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Long-term-care (LTC) costs are expected to significantly increase over the coming decades as the Baby Boom generation nears
retirement. Recent policy discussions in the United State have focused on expanding the private LTC insurance market so as to alleviate
some of the pressure on public programs. An important and fundamental input to the pricing of LTC insurance products is a set of age-
and sex-specific functional status transition rates that can flexibly take into account alternative benefit trigger specifications. We apply
generalized linear models to evaluate disability transitions for individuals in old age based on a large sample of U.S. elderly. We estimate
a multistate model for LTC insurance applications and find significant differences in disability rate patterns and levels between our set
of estimates and those separately estimated using an earlier approach developed by the Society of Actuaries. Our results suggest that
the elderly face a 10% chance of becoming LTC disabled only at ages past 90, rather than in their 80s. Furthermore, age patterns of
recovery are found to differ significantly between the sexes. We also show that these estimates of transition probability are sensitive to the
definition of “LTC disability,” which has implications for the design of benefit triggers for private and public LTC insurance programs.

1. INTRODUCTION
Benefit payouts from long-term-care (LTC) insurance covers are typically triggered when the insured becomes functionally

disabled or chronically ill and requires support in various facets of living over prolonged periods. Despite the large literature that
explores the trends in functional status and disability patterns among elderly persons, surprisingly few studies have attempted to
characterize the full set of morbidity and mortality transition probabilities across different functional states and take into account
the insurance reimbursement eligibility of those states. Understanding individual transitions into and out of states of disability
severe enough to trigger LTC insurance payouts is essential to product pricing and development.

The goal of this article is to estimate age-specific disability transition probabilities among a sample of U.S. older adults aged 50
to 100 at baseline in 1998. Our analysis adopts a time-continuous inhomogeneous Markov chain setup and specifically considers
only insurance reimbursement-eligible disability state(s). Our results are of interest for several reasons. First, this study provides
new evidence regarding how morbidity-mortality transition rates vary by age and sex. We apply a generalized linear modeling
(GLM) approach that is suited to graduating both mortality and disability transition intensities while also flexible in allowing
for alternative model specifications. Second, we seek to determine the effects of different benefit trigger configurations on the
sensitivity of the disability incidence rates. Although public and private LTC insurance programs often utilize measures of activities
of daily living (ADLs) as a trigger for payouts, individual policies could differ in terms of the threshold number of ADLs, specific
ADLs used, associated waiting period, and inclusion of an alternative trigger.

Older adults are most at risk of experiencing losses in physical functioning that cumulate in chronic physical impairment. The
Congressional Budget Office reports that approximately two-thirds of the expenditures on LTC in the United State are directed
toward services for elderly people over age 65; in 2004, LTC expenditures for this group totals about $135 billion (Congressional
Budget Office 2004). At the same time, the number of elderly people will significantly increase over the coming decades. Fueled
by the aging of the Baby Boom generation, the proportion of people aged 65 or older in the U.S. population is expected to grow
from 13.0% in 2010 to 20.2% in 2050 (Census Bureau 2008).
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Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaaj.
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42 J. H. FONG ET AL.

Prior research on ADL disability has mainly focused on the prevalence and trends in morbidity over time and across cohorts
(e.g. Crimmins 2004; Cutler 2001; Freedman et al. 2004); the impact of disability on the risk of nursing home admittance (Fong
et al. 2014); and the associations between individual risk factors and disability (Beckett et al. 1996; Mendes de Leon et al. 1997;
Reuser et al. 2009; Smedley and Syme 2001). Fewer studies are devoted to the construction of nationally representative estimates of
functional status transition rates. Among those are Manton (1988) and Pritchard (2006), which both examined two-year disability,
institutional, and mortality transitions among the U.S. elderly. Stallard (2011) also employed multistate life table methods to
analyze disability transitions but, unlike the earlier studies, did not solve for the transition hazard-rate matrices, relying instead on
linear interpolation procedures to avoid making explicit assumptions about the nature of the underlying continuous-time Markov
process. Nonetheless, the transition rates derived in all of these studies were for five-year age groups rather than by exact ages.
Jones (1997a, 1997b) applied a multistate stochastic model to examine how residents in continuing care retirement communities
transit between various states of care, but the study sample was limited to only about 800 individuals.

In the 1990s, the Society of Actuaries (SOA) LTC Insurance Valuation Methods Task Force embarked on a large-scale effort
to construct a LTC morbidity table for the U.S. noninstitutional population.1 The Task Force relied on longitudinal data from the
National LTC Surveys (NLTCS) and derived age-specific transition rates using parametric graduation methods based on a carefully
specified function (Society of Actuaries 1995).2 James Robinson, who is a member of the Task Force, also expanded the original
analysis to include finer health states that are tied to LTC insurance reimbursement eligibility (Robinson 1996). What became
subsequently known as the “Robinson model” is highly regarded and widely cited. It has been used by academics, economists,
and regulators as well as government agencies administering public LTC benefit programs. The American insurance industry also
employs the model and its derivatives to develop premiums and reserves for LTC insurance.

One of the main advantages of the SOA/Robinson study is that it draws on large-scale longitudinal data on disabilities, which
facilitates the analysis of two-period disability transitions. Other researchers, lacking longitudinal data, have relied on prevalence
rate data instead. For example, Olivieri and Pitacco (2001) and Rickayzen and Walsh (2002) demonstrate methods to derive
transition rates from cross-sectional prevalence rate data obtained from the U.K. Office of Population Censuses and Surveys.
Our present analysis shares some commonalities with Olivieri and Pitacco (2001) in that we consider just a single level of LTC
disability tied to insurance benefit payout and derive transition probabilities through the transition intensity approach.3 However,
unlike the earlier study, we allow for the possibility of recovery from disability. Rickayzen and Walsh (2002) identify functional
forms directly for health deterioration and improvement transition probabilities rather than adopt the transition intensity approach.
Extending prior work by Nuttall et al. (1994), the authors consider the observed prevalence rates across a total of 10 disability
categories but do not take into account LTC insurance reimbursement eligibility.

In this article we apply a GLM approach to graduating the morbidity-mortality transition intensities. Graduation refers to
methods by which a set of observed probabilities are fitted and smoothed to provide a suitable basis for inferences (such as
calculation of premiums) to be made (Haberman and Renshaw 1996). The GLM methodology provides a flexible approach to
parametric graduation in actuarial science because it unifies many of the parametric graduation formulas within the exponential
family of distributions (Forfar et al. 1988; Renshaw 1991). Specifically, it has been implemented in several contexts including
survival modeling and mortality forecasting (Alai and Sherris 2014; Hatzopoulos and Haberman 2009; Verrall 1996), motor and
marine insurance (McCullagh and Nelder 1983), nonlife insurance (Haberman and Renshaw 1989), and multistate models for
permanent health insurance (Renshaw and Haberman 1995). None of these studies, however, have applied the GLM framework
toward enumerating disability transition intensities in a multistate model for LTC insurance applications. For this analysis, we focus
on the Poisson modeling distribution, which is known to be useful for modeling count data and consistent with our continuous-time
setup. To identify the most appropriate graduation formulas within the GLM framework, we rely on a combination of statistical tests
and diagnostic checks. We believe it is also of interest to appraise the effects of different graduation methods on the sensitivity of
the transition rates, and thus we pick the Robinson (1996) model as a basis of comparison. That is, we separately apply Robinson’s
method to our present dataset. The two sets of transition rate estimates derived from each approach are then compared.

The remainder of the article is organized as follows. Section 2 describes the GLM methodology and data. We also present the
transition rates results using the most suitable graduation formulae within the GLM framework and perform diagnostic checks.
In Section 3, we compare these transition rate estimates with population sources and with rates derived from the SOA/Robinson
method. Section 4 evaluates the impact of different benefit trigger configurations on disability incidence estimates, and the last
section concludes.

1The Task Force was set up in 1991 at the request of the National Association of Insurance Commissioners to address the valuation needs for LTC insurance.
2The NLTCS is a longitudinal survey of a random sample of Medicare enrollees and aims to study changes in the health and functional status of older Americans

(aged 65+). The survey began in 1982, with follow-ups in 1984, 1989, 1994, 1999, and 2004. Society of Actuaries (1995) utilized data from the first two waves
only, and Robinson (1996) utilized data from the first three waves.

3The “transition intensity approach” refers to the method of deriving the differential equations for calculating transition probabilities from transition intensities
(see Haberman and Pitacco 1999).
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MULTISTATE ACTUARIAL MODELS OF FUNCTIONAL DISABILITY 43

FIGURE 1. Three-State Markov Process.

2. A GLM FRAMEWORK FOR GRADUATING TRANSITION INTENSITIES

2.1. Markov Chain
We consider a three-state Markov process with states “N” (nondisabled), “F” (functionally disabled), and “D” (dead) as the

basis for modeling LTC status transitions. This is represented in Figure 1, in which states N and F are transient and state D is
absorbing. Of interest are the four transition intensities given by σ , the intensity of becoming functionally disabled; μ, the mortality
intensity for the healthy; ν, the mortality intensity for a disabled person; and ϕ, the intensity of recovery from being disabled. LTC
insurance benefits are triggered upon entry into state F. Our setup features a single level of disability to resemble product design;
most stand-alone LTC insurance policies provide only one level of disability benefit.

We adopt a time-continuous, inhomogeneous Markov process with transition probabilities and transition intensities respectively
denoted by

Pij (t, u) = Pr {S(u) = j |S(t) = i} , 0 ≤ t ≤ u, i, j ∈ {N, F, D}, (1)

T Iij (t) = lim
u→t+

Pij (t, u)/(u − t), t ≥ 0, i �= j. (2)

In the equations, Pij is the transition probability from state i into state j, and t is the time unit in years from the time of policy
issue. Let θ denote the age at policy issue, then θ + t represents the attained age of the insured at any point in time. The
instantaneous transition intensities (T Iij ) are age dependent and are assumed to be integrable on compact intervals. We follow the
conventional transition intensity approach by first estimating the intensities from data and then deriving the transition probabilities
via Kolmogorov differential equations (Haberman and Pitacco 1999).

Notably, Ferri and Olivieri (2000) also specify a three-state Markov chain in examining LTC disability, but they disregard the
possibility of recovery from disability stating the “commonly chronic character of LTC disability”. We are agnostic about the exact
nature of LTC disability; in particular, existing research on the patterns of change in disability suggests that younger-old adults
of age 65- and higher tend to exhibit a pattern of functional “decline and recovery” up to about age 85 (Fauth et al. 2007; Fonda
et al. 2002). We therefore include the possibility of recovery from disability for a more complete characterization of the process.
In a Markov process, time until transistion follows an exponential distribution. An implicit assumption thus is that the transistions
between different states in the model are memoryless. This assumption is adopted here in part due to the paucity of LTC disability
data, and in part to facilitate comparability of results with those of earlier studies (e.g., Robinson 1996).

State F is specified according to the minimum level of functional disability that triggers LTC insurance benefit payouts. Benefit
triggers — which may vary slightly from policy to policy — are used as a means of defining when the policyholder is considered a
“chronically ill individual”. By and large, the majority of private LTC insurance policies do not pay benefits until after the claimant
has limitations in two or more activities of daily living for a period of at least 90 days (Wiener et al. 2000).4 Six types of ADLs are
specified under the Health Insurance Portability and Accountability Act of 1996, including dressing, continence, bathing, eating,
toileting, and transferring. The act also requires that at least five of these ADLs be used for benefit evaluation. Public LTC programs
reportedly use an even stricter ADL trigger. For example, the state Medicaid programs typically will not process an application
unless the person applying has limitations in three or more ADLs (Congressional Budget Office 2004; Stone 2002). Medicaid also
pays benefits when the individual requires substantial supervision due to severe cognitive impairment (CI). By contrast, not all
private insurers allow for an alternative CI trigger. Consequently the ADL trigger is construed as primary across all LTC insurance
policies, while the CI trigger is secondary.

4Note that the period of 90 days is not a requirement for a 90-day elimination period. Instead, it means that the policyholder has to obtain certification from a
licensed health care practitioner that he or she is expected to continue to meet the ADL trigger for the next 90 days.
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44 J. H. FONG ET AL.

To accommodate these variations in LTC benefit triggers, we explore three different specifications of state F. For the main
analysis presented in the following section, individuals are classified as functionally disabled if they have difficulty with two or
more (i.e., 2+) ADLs. This criterion is in line with the minimum threshold level of ADL disabilities used in LTC insurance policies.
It is used to derive the transition rates reported in Section 3. The other two formulations of state F are explored later in Section 4:
one based on a disability criterion of 3+ ADLs, and the other based on a criterion of 2+ ADLs and/or CI.

2.2. Data
Our analysis draws on the Health and Retirement Study (HRS), an ongoing detailed nationally representative survey of

Americans over the age of 50 and their spouses. The survey has been conducted every two years since 1992 and offers a rich source
of information on health, retirement, assets, pensions, and family structure in older households both over time and across cohorts.
We use panel data for the 12-year observation window beginning wave 1998 to the latest wave 2010. This is because questions on
difficulty with ADLs were asked in a consistent manner starting only from survey wave 1998 onward.5 Our final analytic sample
comprises 19,547 community-based individuals who were alive as at 1998 and save valid yes/no responses to all ADL questions
in that baseline interview.

At baseline, all respondents are noninstitutional and are either in an able or functionally disabled state. Vital statuses of
respondents are assessed between survey waves through HRS tracking efforts and linkages to the governmental National Death
Index. We rely on the exact dates of death from the dataset, when relevant. The six ADL items assessed in the HRS are dressing,
walking, bathing, eating, transferring in/out of bed, and toileting. Respondents are asked whether they have any difficulty with
each of these everyday activities because of a physical, mental, emotional, or memory problem, whereby the difficulty is expected
to last at least three months. Those who responded “yes”, “can’t do”, or “don’t do” are coded as having that particular ADL
disability. We total the number of self-reported ADL disabilities in each wave to determine health state classification.

As part of the overall functional assessment, the HRS survey also includes questions relating to mobility limitations (e.g., climb
stairs, stoop, and carry weights); instrumental activities of daily living (IADLs) (e.g., shop for groceries, manage money, and
prepare meal); and cognitive health status. We disregard mobility limitations and IADLs becuase these do not directly trigger LTC
insurance benefits. We do, however, use information on cognitive health to assess an individual’s eligibility for LTC benefits based
on the alternative CI trigger. The HRS measures cognition in terms of episodic memory and mental status among self-respondents
using a battery of well-validated cognitive performance tests such as word recall, serial 7’s, and backwards count (Health and
Retirement Study 2012). Respondents are scored on a 35-point scale. As in prior studies (e.g., Langa et al. 2008), we consider a
respondent severely cognitively impaired if he or she scored seven or lower on the HRS cognitive scale.

Althogh functional disability can strike at any age, the elderly age 65 and above are at much greater risk than the rest of
the population. Accordingly it is of interest to examine LTC disability onset not only at ages past 65, but also at pre-retirement
ages leading up to 65. This can provide insights into how functional disability triggering LTC use varies over the life course of
older adults, so as to help anticipate the level of care needed for individuals at various time points. Data from the National LTC
Survey used in the SOA/Robinson study, while also nationally representative, undersamples younger adults (sample population
is restricted to age 65+). Moreover that survey started in the early 1980s and is repeated at protracted five-year intervals between
1984 and 2004. In contrast, our HRS sample of 19,547 individuals spans a wide age range, and respondents are assessed at regular
two-year intervals. At baseline, 48% are below age 65, 47% are between ages 65 and 85, and 5% are age 85 and above. By the
wave 2010 cutoff, about 14% of the surviving sample respondents are past age 85. The richness of these data — combined with a
fairly long observation window — allows the derivation of transition rates for each exact age spanning from 50 to 100—an issue
we turn to next.

2.3. Methodology
Let each of the four transition intensities of interest (σ,μ, ν, or ϕ) be a function of the age of onset x. For illustration, we focus

on the disability onset intensity σx . The class of functions available in the GLM framework takes the form

ηx = g(σx), (3)

where g(·) is an invertible link function and η is a linear function of regressors. The link function is differentiable over its domain
and monotonic such that its inverse g−1(·) exist and basically transforms the expectation of the response variable to the linear
predictor. The linear predictor η is a prespecified function of the explanatory variables.6 Since age x is deemed to be the only

5Befor the 1998 wave, the survey question on ADLs was inconsistent across waves in terms of specific question wording, number of activities assessed, and
response collection (see Fong et al. 2014). Data were obtained from the RAND HRS file version L.

6As in Renshaw and Haberman (1995), we consider only linear predictors for graduation purposes here. See Forfar et al. (1988) for a discussion of nonlinear
predictors.
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MULTISTATE ACTUARIAL MODELS OF FUNCTIONAL DISABILITY 45

covariate affecting the morbidity-mortality transitions in this context, η is given by

ηx =
k∑

s=0

βsx
s = β0 + β1x + β2x

2 + · · · + βkx
k. (4)

Equation (4) shows that the polynomial predictor ηx of fixed degree k is linear in the unknown parameters βs .
Let ix and ex denote the number of transitions at age x and the corresponding central exposure to risk in years, respectively. In

common with Renshaw and Haberman (1995), we assume that a transition intensity is constant within each age cell (i.e., one-year
age intervals), and thus ix follows a Poisson distribution. The GLM model is then calibrated to the data based on independent
Poisson response variables ix , where

ix ∼ Poi(exσx) independently ∀x, (5)

E(ix |ex, σx) = exσx = mx, (6)

Var(ix |ex, σx) = φmx. (7)

It is to be recalled here that σx is the intensity of becoming functionally disabled (and is substitutable here with μ, ν, or ϕ). The
dispersion parameter (φ) is set to the value of unity by convention in Poisson family. We relax this assumption later in estimating
the second moments but find that this dispersion parameter is not statistically significant. The associated log likelihood function
with log-link is

log [l(i; m)] =
∑

x

{−mx + ix log(mx)} + C, (8)

where i is the vector of response variables, m is the vector of mean values of the response variables, and C is a constant. The
Appendix provides further technical details on the residual deviance statistic and the variance of the fitted transition rates.

The GLMs are fitted to the data using maximum likelihood methods to obtain the estimates of the regression coefficients (βs)
and their associated asymptotic standard errors. Specifically to graduate a transition intensity, we organize the data into a set
of ordered pairs (ix, ex) defined over integer values of x. Here ix is the number of transitions as earlier described, and ex is the
corresponding central exposed to risk recorded for the duration of the 12-year observation window approximately from 1998 to
2010. We assume that morbidity transitions from state N to F (and vice versa) occur, on average, halfway between two known
survey dates.7 Mortality transitions utilize exact dates of death. Analysis time is measured in months.

To create several alternative models for possible consideration, we vary the k term in equation (4) fitting first a straight-line
predictor structure, and thereafter adding higher order age terms.8 Several model selection criteria are applied to evaluate the
goodness of fit of the nested models. These include the Akaike Information Corrected Criterion (AICc) and Bayesian Information
Criterion (BIC). The AICc, a corrected version of the more familiar AIC criterion, is appropriate for small samples because it
avoids selecting models with excessive parameters and ensures parsimony (Burnham and Anderson 2004). We also calculate the
residual deviance (denoted Dc), which is defined as two times the difference between the maximized likelihood under the saturated
model and that of the model in question.9 Likelihood-ratio tests based on the differences in the deviances are assessed to determine
whether there is a significant improvement in fit moving from k = 1 to k = 2, and then from k = 2 to k = 3.10 Finally, we perform
graphical diagnostic checks for the adequacy of the chosen model in representing the raw data.

3. RESULTS

3.1. Descriptive Statistics
The in-sample tabulations of ix and ex by sex are summarized in Table 1 for each transition intensity (σ,μ, ν, or ϕ) in the

three-state Markov process. The crude data to be smoothed by graduation are defined for individual integer ages spanning 50

7This is akin to the uniform distribution of death assumption conventionally adopted in life table computations, and is consistent with prior applied studies
(e.g., Reuser et al. 2009) that have used HRS data to analyze ADL disability transitions.

8Note k + 1 is the total number of unknown parameters.
9See the Appendix for mathematical formulas of the residual deviance statistic.
10In the likelihood-ratio test, the test statistic is asymptotically distributed as a chi-square with degrees of freedom equal to the difference in number of

parameters between the two nested models.
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46 J. H. FONG ET AL.

TABLE 1
Tabulations of Raw Transition Counts and Exposure Years

ix =No. of transitions ex = exposure years

Age Band σ : N → F ϕ : F → N μ : N → D ν : F → D In state N In state F

A. Males (n = 8,496)
50–54 13 10 5 2 1,756.2 98.2
55–59 80 61 60 20 7,117.8 376.3
60–64 160 143 192 37 13,777.9 703.5
65–69 222 148 325 85 15,658.0 943.5
70–74 282 141 405 120 13,325.5 1,103.8
75–79 310 113 447 143 10,134.2 1,132.0
80–84 274 108 446 192 6,528.6 1,058.5
85–89 236 56 325 203 3,145.6 865.3
90–94 126 28 186 140 1,002.8 389.7
95–100 40 4 50 52 172.3 116.6
Total 1,743 812 2,441 994 72,618.8 6,787.4

B. Females (n = 11,051)
50–54 34 19 9 1 2,716.1 184.2
55–59 153 132 58 14 10,163.8 819.2
60–64 293 260 137 48 17,636.5 1,520.7
65–69 417 285 236 113 19,068.5 1,820.8
70–74 422 274 272 127 16,111.0 1,830.6
75–79 443 227 319 185 12,863.5 1,872.6
80–84 542 222 413 269 9,330.3 2,140.3
85–89 498 168 413 341 5,302.2 2,140.1
90–94 308 100 247 313 1,858.4 1,408.4
95–100 107 21 75 177 372.4 502.3
Total 3,217 1,708 2,179 1,588 95,422.8 14,239.3

to 100, but for reporting purposes we group by five-year intervals. Note that the final age category is [100, 101); that is, data
pertaining to age 101 and above is truncated.

Here 43% of the sampled respondents (or 8,496) are males. Their aggregate exposed to risk in the nondisabled state “N” is
72,619 years, and that in the disabled state “F” is 6,787 years over the observation period.11 We observed 1,743 disability transitions
and 812 recovery transitions. More men die while in a nondisabled state (2,441 cases) than while in a disabled state (994 cases).
This yields 3,435 deaths in total, with the majority of deaths occurring over ages 70–84.

For the female sample of n = 11,051, the aggregate exposure years are 95,423 and 14,239 in states ‘N’ and ‘F’, respectively.
We observed 3,217 disability transitions and 1,708 recovery transitions. Similar to males, the bulk of the recovery transitions for
females appear to take place well before age 85. Women, however, are observed to die at slightly older ages than men; most of the
deaths occur over ages 75–89. A total of 3,767 women died.

We note from Table 1 that the number of recoveries from disability observed for both sexes is nontrivial. Whether a disabled
individual is able to recover depends partly on his or her age. Segregating the individuals by initial age at baseline, we find that
LTC disability is largely persistent for the oldest-old age 85+. By contrast, the health state of younger disabled individuals (less
than age 65) tends to be less stable: Many of these individuals experience a “recovery and decline” pattern, and some even report
multiple transitions into and out of disability. We conclude from these statistics that functional disability is not necessarily chronic
in nature for our sample of older adults, which points to the importance of allowing for recovery transitions in the Markov process.

Interestingly, our sample also comprises a significant proportion of nondisabled older adults who first transit into LTC disability
only past age 85. This is largely because we include HRS respondents from the Asset and Health Dynamics of the Oldest Old

11The numbers of exposure years in the 50–54 and 95–100 age groups are relatively smaller than those for other age groups, so care is taken in interpreting
any results pertaining to these ages.
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MULTISTATE ACTUARIAL MODELS OF FUNCTIONAL DISABILITY 47

FIGURE 2. Log Transformation of Crude Transition Intensities.

(AHEAD) and Children of the Depression (CODA) cohorts who were first interviewed at ages 70 or older while in the community.
Consequently these individuals are likely to be a select group of elderly adults with above-average health who experience functional
disability only rather late in life.

3.2. Model Selection
Within the exponential family of distributions, binomial GLMs and Poisson GLMs are standard for modeling count data.

In particular, the Poisson distribution is consistent with models of the hazard rate (mortality/morbidity force) function in our
continuous-time setup. Thereafter, the probabilities of death (and morbidity) are derived on the basis of modeled values of
the hazard rate. A visual inspection of the natural log of the crude transition intensities by age in Figure 2 reveals three key
observations.12 First, the generally linear patterns support the use of the proposed log transformation based on Poisson GLMs.
Second, curvatures in some of the plots — especially that for disability inception — indicate the need to include higher-order age
terms in the predictor structure. Third, we note substantial variations in the log crude mortality rates particularly between ages 50
and 60. After trimming the data at ages below 60, subsequent fitting is found to be more reasonable and reflective of historical
patterns of morbidity-mortality.

The Poisson GLMs based on a hierarchical series of model predictor structures are fitted using maximum likelihood estimation.
Table 2 shows the model comparisons using various model selection criteria; k denotes the the number of age-related parameters.13

We find that, for σ and μ, the use of the quadratic predictor is optimal for both sexes. This specification results in better (lower)
AICc and BIC criteria values than other predictor structures. Likelihood-ratio tests of the difference in residual deviance also
confirm that the inclusion of the quadratic age term (i.e., moving from k = 1 to k = 2) is beneficial and improves the fit (p < 0.01),
despite the additional parameter involved. In contrast, the subsequent inclusion of age-cubed is found to be too complex and not
statistically significant. The model selection criteria also support the use of a linear predictor for ϕ and ν for males, and separately

12For a given age x, the crude (or raw) transition intensity is the raw transition count divided by the number of central exposure years. Since the waiting time
to transition follows an exponential distribution, the crude transition intensity is the maximum likelihood estimator of the true transition intensity.

13We compared the AICC and BIC criteria values of four GLMs (the Poisson GLM with log-link, the binomial GLM with complementary log-log link,
binomial GLM with logit-link, and binomial GLM with probit-link) for each of the four transition intensity of interest and find no substantive differences (results
not reported in detail here).
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TABLE 2
Poisson GLM: Goodness-of-Fit of Nested Models

Males Females

k AICc BIC Dc �Dc AICc BIC Dc �Dc

σ : N → F
1 272.2 275.8 52.2 367.9 371.5 119.5
2 260.2 265.5 38.0 −14.27∗∗∗ 299.3 304.6 48.6 −70.88∗∗∗

3 262.5 269.4 37.9 −0.03 300.4 307.3 47.4 −1.22
ϕ : F → N
1 212.5 216.1 34.3 278.4 282.1 64.0
2 214.7 220.0 34.3 −0.02 270.5 275.8 53.8 −10.23∗∗∗

3 216.9 223.7 34.2 −0.07 272.8 279.6 53.8 −0.05
μ : N → D
1 260.5 264.1 24.9 288.1 291.7 54.8
2 256.2 261.5 18.3 −6.60∗∗ 280.8 286.1 45.3 −9.50∗∗∗

3 257.9 264.7 17.6 −0.68 281.5 288.3 43.6 −1.71
ν : F → D
1 242.2 245.8 41.6 250.0 253.6 28.0
2 243.9 249.2 41.0 −0.55 250.6 255.9 26.3 −1.65
3 246.2 253.0 40.9 −0.11 246.5 253.3 19.9 −6.46∗∗

Note: k = 1 implies age term only, = 2 implies age and age-squared terms, and = 3 implies age, age-squared, and age-cubed terms. AICc
is the Akaike Information Criterion corrected for sample size, BIC is the Bayesian information criterion, Dc is the residual deviance statistic,
and 	Dc is the change in the residual deviance as k increases. Asterisks for 	Dc values indicate whether there is significant improvement in fit
moving from one model to the next: ∗∗p < 0.05; ∗∗∗p < 0.01. The optimal criteria value is in boldface for each set of nested models.

for females, the use of the quadratic predictor for ϕ and the cubic predictor for ν. An intuition for the cubic fit for ν (F→D;
females) is as follows: Unlike disabled males who experience a linear decrease in the log rates of recovery over their life course,
disabled females actually enjoy an increasing rate of recovery up to about age 65 before the rates start to decline. Consequently,
their log rate of mortality increases at a decreasing rate up to about age 65 before continuing to increase at an increasing rate,
thus forming the cubic shape. These results support the observation that age patterns in mortality differ between the disabled and
nondisabled groups within the age 50–100 bracket. We are unable to extrapolate these results after age 100 because of sparse data.

The fitted parameters for each of the four transition intensities are shown in Table 3. We also investigate here the possibility of
overdispersion by relaxing the assumption that φ = 1. Overdispersion occurs when the variability of the data is greater than that
anticipated by the Poisson distribution assumed, in which case the quasi-Poisson model should be used instead.14 We find that the
estimated values of φ are close to unity (range from 0.8 to 1.1). Furthermore, the Pearson chi-squared test results confirm that the
dispersion parameter is not statistically significant in models for each outcome of interest. Under the null hypothesis that there
is no over- or underdispersion, the calculated test statistic follows a chi-squared distribution. Consequently we set φ to unity in
estimating the second moments.

3.3. Transition Rates from GLM Approach
Figure 3 shows the graduated (smoothed) disability and recovery transition intensities for ages 50 to 100. To enable comparison

by sex, we superimpose the mean graduated rates for males as a dotted line within the females’ plots. Not surprisingly, we see that
the risk of developing LTC disability increases more rapidly for each additional year of age among females than males after age
80. Results from a paired sample t test indicate that the age-adjusted disability incidence rates are significantly higher for women.
At the advanced ages, more variability is also found in incident disability for males than females. The shaded portions in each
plot show the 95% confidence intervals of the fitted estimates. This confidence interval comprises two portions: the darkly-shaded
portions capture parameter uncertainty, and the lightly-shaded portions capture variations from the residuals.15 We see that the

14Overdispersion is given by φ > 1, implying that the conditional variance of the response variable increases more rapidly than its mean. Much less common,
although also possible for count data, is the case of underdispersion. See Appendix for a mathematical representation of the dispersion parameter.

15Total variance of the responses is thus given by the sum of these two components. The covariance matrix is employed to compute the variance of the fitted
transition rates using the delta method. Simulations are used to generate the unconditional distribution of the responses.
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TABLE 3
Poisson GLM: Parameter Estimates (MLE)

Transition Intensity

Parameter σ ϕ μ ν

Males
β0 −2.636** 0.165 −7.995*** −6.422***

β1 −0.104*** −0.031*** 0.040 0.058***

β2(×10−2) 0.120*** — 0.030 —
Females
β0 −0.103 −6.360*** −6.891*** −42.301***

β1 −0.160*** 0.144*** −0.010 1.422***

β2(×10−2) 0.154*** −0.115*** 0.068*** −1.731***

β3(×10−2) — — — 0.007***

Note: Asterisks indicate whether the estimates are significantly different from zero: ∗∗p < 0.05; ∗∗∗p < 0.01.

higher variance for males largely stems from larger variations in the crude disability rates (lightly shaded portion), which are
primarily a result of data sparseness; that is, fewer males are observed at the advanced ages compared with females.

Unlike the age patterns of disability, recovery patterns are much more distinct between the sexes. Prior studies (e.g., Beckett
et al. 1996; Mendes de Leon et al. 1997; Oman et al. 1999) have reported that men are more likely to recover from ADL disability

FIGURE 3. Graduated Morbidity Transition Intensities for Males (Left) and Females (Right).

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
8:

05
 1

1 
Ju

ly
 2

01
5 



50 J. H. FONG ET AL.

FIGURE 4. Graduated Mortality Transition Intensities for Males (Left) and Females (Right).

than women.16 We find evidence of this only for limited age ranges; the recovery rates for males in our sample exceed those of
females only in the 50–65 and 90–100 brackets. Between ages 65 and 90, the recovery rate of females is on average 15% higher
than that of males. Additionally, the recovery pattern from LTC disability for females is quite unusual: The rate of recovery actually
increases between ages 50 and 65 before gradually declining. On the positive side, this indicates that younger women become
increasingly successful in their rehabilitation efforts postdisability in ages leading up to retirement age. On the negative side, the
hump-shaped pattern implies that a disabled female in her 50s faces about the chance of recovery as a much older female in her
70s. This suggests that other factors may be influencing females’ response to disability apart from age.

Figure 4 shows the graduated age-specific mortality transition rates for nondisabled and disabled lives. At each integer age, the
rate of death for the disabled individuals is higher than that for the nondisabled presumably because the former are already frail and
more prone to accidents such as falls, which can prove fatal. Also as expected, the mortality of men is higher than that of women
at all ages. This is consistent with the longer life expectancy of females in general. Because the bulk of deaths for males occur
between ages 70 and 84, fewer men are observed at the advanced ages compared to women. As a result, we see larger variations
in the crude mortality rates in the males’ plots.

The estimated transition rates are also informative regarding the competing risks of mortality vis-à-vis that of disability, shown
in Figure 5. For nondisabled males, the estimated hazards are fairly even at younger ages. Past age 60, however, their force of
mortality exceeds that of LTC disability. Conversely, the rate of incident disability is higher than the death hazard for women of
all ages. For a 65-year-old woman, for example, the risk of getting 2 or more ADL disabilities is about twice that of dying. We
conclude that these sex differences in incident disability is an important determinant of the higher prevalence of disability generally
observed among women (e.g., Fong et al. 2014; Manton 1988).17 In other words, females not only have a higher probability of

16Most of these earlier studies employed a definition of disability, which is not specific to LTC ADL triggers. For example, some studies measure only
lower-body disability while others define disability as having just one or more ADLs.

17For example, also using recent waves of HRS data, Fong et al. (2014) report that the prevalence rate of 2+ or more ADL disabilities is 30% for females and
22% for males in the 85–89 age group.
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FIGURE 5. Competing Risks of Disability and Death for Males (Top) and Females (Bottom).

being LTC disabled, but also have a higher probability of becoming disabled. Our results are consistent with the notion that an
average older male can likely spend his retirement years without much worry of experiencing ADL disability levels that trigger
LTC use, as noted in Fong et al. (2014). Additionally, we observe that past age 80, the disability incidence as a proportion of death
rates lies within a narrow range of 0.65–0.91 (males) and 1.24–1.42 (females). This has implications for the pricing of reverse
mortgage products, which typically assumes that the mobility rate is a constant proportion of mortality rate for valuation purposes
(see Rodda et al. 2004).

The model provides a good fit to the data, with the deviance residuals exhibiting no age trends, as shown in Figure 6 (mathematical
form of the deviance residuals is given in the Appendix). This indicates that our underlying modeling assumptions are reasonable.
Following Renshaw (1991), we also visually check the plots of deviance residuals against fitted values (not reported in detail here).
We find the residuals to be generally well behaved and supportive of the assumed variance function.

Using our transition rate estimates, we compute a summary measure given by the lifetime probability of a nondisabled retiree
ever becoming LTC disabled in his or her remaining years. Based on the assumed maximum attainable age of 100, this probability
works out to be about 36% and 53% for a 65-year-old male and female, respectively. Nondisabled females face a higher probability
of ever becoming LTC disabled over their remaining lifetime because of the dual effect of their higher survival probabilities to
older ages and their higher probabilities of getting disabled at each given age.

To validate our estimates of mortality rates, we convert the mortality hazards to one-year death probabilities (qx) and compare
them with published population sources. A suitable benchmark for comparison is the U.S. Social Security Administration (SSA)
cohort life table for the general population. These cohort tables are chosen in lieu of period population tables because our estimates
essentially correspond to cohort mortality rates weighted by sample composition (four HRS birth cohorts observed over 12 years).
Accordingly, the sex-specific SSA life tables are then weighted to account for the sample composition.18 Figure 7 shows the

18The SSA cohort tables 1900– 1940 are sourced from Bell and Miller (2005). For males, the weights applied based on sample composition are 0.3% (1900
table), 6% (1910), 19% (1920), 32% (1930), and 43% (1940). For females, the weights are 1%, 8%, 20%, 28%, and 42% respectively.
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52 J. H. FONG ET AL.

FIGURE 6. Deviance Residuals of Transition Rates.

comparisons of death probabilities by sex. By and large, our estimated death probabilities are comparable with the SSA mortality
probabilities. The SSA probabilities, in fact, lie in the region between our estimated death probabilities for the disabled (dashed
black line) and the nondisabled (solid black line), which is not surprising because the general population would consist of a mix
of both subgroups. In addition, our mortality estimates for the disabled are also consistent with the rates published in the RP-2000
disabled life tables (which pertain to disabled individuals receiving social security disability benefit payments; Society of Actuaries
2000). Note that at the advanced ages this holds more so for disabled females than disabled males.

We also compare our estimates against those from the earlier Robinson (1996) study, which relied on a slightly older sample
(65+) drawn from NLTCS data in the 1980s. These mortality rates are sourced from Chandler (2007) and are given by the pair of
thinner gray lines in Figure 7.19 There are some inconsistencies. First, the Wolfram transition probabilities exhibit a less curvilinear
shape than our estimates. Consequently, we see that the mortality (nondisabled) probabilities from Wolfram are higher than our
corresponding estimates up to around age 90 after which the reverse then holds. Wolfram’s mortality probabilities for solely the
nondisabled are even higher than the SSA general population mortality rates. Second, the mortality (disabled) probabilities from
Wolfram are significantly higher than those in the present study. These inconsistencies show that the publically available outputs
from the Robinson model may not be directly comparable with our results especially given known differences between the NLTCS
and HRS datasets, age of sampled respondents, time of observation, and graduation methodologies. To better understand these
differences, we will directly adapt the Robinson model to our HRS sample and compare the outputs.

3.4. Transition Rates from Robinson’s Approach
In this subsection we seek to apply the graduation methods described in Robinson (1996) to our dataset. The Robinson study

uses a time-homogeneous, time-continuous Markov model to derive morbidity transitions with health states that map to LTC
insurance eligibility. The key aspects of the published methodology are summarized as follows. Firstl respondents are grouped
by sex, health status, and age categories at the start of each observation period. Observed transition probability matrices for each
sex/age category/observation period are tabulated. Robinson (1996) uses, for example, a total of seven initial health states, three

19The solid and dashed gray lines reflect mortality rates for the nondisabled and the disabled (2 or more ADL disabilities) respectively. To convert the eight-state
transition probabilities in Chandler (2007) to three-state probabilities, we use long-run stationary weights.
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FIGURE 7. Comparison of Death Probabilities for Males (Top) and Females (Bottom).

age categories (65–74, 75–84, and 85+), and two observation spans (1982–1984 and 1984–1989). Given a starting status i, the
ending status j in each of the observed transition matrix is modeled as an independent trial from a multinomial process.

Second, maximum likelihood estimation is used to fit a parametric model of the transition rates. The parametric formulae
deemed to be most suitable in that earlier study is

rij (s, x) = exp
[
αij + βij (s − 0.5) + γij (x − 80)/100

]
, i ≤ 4, i �= j, (9)

where rij is the transition rate from state i to state j, s is the sex variable dummy (s = 0 for males and s = 1 for females), and x is
the average age of the age category. αij , βij , and γij are parameters to be estimated, whereby constraints are placed on the values
of the latter two parameters during estimation. Note that this method yields transition rates only for persons corresponding to the
midpoint of each age category (e.g., a 70-year-old for the age 65–74 category); exponential interpolation is used to derive the rest
of the transition rates for other age values. Finally, matrix exponentiation is applied to convert the transition rates into transition
probabilities.

To replicate these methods, we start by creating 48 observed transition matrices based on differences in sex/age cate-
gory/observation spans. We use four age categories (<65, 65–74, 75–84, and 85+) to accommodate the age range of the sampled
HRS respondents, and six observation spans (1998–2000, 2000–2002, . . . , 2008–2010).20 To adhere closely to the health state
classifications defined in the earlier study, we define four initial health states: zero, one, two, and 3+ ADLs.21 We exclude the
health states incorporating cognitive impairment since our focus here is primarily on disability defined by the ADL measures.

20Unlike in Robinson (1996) where data observation periods are of different lengths, our data are split into uniform two-year periods. Consequently, the
maximum likelihood estimates derived from aggregating the data by observation period is identical to those derived using six separate observation periods.

21This is done to adhere as closely as possible to the seven initial health states given in Robinson (1996). Including the “death” state; there are five states in
our replica of the Robinson model. To enable comparability with the GLM estimates, we then apply long-run weights to convert the Robinson five-state transition
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TABLE 4
Robinson Model: Parameter Estimates (MLE)

Parameter No ADL 1 ADL 2 ADLs 3+ ADLs Dead

αij No ADL — −2.241 −3.905 −4.433 −3.354
1 ADL −0.890 — −0.818 −2.196 −2.227
2 ADLs −16.553 −0.370 — −0.537 −2.452
3+ ADLs −4.465 −3.380 −1.960 — −1.228

βij No ADL — 0.169 0.169 0.169 −0.368
1 ADL 0.132 — 0.169 0.169 −0.368
2 ADLs 0.132 0.132 — 0.169 −0.368
3+ ADLs 0.132 0.132 0.132 — −0.368

γij No ADL — 6.042 6.042 6.042 7.667
1 ADL −1.553 — 2.670 2.670 5.756
2 ADLs −1.553 −1.553 — 2.670 5.756
3+ ADLs −1.553 −1.553 −1.553 — 5.756

Next, we implement the parametric formulae referenced above, using maximum likelihood estimation (MLE) to obtain
the parameter estimates. Following Robinson (1996), no constraints are imposed on the 16 values of αij ; values for sex-adjustment
parameter βij are constrained to three (one for recovery, one for disability, and one for mortality), and values for the age-slope
parameter γij are constrained to five (the same three for βij plus two distinct values when the initial state equals zero ADL). We also
set the initial guesses of the α parameters to 0.1 and those of the β and γ parameters to zero as in the earlier study. Corresponding
transition probabilities are derived from the transition rates by matrix exponentiation. Table 4 shows the final parameter estimates
for our HRS sample.

Figure 8 compares the two sets of results, namely, transition probabilities calculated from the GLM approach (solid lines) versus
those calculated from Robinson’s approach (dotted lines) using our sample of 19,547 individuals drawn from HRS data. Estimation
is performed for the entire age range of 50–100. For disability onset and recovery transition probabilities, the SOA/Robinson method
produces systematically higher probabilities than those from the GLM method. This has important implications in terms of when
individuals are likely get inflicted with disability levels severe enough to trigger LTC use and potentially institutionalization. For
example, one would conclude from the SOA/Robinson estimates that individuals face a 10% chance of becoming LTC disabled
at just age 80. By comparison, our GLM estimates suggest that this does not occur well until about age 90. In terms of recovery
from functional disabilities, the GLM probabilities better showcase the complex age patterns of recovery among disabled females
than the SOA/Robinson estimates and thus potentially more reflective of reality.

The main reason for these differences in estimates arises from the parametric form assumed in the SOA/Robinson study.
First, the simple log linear specification of the age term does not sufficiently capture the steeper increases in morbidity-mortality
probabilities that are expected at older ages. On the other hand, where optimal, we allow for higher-order age terms in the GLM
specifications. Consequently most of the probabilities obtained using the Robinson method are visibly less “curved” and higher
when compared alongside the GLM probabilities. This lack of curvature also causes the SOA/Robinson male and female death
probabilities not to converge even at very advanced ages. Second, the Robinson (1996) parametric form assumes a constant sex
effect across ages. Using this method produces male and female transition rates that are always proportional regardless of age,
which explains why the SOA/Robinson transition probabilities for males and females appear parallel in the plots. Finally, we
perform a robustness check by calibrating the GLM model to data for five-year age groups instead of individual-age data. The
magnitudes and patterns of the transition probabilities estimated from the abridged- and individual-age data are very similar (details
available upon request). Accordingly, the conclusions above hold.

4. ALTERNATIVE BENEFIT TRIGGERS
Public programs and private insurance commonly use ADL measures to trigger minimum eligibility criteria. Nonetheless,

individual insurers may vary in the way they define the ADL trigger. Arguably the most important difference relates to the
threshold number of ADLs used. While most private LTC insurance policies use a 2+ ADL trigger, state Medicaid programs

probabilities into three-state transition probabilities. In a separate analysis, we directly derive the Robinson three-state transition probabilities instead based on a
three-state setup. We find no significant differences between the two sets of Robinson transition probabilities and thus present only results from the former.
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FIGURE 8. Comparison of Two Different Graduation Approaches.

typically use a more stringent 3+ ADL trigger (Congressional Budget Office 2004; Stone 2002; Wiener et al. 2000). Some insurers
also regulate the ADL types that can be used. Another key difference pertains to the existence of an alternative benefit trigger.
Medicaid, as well as some private LTC insurers, allows for benefits to be paid if the individual suffers from severe cognitive
impairment and requires substantial supervision. Medical necessity is another form of alternative trigger specified in some LTC
insurance policies (Society of Actuaries, 1995).

Thus far, we have defined “LTC disability” as having 2+ ADL disabilities, as in most private insurance policies. However,
since benefit triggers vary in practice, it is useful to extend the transition rate analysis to alternative definitions of LTC disability.
This will allow us to determine the sensitivity of different trigger configurations on the transition probabilities. We explore two
alternative specifications of “LTC disability” whereby one specification captures a relatively more stringent criterion (3+ ADLs),
and the other specification captures a relatively less stringent criterion (2+ ADLs and/or CI). The latter is the least stringent among
the three specifications because individuals satisfy the trigger if they either become moderately functionally disabled or cognitively
impaired, whichever occurs first. For each specification, we separately apply the GLM approach to deriving the smoothed transition
rates and obtain the transition probabilities.

Results for the female sample appear in Figure 9; similar patterns are noted for the male sample. Two observations are
worth highlighting. First, we see that different trigger configurations have an evident impact on disability and recovery transition
probabilities but little impact on mortality probabilities. Second, assuming a base case criterion of 2+ ADL disabilities, switching
to a more stringent 3+ ADLs criterion creates a more pronounced effect on transition probabilities as compared with switching to
the less stringent 2+ ADLs and/or CI criterion. Under the stricter criterion, the disability transition probabilities are considerably
lower especially at advanced ages and the recovery transition probabilities at the younger ages are considerably higher. Overall
this indicates that LTC insurers using a more stringent 3+ ADLs trigger can more competitively price their products since the
probability of payout may be substantively lower than insurers using the typical 2+ ADLs trigger. One reason why there is little
difference in switching from the 2+ ADL criterion to the 2+ ADLs and/or CI criterion is due to the low proportions of sampled
respondents who are severely cognitively impaired. In each wave of the HRS survey, only about 5.5–9.9% of individuals have
severe CI. About 1% have mild CI, and the majority have normal cognition.
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FIGURE 9. Different LTC Insurance Benefit Triggers (Female).

5. DISCUSSION AND CONCLUSIONS
This article assesses disability and mortality transitions for elderly individuals within a multistate model for LTC insurance

applications. Using a comprehensive yet flexible GLM graduation approach, we derive four sets of sex- and age-specific transition
probabilities pertaining to disability inception, recovery, mortality (nondisabled), and mortality (disabled), for older adults between
age 50 and 100. Unlike earlier studies using smaller datasets, we have sufficient observed transition counts across all ages.

Focusing first on 2+ ADL disability incidence and recovery, we confirm results from other studies (e.g., Stallard 2011) that
the rates of becoming LTC disabled are significantly higher for women than men. The force of disability exceeds the competing
mortality hazard for females of all ages, Whereas the opposite holds true for males above age 60. Men and women also have
distinct age patterns of recovery: Where as males face a decreasing rate of recovery with age, females actually experience increasing
chances of recovery up to about age 65 before it declines. At least 20% of the sampled respondents who were initially LTC disabled
reported recovery, showing that the process of functional change among elderly persons, especially those below age 65, is complex
and dynamic. Turning attention to mortality transitions, we find, as expected, that death rates are higher among the disabled than
for the nondisabled. Our mortality estimates are also comparable and consistent with the published life table death rates for the
U.S. general population, which serve as a source of external validation.

We also explore how transition probability estimates are sensitive to the graduation method adopted. Given its prominence in
the existing literature on the LTC status transition process, the SOA/Robinson model is used as the basis for comparison with our
GLM approach. We find that the disability probabilities obtained from the GLM method are slightly more optimistic; in particular,
individuals face a fairly high chance of becoming LTC disabled only at about age 90 (compared to age 80 using the Robinson
method). Also, the recovery probabilities from the GLM method appear to capture more accurately sex-specific age patterns in
recovery from disability as compared to those from the Robinson method. This is mainly due to differences in the parametric
specifications assumed under each method. Another critical difference is that, unlike the GLM method, the Robinson method does
not directly yield age-specific transition rates; one needs to exponentially interpolate between the transition rate estimates for a
70-, 80-, and 90-year-old.

One limitation of our study is that we are unable to extrapolate the transition rate results past age 100 because of data sparseness
at very old ages. Future research on health transitions covering a larger sample of the oldest old will be required to investigate
functional disability incidence among centenarians. In addition, we acknowledge the relatively limited exposure to risk data for
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ages below 60, especially for respondents who are in a functionally disabled state. Therefore, in selecting the optimal specification
structure, we have trimmed the data at ages below 60, and care is taken in interpreting any results pertaining to these ages. Another
limitation pertains to the Markov (memoryless) assumption. The limited time period of our longitudinal data makes it challenging
to detect duration dependence of morbidity or recovery. In addition, a LTC disability spell often tends to be less well-defined then
say, a sickness spell.

Finally, our empirical results demonstrate that transition probability estimates are sensitive to the definition of “LTC disability”.
This has implications for the design of benefit triggers for private and public LTC insurance programs. In particular, insurers who use
a more stringent 3+ ADLs criterion rather than a 2+ ADL trigger will observe considerably lower disability transition probabilities
for insureds at the advanced ages and higher recovery transition probabilities for insureds at the younger ages. This implies lower
premiums in LTC insurance policies or programs that feature the stricter 3+ ADL trigger. We find no compelling grounds for
differential premiums between an insurer who incorporates cognitive impairment as an alternative trigger (i.e., 2+ ADLs and/or CI
criterion) and an insurer who uses the 2+ ADL trigger. Future research on LTC insurance pricing covering a wide range of product
types will be required to investigate further how alternative benefit triggers affect insurance premiums for consumers.
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APPENDIX. RESIDUAL DEVIANCE AND VARIANCE FORMULA
For the Poisson GLM, we specify the residual deviance summary statistic, the deviance residuals, the variance of the fitted

transition rates, and the variance of the responses.
The residual deviance summary statistic (Dc) is

Dc = 2[log(ls) − log(lc)],

where log(ls) = ∑
x{−ix + ix log(ix)} + C and log(lc) = ∑

x{−m̂x + ix log(m̂x)} + C∗.
In this set of equations, log(lc) is the maximized likelihood under the current model (denoted using subscript c), log(ls) is

the maximized likelihood under the saturated model (denoted using subscript s), m̂x are the fitted mean values of the response
variables, and C is a constant. The response variable (ix) is given by the number of transitions at age x, and has mean mx ≡ E(ix).
The residual deviance statistic is a summary measure of the overall goodness-of-fit of the model to the data. In addition, each age
category’s contribution to the residual deviance statistic is given by the deviance residuals at exact age x (rx):

rx = sign(ix − m̂x)
∣∣2 {ix [log(ix) − log(m̂x)

]− (ix − m̂x)
} ∣∣,

where |y| denotes the absolute value of y, and sign(y) is the sign function that is defined as

sign(y) =
⎧⎨
⎩

−1, if y < 0
0, if y = 0.

1, if y > 0
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The variance of the fitted transition rates is

Var(σ̂x) = Var(m̂x)/e2
x

= Var

(
ex exp

(
k∑

s=0

β̂sx
s

))
/e2

x,

where σ̂x are the fitted values of the transition intensity, ex is the corresponding central exposed to risk recorded over the observation
window, and β̂s are the estimated values of the parameters via maximum likelihood estimation. The covariance matrix of the β̂s is
employed to derive the variance using the delta method.

The dispersion parameter (φ) is typically estimated using Pearson residuals and for the Poisson distribution, is given by

φ̃ =
(∑

x

(
(ix − m̂x)2/m̂x

))
/(n − k − 1),

where n − k − 1 is the degrees of freedom of the model (number of observations less number of parameters and a constant).
The overall variance of the responses is

Var(ix) = E [Var(ix |m̂x)] + Var [E(ix |m̂x)]

= φ̃E[m̂x] + Var[m̂x].

Here φ̃ is set to unity (statistical tests reveal that over dispersion is not significant) and simulations are used to generate the
unconditional distribution of the responses. The overall variance of the responses captures both the variations from the residuals
in the first term, and uncertainty from the parameters in the second term.
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