies in describing how the generation of two dependent

Poisson random variables using copulas works.

For the moment, suppose G1 and G2 denote Poisson distributions and C a chosen copula.

In the first step, we generate a random point (u, v) in the unit square [0, 1] × [0, 1] from the

copula C. Thereafter, we determine integers i and j in a way that (u, v) lies in the rectangle

Rij := (G1(i−1), G1(i)]×(G2(j−1), G2(j)]. Note that the choice of the i and j is unique. The

point (i, j) is then the realization of a two dimensional Poisson random vector with copula

C and marginals G1 and G2. Figure 9 shows a random generation of a pair (N1, N2) with

Poisson marginals with parameters 1 and 2 and a Frank copula with parameter −10; the

horizontal and vertical lines indicate the subdivision of the unit square into the rectangles

Rij . Here for instance, all simulated random points falling into the shaded rectangle generate

the (same) pair (1, 2).

4.3 Dependent point processes

In this subsection, we finally present two methods for constructing dependent Poisson point

processes. This task however implicitly involves another important question: what does
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Figure 10: Dependent homogeneous Poisson processes constructed via Method I. The event

positions are generated by the Frank copula with parameter 10 (left) and -10 (right).

dependence between point processes mean and how can we describe it? For random variables,

there exist several ways of describing dependence. For instance one can calculate dependence

measures like linear correlation, rank correlations like Spearman’s rho or Kendall’s tau, or

investigate dependence concepts like quadrant or tail dependence, or indeed one can look

for a (the) copula. For stochastic processes, the notion of Lévy copulas offers an interesting

alternative if the process is Lévy; see for instance Cont and Tankov (2004), Kallsen and Tankov

(2004) and Barndorff-Nielsen and Lindner (2004). Alternative measures of dependence have

been proposed for point processes. Griffiths et al. (1979) use the following analogue of the

linear correlation coefficient. Suppose ξ1 and ξ2 are point processes defined on the same state

space, say [0,∆]d. Then the correlation between the two processes can be expressed by the

correlation coefficient ρ(ξ1(A), ξ2(B)) between the random variables ξ1(A) and ξ2(B) for some

sets A and B.

Construction Method I. This method is based upon an extension of (10) and produces

Poisson point processes with the same random number N of events. Let ξ =
∑N

i=1 IT i be

a Poisson process with iid d-dimensional event points T i = (Ti(1), . . . , Ti(d)) whose joint

distribution for each i is given through a copula CT . We can again think of the Ti(k)’s

being loss occurrence times in d different classes, say. Following (10), the marginal processes

ξ(k) =
∑N

i=1 ITi(k), k = 1, . . . , d are Poisson, but dependent.

Figure 10 illustrates Method I. The counting variable N is Poisson with parameter 20 and
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Figure 11: Dependent Poisson point processes constructed with Method II. The total numbers

of events are generated by the Frank copula with parameter 10 (left) and -10 (right).

Ti(k), k = 1, . . . , d, are uniform with joint distribution function given by the Frank copula.

The resulting dependent Poisson point processes are displayed on the axes as well as under

the graphs for a better visualisation. The parameter of the Frank copula is 10 (left) yielding

highly positively correlated event time points and −10 (right) producing highly negatively

correlated event time points. The loss event times in the left panel for both types cluster in

similar time periods, whereas the event times in the right panel tend to “avoid” each other.

This is a typical example of what one could call dependence engineering.

As shown in Pfeifer and Nešlehová (2004), the correlation of ξ(k) and ξ(l) is given by

ρ(ξ(k)(A), ξ(l)(B)) =
Fkl(A×B)√
Fk(A)Fl(B)

, k, l = 1, . . . , d, (13)

where Fkl stands for the joint distribution of Ti(k) and Ti(l) and Fk and Fl denote the

marginal distributions of Ti(k) and Ti(l), respectively. Note especially that, since Fkl(A×B)

is a probability, the correlation is never negative. Hence, only positively correlated Poisson

processes can be generated in this way, the reason being that the marginal processes all

have the same number N of events. Construction Method I is thus particularly suitable for

situations where the events are triggered by a common underlying effect.
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Construction Method II allows for variable numbers of events. Here, we first generate

dependent Poisson random variables N1, . . . , Nd with copula CN , for instance using the mod-

elling approach described in the previous subsection. Secondly, the occurrence time points

Ti(k) are again generated as (possibly dependent) margins of a d-dimensional time-event point

T i = (Ti(1), . . . , Ti(d)). In this way, we obtain d dependent processes ξ(k) =
∑Nk

i=1 ITi(k),

k = 1, . . . , d. Figure 11 illustrates this method. The occurrence time points are chosen in-

dependent and uniformly distributed. The counting variables are Poisson with parameters 5

each and CN is the Frank copula with parameters 10 (left plot) and -10 (right plot). Hence,

the counting variables are strongly positively and negatively dependent, respectively. As a

consequence, the choice of the Frank copula with a comparatively strong positive dependence

structure (θ = 10) leads to similar number of events for both processes. On the other hand,

when (θ = −10), events in both processes tend to avoid each other. This is best seen with

Figure 12, which combines Method II with superposition. For each interval [n−1, n) the Pois-

son processes have been generated independently using Method II with the same parameters

as in Figure 11 (right) and joined together to a process on [0, 6). The 6 could correspond to

a time horizon of 6 years, say.

In case the Ti(k)’s are mutually independent, the correlation in this construction is given by

ρ(ξ(k)(A), ξ(l)(B)) = ρ(Nk, Nl)
√
Fk(A)Fl(B), k, l = 1, . . . , d; (14)

see Pfeifer and Nešlehová (2004). Note that this formula involves the correlation coefficient of

the counting variables Nk and Nl. Hence, by a suitable choice of CN which governs the joint

distribution of N1, . . .Nd, a wider range of correlation, in particular negative, is achievable.

Operational loss occurrence processes will typically be more complex than those constructed

solely via Methods I or II. In order to come closer to reality, both methods can be combined

freely using superposition and/or refined by thinning. For example, Figure 13 shows a super-

position of independent homogeneous Poisson point processes with different intensities over

[0, 1] with homogeneous but highly positively dependent Poisson point processes generated by

Method I as in Figure 10.

A broad palette of models now becomes available, which may contribute to a better under-

standing of the impact of interdependence between various risk classes on the quantification

of the resulting aggregate loss random variables, like the Lk’s in Section 3.1. For this we need

to include the loss severities explicitly; this step is discussed in the next section.
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Figure 12: Dependent Poisson point processes on [0,6).
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Figure 13: Superposition of independent homogeneous Poisson processes with intensity 10

(Process 1) and 8 (Process 2) over [0, 1] (bullets) and dependent Poisson processes generated

by the Frank copula with parameter 20 (triangles).

4.4 Dependent aggregate losses

The loss severities can be included in the point process modelling in a number of ways. For

example, we can consider d-dimensional point processes where the first component describes

the time and the remaining d− 1 components the sizes of the reported losses.

For the sake of simplicity, we illustrate some of the modelling issues in the case of stationary

and independent loss amounts. Consider two aggregate losses L1 and L2, corresponding to
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two particular operational risk types and some period of time, [0,∆] say. As in Subsection

4.1, assume that the loss occurrence times of each risk type form a Poisson point process,

ξ(k) =
∑Nk

i=1 ITi(k), k = 1, 2, say. The processes ξ(1) and ξ(2) may be dependent and modelled

by one of the techniques described in the previous subsection; we discuss several concrete

examples below. Furthermore, we denote the severities corresponding to Ti(1) and Ti(2) by

Xi(1) and Xi(2), respectively. The severities are each assumed to be iid and Xi(1) and Xj(2)

independent of one another for i 6= j; hence we only allow for dependence between Xi(1) and

Xi(2). Recall that the entire risk processes can be described as point processes according to

ξ̃(k) =
∑Nk

i=1 I(Ti(k),Xi(k)), k = 1, 2. The corresponding aggregate losses are given by

L1 =

N1∑

i=1

Xi(1) and L2 =

N2∑

i=1

Xi(2).

Note that although the dependence between the loss occurrence processes ξ(1) and ξ(2) very

much determines the dependence between L1 and L2, the precise location of the loss occurrence

times within the time period of interest does not yet enter into the modelling of the aggregate

losses explicitly. The results below are hence comparable with those obtained from models

which do not directly address the dependence structure between the loss occurrence processes,

as for instance in Powojowski et al. (2002) or Frachot et al. (2004).

We now focus on the correlation between L1 and L2 for several selected types of dependence

between the underlying loss occurrence processes ξ(1) and ξ(2). First, if ξ(1) and ξ(2) are

constructed using Method I, we have as in Pfeifer and Nešlehová (2004) that

ρ(L1, L2) =
E(X1(1)X1(2))√

E(X1(1))2 E(X1(2))2
. (15)

Note that similarly to (13), the right hand side is never zero nor becomes negative for positive

loss amounts. This is different when ξ(1) and ξ(2) are constructed using Method II, for there

we have, in case Xi(1) and Xi(2) are independent for any i, that similar to (14),

ρ(L1, L2) = ρ(N1, N2)
E(X1(1)) E(X1(2))√
E(X1(1))2 E(X1(2))2

; (16)

see again Pfeifer and Nešlehová (2004). As the correlation is driven by the correlation of the

counting variables N1 and N2, it can be negative if the losses corresponding to different risk

types are caused by effects which rather do not occur simultaneously. Note also that (16)

coincides with the result obtained by Frachot et al. (2004).

Finally, we would like to mention one particularly simple special case of superposition. Assume
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that the time occurrence processes are generated as sums of independent homogeneous Poisson

point processes ξk with intensities λk, k = 1, 2, 3 in the sense that ξ(1) = ξ1 + ξ3 and ξ(2) =

ξ2 + ξ3. Then (16) leads to

ρ(L1, L2) =

(
λ3√

(λ1 + λ3)(λ2 + λ3)

)
E(X1(1)) E(X1(2))√
E(X1(1))2 E(X1(2))2

. (17)

This model corresponds to the setup considered by Powojowski et al. (2002) and allows for

variable positive correlation.

As noted in Frachot et al. (2004), the correlation coefficient of the aggregated losses does

depend on the loss severity distribution in a way which yields comparatively small values of ρ

for heavy-tailed marginal loss distributions. This fact is however due rather to the properties

of the correlation coefficient itself and does not necessarily imply lack of dependence; see

Embrechts et al. (2002) and especially McNeil et al. (2005), Example 5.26. Consequently,

even if the value of ρ(L1, L2) is close to zero, VaRα of the sum (L1 + L2) (or more general of
∑d

k=1 Lk) can be substantially different from VaRα in the case of independent (aggregated)

loss random variables Lk. A more accurate study on the impact of the dependence between

the risk processes on the risk capital however calls for further detailed research and larger

data sets.

Apart from the simplified situation of stationary and independent loss amounts, the methods

presented in Section 4.3 can moreover be used in much more complex dependence mod-

elling. In particular, dependent loss processes can readily be constructed as to allow for

non-stationarity in the loss severity distribution and/or non-stationarity in the dependence

structure between loss severities. Modelling dependence between two or more loss processes

however still remains a delicate and complex issue and definitely warrants more research (espe-

cially on the statistical side) before practical guidelines for specific applications can be given.

There is a flurry of mathematical research ongoing on this topic; beyond the references al-

ready given, see also the common shock model by Lindskog and McNeil (2003) or Bäuerle and

Grübel (2005). The latter paper also discusses the construction of dependent loss processes

in a point process context.



5 CONCLUSION 29

5 Conclusion

From a mathematical point of view, the capital charge calculation for Operational Risk within

the Basel II AMA corresponds to the calculation of risk capital of the form

ρα

(
d∑

k=1

Lk

)
= ρα(L). (18)

for some risk measure ρα at confidence level α. For k = 1, . . . , d,

Lk =

Nk∑

i=1

Xi(k) (19)

denotes the aggregate loss for loss type k with loss frequency (Nk) and severity (Xi(k))

random variables. Under Basel II ρ = VaR and α = 0.999. The latter implies that modelling

of P(L > x) for x large is needed. Due to the lack of information on the joint distribution

(L1, . . . , Ld), various shortcuts for the calculation of (18) are in use. One widely uses a

two-step procedure: first calculate
∑d

k=1 VaR99.9%(Lk), which only uses the marginal dfs of

L1, . . . , Ld, and then reduce this capital charge measure by some correlation considerations

based on some dependence assumptions in (19). This approach raises several issues.

• The fact that α is large calls for some form of Extreme Value Theory to be used. At

the moment, and based on the recently available data, no clean standardized EVT

approach is available. We provide a generalization of the POT method allowing for

non-stationarity in the frequency and severity of the losses.

• The fact that a joint model for (L1, . . . , Ld) is not known, we give an optimization

example that allows to calculate by how much
∑d

k=1 VaRα(Lk) may even underestimate

the true risk measure VaRα(L). Whether this situation actually occurs in practice is an

important issue for further investigation.

• We finally show how the theory of point processes offers a natural environment for

the construction of dependence scenarios on (L1, . . . , Ld) and in particular derive some

results used in the operational risk literature as special cases.

The above methodological tools are tested on some examples, including a d = 3 data set

of operational risk losses. This example is given mainly to highlight the practicality of the

techniques introduced. As the paper stands, we want to stress relevant areas for future research
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on topics which we believe will have an important impact on quantitative risk measurement

in general and on the quantitative (AMA) modelling of operational risk more in particular.
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