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SUMMARY 
 

The anticipation of the future tendency of death rates is a delicate exercise and a bad anticipation of the drift has 
important financial consequences for a life annuity plan. 

Instead of seeking to anticipate the future drift only starting from past information, we will build an model 
including as constraint: an evolution of the life expectancy at a fixed age (that it could be simply modelled by a 
linear evolution, the origin ordinate and the slope would  become the parameters of the model). 

The objective of this work will be to define a model of this type, to apply it to a life annuity plan and to show in 
what it can allow a better technical management of the mortality risk. 
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1. INTRODUCTION 
 
The prospective analyses of mortality result in anticipating the future trends of the death rates  
at the various ages. In the current traditional construction models of prospective tables, like 
the Lee-Carter model (see in particular LEE and CARTER [1992], LEE [2000], SITHOLE and al. 
[2000]) or the Poisson models (cf. BROUHNS and al. [2002] and PLANCHET and THEROND 
[2006] for a presentation and a discussion of these models), the drift of future mortality is 
anticipated starting from the last observations. 
 
Even in admitting that it is legitimate to extend in the years to come the tendencies observed 
in the past (we will refer to CAREY and TULAPURKAR [2003] for analyses integrating the 
biological and environmental considerations, like GUTTERMAN and VANDERHOOF [1999] for a 
discussion on this point), several sources of uncertainty come to disturb the determination of 
the future tendency: the choice of the observation period, stochastic fluctuations of death 
rates, extraordinary events, etc. This uncertainty creates for the insurers of life annuity plans  
and pension plans, a systematic risk (not mutualisable) whose financial impact can be very 
important. 
 
Thus, in France, the recent updating of the tables used by the insurers for the reserve of the 
life annuities illustrates the difficulties of this anticipation and the financial associated stakes. 
So, compared to TPG 19931 tables into force until the 12/31/2006, the new TGH 05 and TGF 
05  tables which come into effect the 01/01/2007, lead to increases of provision sometimes 
higher than 20%, like illustrates it the following table: 
 

Old Generation TPG 1993 Women Women/TPG Men Men/TPG 

50 1955 26,81647 28,40552 5,9% 26,75507 -0,2%
55 1950 24,26368 25,95575 7,0% 24,07474 -0,8%
60 1945 21,50832 23,30185 8,3% 21,25828 -1,2%
65 1940 18,53412 20,39677 10,0% 18,22126 -1,7%
70 1935 15,39467 17,28922 12,3% 15,08772 -2,0%
75 1930 12,25679 14,08680 14,9% 12,05698 -1,6%
80 1925 9,35194 10,96271 17,2% 9,12890 -2,4%
85 1920 6,88306 8,15548 18,5% 6,64827 -3,4%
90 1915 4,93310 5,89309 19,5% 4,73880 -3,9%

95 1910 3,46780 4,29408 23,8% 3,40109 -1,9%

Fig. 1 : Comparison of the reserve coefficients of  TPG 1993 and TGH/TGF 05 

 
In this context, it is expedient to try to measure the risk associated with this anticipation error  
and to quantify its impact in term of provisions for a shareholder plan. 
                                                 
1 These tables are obtained on the basis of female population mortality on the period 1961-1987, used since July 
1st 1993.  
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In practice the above observations lead to the conclusion that the annuity plan is subjected at a 
important risk of model. Thus, it is possible to reformulate the consequences of the passage of 
TPG 19932 tables with the TGH 05 tables evoked above by bringing together the anticipated 
evolution of the life expectancy at age 60 years in the two prospective models. We obtains as 
follows: 
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Fig. 2 :  Anticipated evolution of the life expectancy at age 60 years 

 
We observe that not only the absolute levels differ appreciably, but also that the speed of 
growth of the life expectancy at age 60 years was underestimated in 1993: whereas the TPG 
1993 anticipate an increase of 1,4 months a year, TGF 05 tables lay down a drift of 1,8 
months per year , that is to say 23 % more. Moreover, we note that anticipations of the life 
expectancy follow linear trends, which we will use thereafter. 
 
This illustrates the difficult anticipation of the drift tendency of future mortality starting from 
historical data3. In this context, we propose to use as parameter of control of the model, in 
fixing it like a priori constraint: the life expectancy at a given age (60 years) and his future 
trend. Such an approach allows to quantify for example the impact on the charge plan of a 0,1 
months/year error on the speed of drift of this expectancy and to integrate explicitly the 
impact indicators on the engagement evaluation of the plan for an error of model. 
 

                                                 
2  The TPG 1993 are female tables. 
3  The reference populations used in two series tables differ, but we would obtain the same conclusions in using 
the INSEE prospective tables instead of  TGF 05 tables. 



                                                                                                                                                       
                                          -5 - 

We use for this point, in the present study the Lee-Carter model (see in particular LEE and 
CARTER [1992], LEE [2000], SITHOLE and al. [2000]) to build a mortality surface ( ),x tμ . 

After an adjustment of the past rates, death rates for the future years result from the 
extrapolation of the temporal component in integrating the constraint posed a priori. We can 
note that the use of the log-Poisson alternative (cf. BROUHNS and al. [2002]) would lead to 
very close results, that will not be taken again here. 
 
The numerical applications of this work are taken again results obtained in EL HORR and al. 
[2007]. 
 

2. THE MORTALITY MODEL 

2.1. RECALLS ON THE LEE-CARTER MODEL 
 
The selected model to build the prospective tables is adapted from Lee-Carter model (LEE and 
CARTER [1992]). We recall that the suggested modelling for the instantaneous death rate in 
Lee-Carter is the following one: 
 

ln xt x x t xtkμ α β ε= + + , (1) 
 
in supposing the random variables xtε  are independent, identically distributed according to a 

( )20,N σ law and we dispose of a historical record m Mt t t≤ ≤ . The question of the parameter 

adjustment of the model is not tackled here. The interested reader will refer to the many 
references on the subject (quoted for example in PLANCHET and THÉROND [2006]). 
 
Once the mortality surface adjusted on the data, the ( )tk series has to be modelled to 

extrapolate the future rates; for this, we use in general a very simple modelling that is the base 
of a linear regression in supposing an affine trend: 
 

*
t tk at b γ= + + , (2) 

 

with ( )tγ a Gaussian white noise of variance γσ . Thus, we obtain estimators â  and b̂  that 

allow to build the projected surfaces while using simply * ˆˆtk at b= + . 

 
In the sequel, after having briefly presented the closing method of the proposed table, we 
present an adaptation of this model that takes into account a constraint that we sets a priori on 
the future trend of death rates. 
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2.2. CLOSING OF THE TABLE  
 
The estimate of the gross death rates is in general possible only up to an age limit relatively 
far away from the maximum survival age. In practice, the estimated gross amounts have a 
great instability to the high ages because of the weak number of available persons. Thus , we 
have seldom good quality data beyond 90-95 years. Consequently, we resort to a closing 
method allowing to supplement the table before carrying out the adjustment. 
 
The various closing methods of table will not be here detailed and the interested reader will 
consult, on this subject,  PLANCHET and THÉROND [2006] or DENUIT and QUASHIE [2005]. 
 
We retains in this study a simple model in which death rates at the great ages, up to 120 years, 
are extrapolated while being based on the following formula:  
 

( )expxq a bx= × , (3) 
 

where a and b are the real numbers determined by the constraint 120 1q =  and by the 

connection at the rates xq  for the ages lower than 0 86x = , age to which we begin 

extrapolation. 
 
Furthermore, we recalls that in the context of the evaluation of the annuity plan engagement, 
considering the average age of the shareholders, the final selected closing method has only a 
relative importance (see PLANCHET and THÉROND [2006] for a quantification of this impact). 

2.3. GENERAL PRESENTATION OF THE MODEL 
 
The usual formulation of the Lee-Carter model ln xt x x tkμ α β= +  rests on a model implicitly 

described in continuous time. However, for the need of numerical applications, it proves to be 
necessary to make a hypothesis allowing to boil down to the observations, by discrete way. 
The traditional hypothesis consists in supposing the constancy of the hazard function  on each 
square of the Lexis diagram, which leads to ( )1lnxt xtqμ = − − . 

 
Initially, in order to avoid this hypothesis (which is undeniable for the high ages in particular), 
the model is written directly in discrete time by using the “logits” of death rates: 
 

1
ln xt

x x t
xt

q
k

q
α β= +

−
. (4) 

As the inverse transformation of the logistic function is
1

y

y
e

y
e

→
+

 it is equivalent to pose: 
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( )
( )1

exp
exp

x x t
xt

x x t

k
q

k
α β
α β
+

=
+ +

. (5) 

 
This approach has the advantage of proposing an explicit parameterisation of the death rates 

xtq . With regard to the parameter estimate of the model, the process is strictly identical to that 

proposed by Lee-Carter, in replacing systematically ln xtμ  by 
1

ln xt

xt

q
q−

. Moreover, this 

formulation is better adapted to the recognition of a constraint on the life expectancy 
evolution (by generation) at an age given for the prospective part; indeed we have the 
following statement: 
 

( )
1

,
0 0

1
h

xt x k t k
h k

e q
−

+ +
> =

= −∑∏ , (6) 

 
and we have an explicit expression for xtq  according to the parameters ( ), ,kα β . We can also 

notice that: 
 

1, 1

1
1

xt
xt

x t

eq
e + +

= −
+

. (7) 

 
Having a complete prospective surface is equivalent to determine the values of ( );t Mk t t≥ . 

We have ( );xt Me t t≥  for a fixed age x; we wants to deduce the values of ( );t Mk t t≥ . 

 
At this stage, it remains to specify the age 0x  selected as “selected age” for the integration of 

the expert judgement in the model, as well as the shape of the future trend of the life 
expectancy at this age, namely  the shape of 

0
,x t Mt e t t→ ≥ . 

 
Here, we will notice that by “continuity” of ( )tk , the value 1Mt

k +  should not be “too far” from 

Mt
k , which induces a constraint on 

0
,x t Mt e t t→ ≥ . In the (most frequent) cases where the 

general shape of ( )tk  is linear, we can imagine simply to introduce the expert judgement 

through a break of slope on the straight line ,t Mt k t t→ ≥ . However, this approach will not 

be privileged because of the character not immediately apprehensive of ( )tk , the residual life 

expectancy is a easier and more intuitive concept. 
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2.4. A SIMPLE SPECIFICATION OF THE MODEL 
 
The simplest specification that we can imagine for 

0
,x t Mt e t t→ ≥ , and overall in phase with 

the past observations, is a linear evolution of the future life expectancy. Besides, this shape is  
in phase with what we note on the usual prospective tables (TGP 1993, TGH/TGF 05, etc). 
Thus, we can define: 
 

( )
0xe t a t b= × + , (8) 

 
a and b being the 2 parameters of our model fixed in advance by  the expert judgement. 
 
In the general case, once the shape of 

0
,x t Mt e t t→ ≥  is fixed, the determination of 

,t Mt k t t→ ≥  through the relation ( )
1

,
0 0

1
h

xt x k t k
h k

e q
−

+ +
> =

= −∑∏  is not simple because it is delicate 

to fix an a priori horizon to limit the considered number of ( )tk . Thus, we propose here to 

use approximate coefficients, obtained while forcing ( )tk  to have a polynomial form: 

 
( ) 2 3

0 1 2 3 , Mk t a a t a t a t t t= + + + ≥ . (9) 
 
With this hypothesis, we have a relation with the following form: ( ) ( )0 1 2 3, , ,x xte t a a a aϕ=  

and thus we boil down to seek ( )0 1 2 3, , ,a a a aθ =  minimizing the standard deviation between 

the “expert judgement” values for the life expectancy to the selected age and the prediction of 
these values by the model, namely seeking to solve the program: 
 

( )
( )( )0

0 1 2 3

2

0 1 2 3, , ,
, , ,

M

M

t h

x ta a a a t t

Min a bt a a a aϕ
+

=

+ −∑  (10)

with: 
 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ( )

2 3
1 0 1 2 3

0 1 2 32 3
0 0

0 1 2 3

1
1

exp
, , ,

exp

h x k x k

xt
h k

x k x k

a a t k a t k a t k
a a a a

a a t k a t k a t k

α β
ϕ

α β

− + +

> =
+ +

⎛ ⎞+ + + + + + +⎜ ⎟− =⎜ ⎟
+ + + + + + + +⎜ ⎟

⎝ ⎠

∑∏  (11)

 
The resolution of the above program numerically does not pose a particular problem. We will 
note simply that it is advisable to project the death rates on a horizon much more important 
than the horizon of projection of the residual life expectancies: for instance, to estimate the 
life expectancy at age 65 years in 2050, it is necessary to have the death rates until 2105 on 
the hypothesis of a maximum survival age of 120 years. 
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3. NUMERICAL APPLICATION 
 
The numerical illustration proposed here is structured in three parts: initially, we justify the 
relevance of the use of the logit death rates instead of the hazard function, then we analyse the 
behaviour of our model for its prospective component by introducing the expert judgement. 
Lastly, we show the application that  we can make of this model for the quantification of the 
longevity risk carried by a life annuity plan. 

3.1. TRANSITION FROM STANDARD LEE-CARTER MODEL TO LOGISTIC LEE-CARTER 
MODEL 

 
The prospective table used in this study is built starting from the current tables provided by 
the INED4 in MESLE and VALLIN [2002]. The adjustment on historical data of the “logistic” 
Lee-Carter model leads to the following mortality surface: 

 
Fig. 3 : Adjusted mortality surface (Lee-Carter on the logits) 

 
The proximity of the two models (standard Lee-Carter and logistic Lee-Carter) is illustrated 
by the comparison of the various parameters, carried out below: 

                                                 
4  This tables are available on http://www.ined.fr/publications/cdrom_vallin_mesle/Tables-de-mortalite/Tables-
du-moment/Tables-du-moment-XX.htm 
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Fig. 4 :  Comparison of the estimates of xα  

As expected, we note a gap that becomes more pronounced at the high ages and a great 
proximity of the other values; the situation is similar with the parameter xβ : 
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Fig. 5 :  Comparison of the estimates of xβ  

Concerning the temporal component, the differences between the two models are 
insignificant: 
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Fig. 6 :  Comparison of the estimates of tk  

 
From now on, we use the version of the model on the basis of logits death  rates. The results 
hereafter illustrate the behaviour of the model controlled by the expert judgement. 

3.2. ANALYSE OF THE PROSPECTIVE COMPONENT 
 
In order to simplify the expression of the expert judgement, on the one hand, and to ensure the 
continuity of the evolution of the life expectancy, on the other hand, we oblige ( )64 Me t to be 

equal to the value resulting from the initial adjustment, is approximately 28 years on our data. 
 
Then, it remains to fix ( )64e t  for an a priori given date t. We retain 2050t =  as horizon of 

expression of the expert judgement, that is to say a prospective opinion at approximately 50 
years. Thus, two situations are compared: ( )64 2050 38e =  (which will be our situation of 

reference) and ( )64 2050 48e = . 

 
First of all, we take interest in the impact of integration of the expert judgement in the 
projection of the temporal parameter: 
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Fig. 7 :  Comparison of the estimates of tk in the constrained model and the non constrained model 

 
The ratio of the two mortality surfaces thus obtained for ages 60-120 is represented hereafter: 
 
 

 
Fig. 8 :  Adjusted mortality surface (Lee-Carter on the logits) 

 
Initially, we notice that the formulated expert judgement at a given age is reflected on the 
whole ages. It is a consequence of the very structuring character (and thus very constraining) 
of the Lee-Carter model, in which the only data of ,t Mt k t t→ ≥  determines entirely the 

prospective surface for all the ages. 
 
We note, which is not intuitive, that to anticipate a more important increase in the life 
expectancy at age 64 years leads in short run to revise downwards the estimate of the life 
expectancy at the higher ages during a few years. Of course, in the long run, the life 
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expectancy at all the concerned ages becomes higher than the expectancy that was anticipated 
in the reference model. 
 
This compared evolution of the life expectancies in the two situations is the consequence of a 
long run projection of the instantaneous death rates. Below, the figure presents the evolution 
of the ratio of the death rates on the two working hypotheses: 
 

 
Fig. 9 :  Adjusted mortality surface (Lee-Carter on the logits) 

 
We find in a “reversed” mode, the characteristics of preceding surface. We observe that the 
gap of life expectancy anticipated at age 64 years at a horizon of approximately 50 years (+ 26 
%) implies a decrease much stronger death rates at all the ages (beyond 60 years). Thus, we 
observe abatements of more 90 % after one century. 
 
This aspect gives an idea of the constraint, which represents a profit of residual life 
expectancy at 64 years on the annual death rates. In other words, a weak variation of annual 
death rates does not really impact the residual life expectancy. In other words, the engagement 
of an annuity plan is not very sensitive to instantaneous phenomena affecting mortality over 
one year. 
 

3.3. APPLICATION TO A LIFE ANNUITY PLAN 
 
An annuity plan is mainly confronted with a financial risk and, in second manner, at a risk of 
bad anticipation of the mortality of the shareholders. This longevity risk (see PLANCHET and 
al. [2006]) must, in the context of the reform project of the prudential rules “Solvabilité 2”, be 
quantified. The model that we propose here, allows to propose an evaluation of this risk, we 



                                                                                                                                                       
                                          -14 - 

illustrate this point in the continuation of this paragraph. 
 
We use for this illustration a portfolio constituted by 374 female shareholders with an average 
age of 63,8 years at 12/31/2005. The average annual annuity figures up to 5,5 k€. The Figure 
2 (see below) will present the expected flows dues to pensions as a function of time built  
from the mortality table named TV 2000. 
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1 500 k€

2 000 k€

2 500 k€

2005 2015 2025 2035 2045 2055 2065 2075
 

Fig. 10 :  Expected flows of pensions 

 
In reasoning in the act to simplify at a null discount rate (i.e. the capital of one € of pension is 
exactly equal to the life expectancy at this age), we find that the engagement of the plan 
passes from 67 M€ in the reference situation ( )64 2050 38e =  to 70,9 M€ in supposing a 

higher target value of 10 years. This gap of a little less than 6 % can be associated with the 
longevity risk. 
 
We will notice incidentally that the gap of 10 years over 50 years of projection is coherent 
with the gap of almost 2 years observed over 10 years during the actualisation of the 
regulatory tables in France (see the introduction of this study). 
 

4. CONCLUSION 
 
Whereas the bad anticipation of the future life expectancy at the service ages of pensions 
constitutes a main risk for the annuity plans, the suggested model provides an operational tool 
that is simple to implement and that allows to measure the sensitivity of the engagement of 
the plan, in accordance with various hypotheses of evolution of this life expectancy. 
 
In particular, the suggested model provides a simple and justifiable framework to quantify a 
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specific capital requirement for the longevity risk carried by the annuity plan, in a way more 
readable and more robust than the stochastic mortality models. 
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