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Abstract. In many engineering optimization problems, the number of function evaluations is severely
limited by time or cost. These problems pose a special challenge to the field of global optimization,
since existing methods often require more function evaluations than can be comfortably afforded.
One way to address this challenge is to fit response surfaces to data collected by evaluating the
objective and constraint functions at a few points. These surfaces can then be used for visualization,
tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface
methodology that is especially good at modeling the nonlinear, multimodal functions that often
occur in engineering. We then show how these approximating functions can be used to construct
an efficient global optimization algorithm with a credible stopping rule. The key to using response
surfaces for global optimization lies in balancing the need to exploit the approximating surface (by
sampling where it is minimized) with the need to improve the approximation (by sampling where
prediction error may be high). Striking this balance requires solving certain auxiliary problems which
have previously been considered intractable, but we show how these computational obstacles can be
overcome.

Key words: Bayesian global optimization, Kriging, Random function, Response surface, Stochastic
process, Visualization

1. Introduction

In the automotive and semiconductor industries, as well as many others, there is a
growing emphasis on designing products using math/computer models. Computer
models facilitate the exploration of alternative designs and reduce the need for
expensive hardware prototypes. This math-based approach is often made difficult,
however, by the long running times of the computer codes involved. For example,
an automotive crash simulation may take twenty hours. Designing optimization
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algorithms that can deal with such expensive functions is a great challenge to
the optimization community. In this paper, we explore an approach based on fit-
ting response surfaces to data collected by evaluating the objective and constraint
functions at a few points. These response surfaces are then used to visualize input–
output relationships, estimate the location of the optimum, and suggest points
where additional function evaluations may help improve this estimate.

The response surface methodology we use is based on modeling the objective
and constraint functions with stochastic processes – an approach that to many peo-
ple seems complex and unnatural. The basic idea behind this approach, however,
is quite intuitive. When we fit a stochastic process to data, we are essentially cal-
ibrating a model that summarizes how the function typically behaves, properties
like how much the function tends to change as we move by different amounts
in each coordinate direction. When predicting at a new point, we are essentially
computing the function value that is most consistent with this estimated typical
behavior. As we show later, this methodology is especially good at modeling the
nonlinear, multimodal functions that often occur in engineering.

The stochastic process approach to approximating functions has a long his-
tory in at least three literatures: mathematical geology, global optimization, and
statistics. In the mathematical geology literature, the approach is called ‘kriging’
and dates back to the early 1960s [see 10–12, 21]. Here the data often consist of
core samples taken at different locations, and the goal is to find a function that
approximates the underground concentration of a valuable mineral.

In global optimization, the use of stochastic processes is called ‘Bayesian global
optimization’ or the ‘random function approach’. It dates back to a seminal article
by Harold Kushner in 1964 [19] and has since been pursued by many authors [e.g.,
4, 5, 9, 16, 23, 24, 27, 31, 33, 37]. The focus here is on using the stochastic process
to develop ‘figures of merit’ for where to take search points. These figures of merit
balance local and global search in an attractive fashion.

In statistics, the approach began in the early 1970s out of a general interest in
approximating integrals and other hard-to-compute ‘functionals’ of functions [30].
Most recently, the focus has been on developing accurate approximations to ex-
pensive computer codes and then using these approximations for visualization and
optimization [13, 18, 29, 36].

While all the above literatures use stochastic processes, there are differences in
emphasis, in the specific types of stochastic processes, and in parameter estimation.
In mathematical geology, for example, some of the model fitting techniques are
specifically designed for two or three dimensions and it is usually assumed that
the functions are noisy – all quite reasonable when one is modeling ore grade as a
function of location in a mineralized zone. In the statistics literature, on the other
hand, the functions are usually deterministic and have more than two variables.

In our work, we take the stochastic process model commonly used in the sta-
tistics literature and apply it to global optimization. Two things set us apart from
previous work in Bayesian global optimization.
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First, we emphasize the need to validate the stochastic process model before
using it to guide an optimization procedure. For this purpose we have developed
several diagnostic tests based on cross validation. When the model fails to validate,
it is sometimes possible to transform the function or otherwise modify the model
so that it does validate.

Second, the figure of merit we use to select search points is rigorously based
on a statistical model, and we optimize this figure of merit exactly using a spe-
cial branch-and-bound algorithm. In contrast, Mockus [23] and Zilinskas [37] use
simplified statistical models and optimize their figures of merit heuristically using
multistart and Monte Carlo methods. The algorithms of Elder [16], Perttunen [27]
and Stuckman [33] are heuristic extensions of Kushner’s one-dimensional algo-
rithm [19] and, as such, do not use any statistical model at all. Cox and John [9] use
a statistical model, but they optimize the figure of merit by complete enumeration
over a fine grid – a procedure obviously limited to one or two dimensions. Booker
et al. [6], working on applications at Boeing Corporation, develop a procedure
called BLGS based on a statistical model but do not use a figure of merit to select
search points. Instead, at each iteration they sample some points where the value
of the response surface is very good, as well as other points where the estimated
error in the surface is high. Booker et al. [7] explore hybrid approaches in which
the stochastic process model is combined with other optimization techniques.

The response surface approach to global optimization has three major advan-
tages. First, the technique often requires the fewest function evaluations of all
competing methods. This is possible because, with typical engineering functions,
one can often interpolate and extrapolate quite accurately over large distances in
the design space. Intuitively, the method is able to ‘see’ obvious trends or patterns
in the data and ‘jump to conclusions’ instead of having to move step-by-step along
some trajectory.

Second, the response surface approach provides a credible stopping rule based
on the expected improvement from further searching. Such a stopping rule is pos-
sible because the statistical model provides confidence intervals on the function’s
value at unsampled points – and the ‘reasonableness’ of these confidence intervals
can be checked by model validation techniques.

Third, the response surface approach provides a fast approximation to the com-
puter model that can be used to identify important variables, visualize the nature of
the input–output relationships, and quantify tradeoffs between multiple objectives.
In short, the approach not only provides an estimate of the optimal point, but also
facilitates the development of intuition and understanding about what is going on
in the model.

In Section 2 we introduce the reader to the stochastic process model. Rather
than giving a formal presentation, we motivate the stochastic process model as a
modification to linear regression that addresses some of regression’s major short-
comings. We show how the stochastic process model is used to construct response
surfaces and comment on how this approach is related to splines and traditional
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design-of-experiment methods. Section 3 describes our techniques for validating
a stochastic process model, and Section 4 shows how these models are used for
global optimization. The topic of visualization is explored in Section 5 using ex-
amples from real problems. Finally, Section 6 discusses some remaining challenges
and opportunities.

2. The stochastic process model

Suppose we have evaluated a deterministic function ofk variables atn points.
Denote sampled pointi by x(i) = (x(i)1 , . . . , x

(i)
k ) and the associated function value

by y(i) = y(x(i)), for i = 1, . . . , n. Perhaps the simplest and most familiar way
to fit a response surface to such data is linear regression. In this technique, the
observations are treated as if they were generated from the following model:

y(x(i)) =
∑
h

βhfh(x(i))+ ε(i) (i = 1, . . . , n).

In this equation, eachfh(x) is a linear or nonlinear function ofx; the βh’s
are unknown coefficients to be estimated; and theε(i)’s are normally distributed,
independent error terms with mean zero and varianceσ 2.

Applying linear regression to a computer code has major practical and con-
ceptual problems. The practical problem is that we usually do not know what
functional form to specify for the regression terms. After all, if we knew a form that
fit well, why would we have developed a complex computer code in the first place?
Of course, one can always use a flexible functional form that assumes different
shapes via different parameter settings. But flexible functional forms, by their very
nature, have many parameters, and so we would need many function evaluations to
estimate these parameters.

The conceptual problem with regression is that the assumption of independent
errors is blatantly false when modeling a deterministic computer code. Because the
code is deterministic, any lack of fit will be entirely modeling error (incomplete
set of regression terms), not measurement error or noise. This means that the error
terms are really collections of left-out terms inx, so that we may writeε(i) as
ε(x(i)). Moreover, ify(x) is continuous, thenε(x) is also continuous, because it is
the difference betweeny(x) and the continuous regression terms. It follows that, if
x(i) andx(j) are two points that are close together, then the errorsε(x(i)) andε(x(j))
should also be close. In short, it makes no sense to assume thatε(x(i)) andε(x(j))
are independent. Instead, it is more reasonable to assume that these error terms are
related or ‘correlated’, and that this correlation is high whenx(i) andx(j) are close
and low when the points are far apart.

In the stochastic process approach, we do not assume that the errors are inde-
pendent, but rather assume, as indicated above, that the correlation between errors
is related to the distance between the corresponding points. We do not use the
Euclidean distance, however, since this distance weights all the variables equally.
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Figure 1. Example correlation functions used in the stochastic process model.

Rather, we use the special weighted distance formula shown below:

d(x(i), x(j)) =
k∑
h=1

θh|x(i)h − x(j)h |ph (θh ≥ 0, ph ∈ [1,2]). (1)

(We will discuss the roles played by the parametersθh andph shortly). Using this
distance function, the correlation between the errors atx(i) andx(j) is

Corr
[
ε(x(i)), ε(x(j))

] = exp
[−d(x(i), x(j))] . (2)

The correlation function defined in (1) and (2) has all the intuitive properties one
would like it to have. In particular, when the distance betweenx(i) andx(j) is small,
the correlation is near one. Similarly, when the distance between the points is large,
the correlation will approach zero. The parameterθh in the distance formula (1) can
be interpreted as measuring the importance or ‘activity’ of the variablexh. To see
this, note that saying ‘variableh is active’ means that even small values of|x(i)h −
x
(j)

h |may lead to large differences in the function values atx(i) andx(j). Thinking in
statistical terms, this means that even small values of|x(i)h −x(j)h | should imply a low
correlation between the errorsε(x(i)) andε(x(j)). Looking at Equations (1) and (2),
we see that, ifθh is very large, then it will indeed be true that small values of|x(i)h −
x
(j)

h | translate to large ‘distances’ and hence low correlation. This is illustrated in
Figure 1 for the case of only one input variable,x. Two correlation functions are
shown, corresponding toθ = 1 andθ = 4. The curve forθ = 4 relates to a more
active variable, as correlation drops off more rapidly with the change inx. The
exponentph is related to the smoothness of the function in coordinate directionh,
with ph = 2 corresponding to smooth functions and values near 1 corresponding
to less smoothness [26].

It turns out that modeling the correlation in this way is so powerful that we can
afford to dispense with the regression terms, replacing them with a simple constant
term. This gives us the model we use in the stochastic process approach:

y(x(i)) = µ+ ε(x(i)) (i = 1, . . . , n), (3)
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whereµ is the mean of the stochastic process,ε(x(i)) is Normal(0, σ 2), and, as
just discussed, the correlation between errors is not zero but rather is given by
Equations (1) and (2). The estimates of the parametersµ andσ 2 have little di-
rect interpretation, as they must be combined with the estimates of the correlation
parameters (theθh’s andph’s) in order to make predictions.

We call this model a ‘stochastic process model’ because the error termε(x) is a
stochastic process, that is, it is a set of correlated random variables indexed by space
(here, thek-dimensional space ofx). It has become common to call the stochastic
process model in Equations (1)–(3) the ‘DACE stochastic process model’, where
‘DACE’ is an acronym for ‘Design and Analysis of Computer Experiments’, the
title of the paper that popularized the approach [29].

The DACE model has 2k + 2 parameters:µ, σ 2, θ1, . . . , θk, andp1, . . . , pk.
We estimate these parameters by choosing them to maximize the likelihood of the
sample. Lety = (y(1), . . . , y(n))′ denote then-vector of observed function values,
R denote then×nmatrix whose(i, j) entry is Corr

[
ε(x(i)), ε(x(j))

]
, and1 denote

ann-vector of ones. Then the likelihood function is:

1

(2π)n/2(σ 2)n/2|R| 12 exp

[
−(y− 1µ)′R−1(y− 1µ)

2σ 2

]
. (4)

Note that the dependence on the parametersθh andph for h = 1, . . . , k is via the
correlation matrixR [see Equations (1) and (2)].

Given the correlation parametersθh andph for h = 1, . . . , k, we can solve for
the values ofµ andσ 2 that maximize the likelihood function in closed form:

µ̂ = 1′R−1y

1′R−11
(5)

and

σ̂ 2 = (y− 1µ̂)′R−1(y− 1µ̂)
n

. (6)

Substituting Equations (5) and (6) into the likelihood function, we get the so-called
‘concentrated likelihood function’, which depends only upon the parametersθh and
ph for h = 1, . . . , k. This is the function that we maximize in practice to give us
the estimateŝθh andp̂h, and hence an estimate of the correlation matrixR. We then
use Formulas (5) and (6) to get the estimatesµ̂ andσ̂ 2.

Now the stochastic process model in Equations (1)–(3) is essentially a gener-
alized least squares (GLS) model with a simple set of regressors (just a constant
term) and a special correlation matrix that has unknown parameters and depends
upon distances between the sampled points. It is well known that, when the errors
are correlated, the GLS estimates ofµ andσ 2 are more efficient than the ordinary
least squares estimates, and our maximum likelihood estimates in (5) and (6) agree
with the GLS estimates (except for the usualn versusn− 1 in the denominator of
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Figure 2. A simple illustration of how correlation should affect prediction. The prediction at
x∗, being close to the data pointx(2), should be adjusted from the regression line to take into
account the positive residual atx(2).

σ̂ 2). But the impact of correlated errors onprediction is usually only discussed in
more advanced statistics books [e.g., 34, p. 280] and in the literature on kriging [12]
and computer experiments [29].

In order to get an intuitive understanding for how correlated errors should af-
fect prediction, consider the illustration in Figure 2 where there is only one input
variable,x. The point at which we are predicting,x∗, is close to the second data
point, x(2). Moreover, let us assume that the valuey(x(2)) lies significantly above
the estimated mean̂µ as shown in Figure 2. The fact thaty(x(2)) lies above the
regression line implies that the left-out terms inx, which constitute the error, have
a large positive value atx(2). Sincex∗ is close tox(2), it makes intuitive sense that
these left-out terms will also be positive (though not identical) atx∗. Thus our pre-
diction atx∗ shouldnot be constructed merely by pluggingx∗ into the regression
equation (which would just givêµ). Instead, it should be equal to the value of the
regression equation (µ̂) adjusted upward to take into account the correlation with
the error at the nearby pointx(2) where the residual is large and positive.

Formally, let r denote then-vector of correlations between the error term at
x∗ and the error terms at the previously sampled points. That is, elementi of r
is ri(x∗) ≡ Corr[ε(x∗), ε(x(i))], computed using the formula for the correlation
function in (1) and (2). It then turns out that the best linear unbiased predictor of
y(x∗) is

ŷ(x∗) = µ̂+ r ′R−1(y− 1µ̂). (7)

The derivation of this predictor can be found in [29]. On the right-hand side of
Equation (7), the first term,̂µ, is the result of simply pluggingx∗ into the regression
equation, and the second term represents the adjustment to this prediction based on
the correlation ofε(x∗)with the error terms at the sampled points. Note that if there
is no correlation(r = 0), then we just predict̂y(x∗) = µ̂. To see that the DACE
predictor interpolates the data, let us suppose we are making a prediction at thei-th
sampled point, so thatx∗ = x(i). In this case,r will be equivalent to thei-th column
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of R, which we may denote byRi . Hence,

r ′R−1 = (R−1r)′ = (R−1Ri)
′ = e′i , (8)

whereei is thei-th unit vector. Equation (7) then reduces to

ŷ(x(i)) = µ̂+ e′i(y− 1µ̂) = µ̂+ (y(i) − µ̂) = y(i).
Thus, the prediction atx(i) is the observed valuey(i), and the DACE predictor
interpolates the data.

The correlation of the errors should also affect our estimate of prediction accu-
racy. Going back to Figure 2, it makes intuitive sense that, sincex∗ is very close to
x(2), we should be much more confident in our prediction ofy(x∗) than we would
be if x∗ were far away from all the sampled points. This intuition is reflected in the
general formula for the mean squared error of the predictor, which we denote by
s2(x∗):

s2(x∗) = σ 2

[
1− r ′R−1r +

(
1− 1′R−1r

)2
1′R−11

]
. (9)

(A full derivation of this formula can also be found in [29].) In the expression for
s2(x), the term−r ′R−1r represents the reduction in prediction error due to the fact
thatx∗ is correlated with the sampled points. With no correlation, that is, ifr = 0,
then this adjustment would be zero. The term(1− 1′R−1r)2/1′R−11 reflects the
uncertainty that stems from our not knowingµ exactly, but rather having to esti-
mate it from the data. Finally, let us again suppose that we are making a prediction
at theith sampled point, so thatx∗ = x(i). As shown in (8) we would then have
R−1r = ei, so that

r ′R−1r = r ′ei = ri(x∗) ≡ Corr(x∗, x(i)) = Corr(x(i), x(i)) = 1 (10)

and

1′R−1r = 1′ei = 1. (11)

Substituting (10) and (11) into Equation (9), it follows thats2(x(i)) = 0. This is as
it should be: with a deterministic function, once we have sampled a point, we know
its value there. Thus, our uncertainty, as measured by mean squared error, should
be zero.

It will often be convenient for us to work with the square root of the mean
squared error,s = √

s2(x). This provides a root mean squared error (RMSE) for
measuring uncertainty in our predictions.

In summary, we have the following. The RMSE at a sampled point is zero. The
RMSE at a point very far away from the data (wherer ≈ 0) is aboutσ . And the
RMSE in between these extremes isσ reduced by an amount that depends on how
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close, and therefore how correlated, the point in question is to the sampled points.
Similar statements can be made about the DACE predictorŷ(x). At a sampled
point, ŷ(x) agrees with the data. At a point very far from the data (wherer ≈ 0),
ŷ(x) is aboutµ̂. In between these extremes,ŷ(x) is based on a smooth interpolation
of the data according to Equation (7).

The derivation of the predictor̂y(x) as the ‘best linear unbiased predictor’ is
not especially intuitive or enlightening and, for that reason, we have not repeated
it here (interested readers can find it in [29]). Fortunately, however, there is a more
intuitive way of deriving the predictor. As mentioned earlier, the parameters of the
model –µ, σ 2, θ1, . . . , θk andp1, . . . , pk – describe how the objective function
typically behaves. In particular, the parametersθ1, . . . , θk describe how sensitive
the function is to each input variable and the parametersp1, . . . , pk capture how
smoothly the function varies in response to each variable. When we estimate these
parameters by maximum likelihood, we are essentially finding values of the para-
meters that best describe the behavior of the function as evidenced in our sample.
When we predict the function’s value at some new pointx∗, we are – in a very
precise sense – computing the value of the function that is most consistent with
this typical behavior. Let us explain.

Suppose we just guessed the value of the function atx∗ to be some numbery∗
and then added this ‘pseudo observation’ as pointn+ 1. Having added this point,
we could compute the likelihood of the augmented sample. This likelihood would
measure how well the pseudo observation ‘fits’ with the original data, that is, the
likelihood that they were all generated from the same model. Of course, we could
guess many different values ofy∗, and for each guess we would get a different
likelihood value. It turns out that the value ofy∗ that maximizes this augmented
likelihood, and in this sense is most consistent with the function’s typical behavior,
is precisely the predictor in Equation (7). (See Appendix 1 for details.)

One weakness of DACE theory is that the predictor and its mean squared error
are derived under the assumption that the parametersσ 2, θ1, . . . , θk andp1, . . . , pk
areknown.In practice, the true values of these parameters are not known, and the
DACE formulas are used substituting theestimatedparameters. This theoretical
sleight of hand appears to have no serious consequences, although it probably leads
to a slight underestimation of prediction error in small samples. In what follows, we
will write σ 2, θ1, . . . , θk andp1, . . . , pk without ‘hats’ (̂ ), as if they are the true
values, since this is necessary for the formulas to be theoretically correct. How-
ever, the reader should understand that, for all calculations, we use the maximum
likelihood estimates of these parameters. In particular, the root mean squared error,
s(x), from (9) is also an estimate in practice, and we shall refer to it as the standard
error of prediction.

While the above discussion has hopefully made the DACE model conceptually
appealing, nothing is as convincing as seeing it in action. In Figure 3a we show the
contours of the Branin function, a well-known test function for global optimiza-
tion [14]. In Figure 3b, we show the contours of the predictor from a DACE model
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Figure 3. (a) Contours of the Branin test function; (b) contours of a DACE response surface
based on the 21 sampled points shown as dots; (c) a quadratic surface fit to the 21 points; (d)
a thin-plate spline fit to the 21 points.

based only on the 21 points shown as dots. This response surface was created by
estimating the parametersµ, σ 2, θ1, θ2, p1 andp2 via maximum likelihood and
then calculating the predictor in (7) over a fine grid for the purpose of generating
the contour plot. The DACE predictor is so accurate that some people do not even
notice the differences between the contours in Figures 3a and 3b. It is clear that
we should be able to locate the optimum quite accurately with only a few more
function evaluations. In contrast, Figure 3c shows the result of fitting a general
quadratic surface and Figure 3d shows a thin-plate spline. The quadratic function
completely misses the minimum in the lower center. The thin-plate spline, while
better than the quadratic, still does not capture the shape of the function as well as
the DACE interpolator.

There is an interesting relationship between the DACE predictor and the thin-
plate spline. To see this, let us write the DACE predictor in (7) as

ŷ(x) = µ̂+ c′r = µ̂+
n∑
i=1

ciri(x),

wherec=R−1(y−1µ̂) is a vector of constants and whereri(x)=Corr[ε(x), ε(x(i))]
for i = 1, . . . , n. Thus, we see that the DACE predictor is a linear combination of
‘basis functions’ri(x) for i = 1, . . . , n that interpolates the data.
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Figure 4. (a) Contours of the Branin test function; (b) a thin-plate spline fit to the 21 points;
(c) a thin-plane spline fit using scaling suggested by the estimated DACE parameters.

Now the thin-plate spline predictor shown in Figure 3d is also a linear combi-
nation of basis functions. These functions include polynomial terms and terms of
the form

ϕ(‖ x− x(i) ‖) (i = 1, . . . , n), (12)

where‖ · ‖ is the Euclidean distance norm and

ϕ(t) = t2 log(t). (13)

Given that both the DACE predictor and the thin-plate spline can be thought
of as basis-function methods, it follows that the differences in their predictive
accuracy, as seen in Figure 3, must be due to the difference in these basis functions.
And that is exactly the case. The basis functions for the thin-plate spline are fixed
in advance, being specified by Equations (12) and (13). The basis functions in
the DACE predictor, however, depend upon the correlation parametersθh andph
for h = 1, . . . , k, and these are ‘tuned’ to the data during the maximum likelihood
estimation. This is one explanation for the superior accuracy of the DACE predictor
in Figure 3.

In fact, one can get much better results from the thin-plate spline if one first
scales the data in a way suggested by the estimated DACE parameters. This is
shown in Figure 4 where part (a) reproduces the Branin function, part (b) shows
the spline with no scaling, and part (c) shows the spline with scaling. The scaled
spline, though not as ‘smooth’, is nevertheless more accurate, though still not as
accurate as the DACE surface.

Readers familiar with traditional design of experiments (e.g., the textbook by
Box et al. [8]) may wonder how these techniques are related to DACE. In both
methods, the motivation is to assess how the performance of an engineering design
depends upon certain factors of interest. In standard design of experiment (DOE)
methods, it is assumed that the data come from physical observations subject to
random error. This error is due to the presence of other factors, in addition to those
under study, that cannot be easily controlled or measured. As a result, much of the
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effort in standard DOE is on minimizing the effect of uncontrolled factors by care-
ful blocking and randomization of run order. Because substantial noise is assumed
to be present, it is unrealistic to model complex nonlinear behavior, and so simple
linear or quadratic regression models are usually employed (they are implied if
not always explicitly written down). To fit these simple regression models, designs
with two or three levels for each factor are sufficient.

In a computer experiment, the situation is quite different. All factors are control-
lable and run order is irrelevant. Moreover, with computer models, it is common to
allow the factors to vary over wider ranges than in physical experiments, and over
such large ranges the function will be more nonlinear. To capture this nonlinearity,
we use the stochastic process model discussed above in conjunction with designs
that vary each factor over many levels. This motivates the use of space-filling de-
signs such as Latin hypercubes [22], an example of which is the 21-point design in
Figure 3b.

We now summarize the similarities and differences between the standard linear
regression model and the DACE model. The two models share a common math-
ematical framework consisting of regressors and errors, but the emphasis is quite
different. Linear regression focuses entirely on the regressors and their coefficient
estimates, and makes simplistic assumptions about the errors (independence). In
contrast, DACE makes simplistic assumptions about the regressors (just a constant
term) and focuses entirely on the correlation structure of the errors. Thus, regres-
sion and DACE are probably best thought of as diametric opposites. Regression is
about estimating regression coefficients that (together with the assumed functional
form) completely describewhat the function is. DACE is about estimating correla-
tion parameters that describehow the function typically behaves. As we have seen,
DACE makes predictions by interpolating and extrapolating from the data in a way
most consistent with this estimated typical behavior.

3. Model validation

We saw in the previous section that the DACE model worked well for the Branin
test function, giving good prediction accuracy with just 21 evaluations. We assessed
this accuracy, however, by comparing the contour plot from the DACE model with
thetruecontours (Figure 3). Obviously, this is not a practical procedure. After all, if
it were feasible to compute the true contours, we would not need any approximation
in the first place. It is practical, however, to select a few additional points as a
‘validation’ or ‘test’ sample and compare actual and predicted values on this small
sample. But there is an even better procedure, called ‘cross validation,’ that allows
us to assess the accuracy of the model without sampling any points beyond those
used to fit the model.

The basic idea of cross validation is to leave out one observation, sayy(x(i)),
and then predict it backbased only on then − 1 remaining points. We call this
prediction the ‘cross-validated’ prediction ofy(x(i)) and denote it bŷy−i (x(i)). The
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Figure 5. In ordinary cross validation, one observation (here the second) is left out and pre-
dicted back using the remainingn−1 observations. The cross-validated confidence interval is
the cross-validated prediction plus or minus three standard errors.

subscript−i emphasizes that observationi is not used in making the prediction. In
principle, when making these cross-validated predictions, one should re-estimate
all the DACE parameters using the reduced sample. However, unless there are very
few observations or major outliers, dropping a single observation usually has a
negligible effect on the maximum likelihood estimates. What we do in practice,
therefore, is to use the DACE parameters estimated using all the observations, but
only use the remainingn− 1 points in computing the correlation matrixR and the
vectorsr andy in the predictor (7).

In addition to the cross-validated prediction atx(i), we also get a cross-validated
standard error of prediction analogous to (9), which we denotes−i (x(i)). Together,
these two quantities can be used to compute a confidence interval fory(x(i)) using
the mean prediction plus or minus three standard errors (see Figure 5). Since the
DACE model is approximately 99.7% confident thaty(x(i)) lies in this interval, an
attractive model-validation test is to see if the observedy(x(i)) does indeed lie in
this interval. Since each of then points can be left out in this procedure, we can do
this testn times.

Instead of actually drawing confidence intervals, it is more convenient to com-
pute the number of standard errors that the actual value is above or below the
predicted value:

y(x(i))− ŷ−i(x(i))
s−i (x(i))

.

We will refer to this quantity as the ‘standardized cross-validated residual.’ If the
model is valid, the value should be roughly in the interval[−3,+3].

To illustrate these ideas, Figure 6 shows the diagnostic tests for a DACE model
fit to the Goldstein–Price (GP) test function [14]. The surface was based on the
same 21-point experimental design we used for the Branin function (see Figure 3b).
In Figure 6a we plot the actual function valueversusthe cross-validated prediction.
If the model were good, the points should lie on a 45◦ line; in this case, the relation-
ship is very weak. Figure 6b plots the standardized cross-validated residuals versus
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Figure 6. Diagnostic tests for the Goldstein–Price function: (a) actual function valuesversus
cross-validated predictions; (b) standardized cross-validated residualsversuscross-validated
predictions; (c) ordered standardized residualsversusstandard normal quantiles.

the cross-validated predictions. Two problems are apparent. First, there is the one
extreme standardized residual with a value around 4. Second, the remaining residu-
als tend to decrease with the predicted function values, suggesting a systematic bias
in prediction. Finally, Figure 6c plots the standardized cross-validated residuals
versus the values that would be expected from a random sample ofn independent
standard normal variables (the so-called Q-Q plot). If the standardized residuals
act like normal deviates, these points should lie close to the 45◦ line. The extreme
residual is again apparent.

When the diagnostic plots fail to show a good fit, as here, it is sometimes
possible to improve the fit of the DACE model by transforming the function. We
typically try the log transformation, ln(y), or the inverse transformation,−1/y.
For the GP function, the log transformation works well. Figure 7 shows the same
diagnostic plots after replacing all the function values by their logs. As can be seen
in Figure 7a, the prediction accuracy is better, but still not great. The important
thing, however, is that the model correctly anticipates the magnitude of the predic-
tion errors. This is made clear in Figure 7b where the standardized cross-validated
residuals are all in the interval[−3,+3]. Moreover, the Q-Q plot in Figure 7c
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Figure 7. Diagnostic tests for the log-transformed Goldstein–Price function: (a) actual func-
tion values versus cross-validated predictions; (b) standardized cross-validated residuals
versuscross-validated predictions; (c) ordered standardized residualsversusstandard normal
quantiles.

shows much better agreement than before. The diagnostic plots suggest that, even
on the logarithmic scale, the GP function is difficult to model accurately with just
21 points; nevertheless, the model captures these difficulties through the standard
error.

4. Global optimization

4.1. USING RESPONSE SURFACES FOR GLOBAL SEARCH

The simplest way to use response surfaces for optimization is to fit a surface and
then find the minimum of the surface. But as shown in Figure 8 this process, even if
iterated, can easily lead to a local minimum. In Figure 8, the (unknown) objective
function is shown as the solid line, and we assume that we have evaluated this
function at the five points shown as dots. The dotted line is the DACE predictor
fit to these points. The DACE predictor is minimized almost exactly at the local
minimum (x = 2.8). If we sample the function at the minimum of the DACE



470 D.R. JONES, M. SCHONLAU AND W.J. WELCH

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 8. The solid line represents an objective function that has been sampled at the five
points shown as dots. The dotted line is a DACE predictor fit to these points.
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Figure 9. The DACE predictor and its standard error for a simple five-point data set.

surface, update the surface, and iterate, we are clearly only going to get a highly
accurate estimate of this local minimum.

The problem with simply finding the minimum of the DACE surface is that
this procedure does not acknowledge our uncertainty about that surface. It puts too
much emphasis on exploiting the predictor and no emphasis on exploring points
where we are uncertain. To eliminate this problem, we must put some emphasis
on sampling where we are uncertain, as measured by the standard error of the
predictor.

Figure 9 shows the standard error of the predictor. Because of the large number
of sampled points aroundx = 2, our uncertainty, and hence the standard error of
the predictor, is very low in that region. In fact, the standard error in this region is
so low that, in order for the reader to see it, we have had to magnify it in an inset.
Notice that the standard error does indeed go to zero at all the sampled points, as
it should. In rises up in between, but sometimes only by a little. The standard error
is maximized aroundx = 8.3, suggesting that this might be a good place to search
from the point of view of global search. But sampling there would be equivalent
to putting all our emphasis on global search, and this is just as bad (if not worse)
than putting all our emphasis on local search. What we need is a figure of merit
thatbalanceslocal and global search.
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Figure 10. Our uncertainty about the function’s value at a point (such asx = 8 above) can
be treated as if the value there were a realization of a normal random variable with mean and
standard deviation given by the DACE predictor and its standard error.

A highly attractive figure of merit that balances local and global search is ‘ex-
pected improvement’. This concept can be found in the literature as early as 1978
(e.g., Mockus et al. [24]). The expected improvement criterion is computed as
follows. Letfmin = min(y(1), . . . , y(n)) be the current best function value. Before
we sample at some pointx, we are uncertain about the valuey(x). Of course, there
is nothing random abouty(x); we simply do not know what it is. Let us model our
uncertainty aty(x) by treating it as the realization of a normally distributed random
variableY with mean and standard deviation given by the DACE predictor and its
standard error. This idea is illustrated in Figure 10 where, at the pointx = 8,
we have drawn a normal density function with the mean and standard deviation
suggested by the DACE model. If we treat the function’s value atx = 8 as a real-
ization of the random variableY with the density function shown in Figure 10, then
there is some probability that the function’s value atx = 8 will be better than (or
‘improve upon’) our current best function valuefmin. This is true because the tail of
the density function shown in Figure 10 extends below the liney = fmin. Different
amounts of improvement, or different distances below the liney = fmin, are asso-
ciated with different density values. If we weight all these possible improvements
by the associated density value, we get what we call ‘expected improvement’.

Formally, the improvement at the pointx is I = max(fmin− Y,0). This expres-
sion is a random variable becauseY is a random variable (it models our uncertainty
about the function’s value atx). To obtain the expected improvement we simply
take the expected value:

E[I (x)] ≡ E
[
max(fmin− Y,0)

]
. (14)

To compute this expectation, let us introduce the compact notationŷ ands to denote
the DACE predictor and its standard error atx. In this notation,Y is Normal(ŷ, s2).
By expressing the right-hand side of (14) as an integral, and applying some tedious
integration by parts, one can express the expected improvement in closed form:

E[I (x)] = (fmin− ŷ)8
(
fmin− ŷ

s

)
+ sφ

(
fmin− ŷ

s

)
. (15)
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Figure 11. (a) The expected improvement function when only five points have been sampled;
(b) the expected improvement function after adding a point atx = 2.8. In both (a) and (b) the
left scale is for the objective function and the right scale is for the expected improvement.

In the above,φ(·) and8(·) are the standard normal density and distribution func-
tion. Note that it iss, not s2 , that appears in Equation (15).

Figure 11a shows the expected improvement function for our simple one-dimen-
break sional example (the value of the expected improvement is shown on the
right-hand scale). Surprisingly, it has two peaks, one atx = 2.8 and another at
x = 8.3. The peak atx = 2.8 is higher, so we would sample there. But on the
next iteration, as shown in Figure 11b, the expected improvement is maximized at
x = 8.8, and thus we are driven to search globally.

As this example illustrates, the expected improvement function is highly multi-
modal. In fact, it is easy to show that expected improvement is zero at the sampled
points and is positive in between (though perhaps very small). As in Figure 11,
it is also common for there to be large areas where the expected improvement is
essentially zero and so appears quite ‘flat’. Both of these features make optimizing
the expected improvement function with standard multistart approaches difficult
and potentially unreliable.

Although multimodal, the expected improvement function is in closed form, and
so we can hope to exploit its structure when trying to find the maximum. As we
will soon show, it turns out that we can maximize E[I (x)] to guaranteed optimality
using a branch-and-bound algorithm. To use branch and bound, we need some way
to compute an upper bound on E[I (x)] over any rectangular subregion defined by
`h ≤ xh ≤ uh for h = 1, . . . , k. The computation of these bounds is greatly
facilitated by the fact that E(I ) is monotonic inŷ and ins. In fact, if one computes
the derivative of E(I ) as given in (15) with respect tôy or s, one gets several terms
that cancel, resulting in the surprisingly simple expressions:

∂E(I )

∂ŷ
= −8

(
fmin− ŷ

s

)
< 0
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and

∂E(I )

∂s
= φ

(
fmin− ŷ

s

)
> 0.

Thus, we see that the expected improvement is larger the lower isŷ and the
higher iss. Because of this monotonicity, to find an upper bound on E[I (x)] over
a box forx it suffices to find a lower bound on̂y and an upper bound ons over
the box – call themyL and sU – and then compute E(I ) using Equation (15)
substitutingŷ = yL ands = sU .

Since some readers may not be interested in the details of how these bounds
yL and sU are constructed, we will defer our discussion of them to Sections 4.3
and 4.4. In the next subsection, we will move ahead and discuss how the exact
maximization of expected improvement is used to construct an optimization algo-
rithm called EGO (for Efficient Global Optimization). We will also show results of
applying EGO to a few standard test problems.

4.2. THE EGO ALGORITHM

The EGO algorithm begins by fitting a DACE model to a set of initial points speci-
fied by what we call a ‘space-filling’ experimental design. The 21 dots in Figure 3b,
for example, are a space-filling design in two dimensions. These space-filling de-
signs are constructed using a special code developed by Welch that searches for a
Latin hypercube design ink dimensions that has the property that all the one- and
two-dimensional projections are nearly uniformly covered. Based on past experi-
ence, we find that aboutn = 10k points are needed in the initial design. However,
in order to have a convenient, finite-decimal value for the spacing between points,
we usually deviate slightly from this ‘10k’ rule. For example, in two dimensions
we use 21 points so that the inter-point spacing is 1/(n− 1) = 1/20= 0.05 of the
range of each variable. Similarly, in three dimensions we use 33 points and in six
dimensions we use 65 points.

After evaluating the function on the initial design, we fit the parameters of a
DACE model using maximum likelihood estimation. We then apply the diagnostic
tests of Section 3. If the plots look satisfactory (the cross-validated standardized
residuals are less than 3 in magnitude, etc.), we say the DACE model is satisfactory.
Otherwise, we re-fit the DACE model after applying a log or inverse transformation
(−1/y) to the dependent variable. If one of these transformations gives satisfactory
diagnostic plots, then we use the transformed function in the rest of the analysis.
(If no satisfactory transformation can be found, we would not continue with our
method, but this does not occur in the examples given below.)

Once the initial DACE surface is fit and any transformation made, we proceeded
iteratively. First, we maximize the expected improvement using the branch-and-
bound algorithm. If the expected improvement is less than 1% of the best cur-
rent function value (on the untransformed scale), we stop. Otherwise we sample
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the function where expected improvement is maximized, re-estimate the DACE
parameters with maximum likelihood, and iterate.

We now apply EGO to four test functions from [14]: the Branin function, the
Goldstein–Price function, the Hartman 3 function and the Hartman 6 function. The
dimensions of these problems are 2, 2, 3 and 6, respectively.

For all these problems, we fixph = 2 in the correlation function given in
Equations (1) and (2). We do this because one of our best bounding methods,
discussed later in Section 4.4, is currently limited to this special case. While this
bounding technique can be extended to handle the caseph < 2, the extension is
more complicated and we have not yet implemented it.

For the Goldstein–Price and Hartman 6 functions, the diagnostic tests sug-
gest that the functions should be log-transformed: ln(y) for the Goldstein–Price
function and− ln(−y) for the Hartman 6 function.

Table 1. Test function results for the EGO algorithm.

Test Evaluations to meet Actual error Evaluations required

problem stopping criterion when stopped for 1% accuracy

Branin 28 0.2% 28

Goldstein–Price 32 0.1% 32

Hartman 3 34 1.7% 35

Hartman 6 84 1.9% 121

Table 1 shows the results of applying EGO to the test functions.
For each function, we report the number of evaluations when expected improve-

ment is less than 1% of the current best function value, that is, when the stopping
criterion is satisfied. We also report the actual relative error on convergence. Note
that the algorithm stops when theestimatedrelative accuracy (based on the ex-
pected improvement criterion) is 1% or less. Thetruerelative accuracy at this point,
however, may differ from 1%. To facilitate comparisons with other algorithms, the
last column of Table 1 shows the number of evaluations that are required to achieve
an actual relative error of 1% or better. Note also that all relative errors shown
are with respect to the original, untransformed scale. When using a natural log
transformation, we stop when expected improvement on thelog scaleis less that
0.01 inabsoluteterms, because this is approximately equal to a 1% relative change
on the untransformed scale.

For the Hartman 3 and Hartman 6 functions, the actual relative error on con-
vergence is slightly greater than the target of 1%. There are two reasons why this
might happen. First, the standard error of the predictor does not take into account
the fact that the correlation parameters (theθh’s, ph’s andσ 2) are not known with
certainty but rather are estimated. As a result, the standard error may be a bit too
small, causing us to underestimate expected improvement.
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Second, our expected improvement criterion estimates the gain from sampling
oneadditional point. We then find the maximum, over all points, of this expected
improvement quantity. What we really want, however, is not the expected improve-
ment at any one point, but rather the expected improvement from sampling all the
remaining points, which is obviously larger. Thus we see, once again, that our
expected improvement criterion understates the true potential gain from further
search.

To compensate for this inevitable underestimation of the potential gain from fur-
ther search, one can use a lower tolerance than actually desired (e.g., 0.1% instead
of 1%) and/or require the convergence tolerance to be met for several iterations in
a row. For example, if one insists that the 1% criterion be met two times in a row,
then the actual relative errors for the Hartman 3 and Hartman 6 functions become
0.5% and 0.6%, respectively.

To give the reader a feeling for the computation times, on a PC with a Pentium
II 266 processor, the first iterate (both maximum likelihood and branch and bound)
requires 139 s for the Branin function, 6 s for the Goldstein–Price, 40 s for the
Hartman 3 and 135 s for the Hartman 6. In every case, the iterations take longer
as the search progresses. For example, computing the last iterate for the Hartman 6
function takes 262 s.

For the Hartman 6 problem, the branch-and-bound algorithm is too slow to run
to full convergence. Instead, the results shown in Table 1 are obtained using a
‘limited memory’ branch-and-bound algorithm that only keeps the best 50 nodes
in the tree and uses a maximum of 500 iterations. The branch-and-bound solution
is then fine-tuned using local search to get our final estimate of where expected
improvement is maximized.

Although the limited-memory branch and bound speeds up the search, it also
runs the risk of not finding the true maximum of expected improvement. To check
the accuracy of this limited memory version, we also ran it on the two- and three-
dimensional problems where we could maximize expected improvement to full
optimality. In every case we obtained the same results as in the full branch and
bound (but with less time). Thus, we have some reason to believe that the limited
memory version is an effective expedient for speeding up the EGO algorithm.

Figure 12 shows the first three iterations of EGO on the Branin function. The
open squares are the initial sample of 21 points and the solid squares are the first
three iterates from the maximization of expected improvement. The contours are
those of the true Branin function. With these first three iterates, the EGO algorithm
essentially finds all three global minima. Only four more iterates are required to
meet the stopping criterion.

We have not focused on proving convergence theorems for EGO, though we
believe that such theorems should be possible. For example, it should be possible
to prove that EGO must converge in the limit as the number of function evaluations
goes to infinity. Specifically, we believe that the following conjecture is true:
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Figure 12. Contours of the Branin function with the initial sample (open squares) and the first
three points selected by the expected improvement maximization (filled squares).

CONJECTURE 1. Assume that: (i) the parametersθh are strictly bounded away
from zero, and (ii) the objective function is continuous and defined over a box with
finite lower and upper bounds. Then the search points generated by EGO (if run
without stopping) will form a dense subset of the feasible region.

Assumption (i) is needed because, ifθh = 0, then variablexh is irrelevant to
the predictor, standard error, and expected improvement. Thus, there is no rea-
son for the search to be dense with respect to this variable. Although we have
not proved this conjecture, interested readers might consult the work of Marco
Locatelli [20] who has proved a similar theorem for a related one-dimensional
Bayesian algorithm.

4.3. BOUNDING THE MEAN SQUARED ERROR VIA CONVEX RELAXATION

As mentioned earlier, to implement the branch-and-bound algorithm we need a
lower bound onŷ(x) and an upper bound ons(x) or, equivalently, ons2(x). We
have explored two ways to compute these bounds. The first is fairly standard in the
literature and is based on convex relaxation. The second is unusual because it is
based on a nonconvex relaxation. It turns out that the convex relaxation provides
the tightest bound fors2(x), and we will discuss this bound first. The nonconvex
relaxation turns out to be better at boundingŷ(x); it is discussed in Section 4.4.

To find an upper bound ons2(x) over a box defined bỳh ≤ xh ≤ uh for
h = 1, . . . , k, we need to find an upper bound on the solution to the following
problem:

PROBLEM 1. Chooser = (r1, . . . , rn) andx = (x1, . . . , xk) to

Maximize σ 2

[
1− r ′R−1r + (1− 1′R−1r)2

1′R−11

]
subject to ln(ri) = −∑k

h=1 θh|xh − x(i)h |ph (i = 1, . . . , n)

`h ≤ xh ≤ uh (h = 1, . . . , k).
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The reader will recognize the objective function as the formula given in Equa-
tion (9) for the mean squared error,s2(x), of the predictor. The first set of con-
straints forcesr to take on the values defined by the correlation function in Equa-
tions (1) and (2).

Problem 1 is difficult both because the objective function is potentially non-
convex and because the equality constraints are nonconvex. Before we show how
we handle this, it will be convenient to write Problem 1 in an equivalent but more
standard form. First, note that the lower and upper bounds onx1, . . . , xk imply,
through an interval-analysis calculation, lower and upper bounds on the variables
r1, . . . , rn. This gives us simple bounds on all the variables. Since we desire an
inequality-constraint formulation, we can replace each equality constraint with two
inequalities of opposite sense (both≤ and≥). Finally, we can convert the problem
to minimization by multiplying the objective function by−1. All this gives the
following problem, which is equivalent to Problem 1.

PROBLEM 2. Chooser = (r1, . . . , rn) andx = (x1, . . . , xk) to

Minimize −σ 2

[
1− r ′R−1r + (1− 1′R−1r )2

1′R−11

]
subject to ln(ri)+

k∑
h=1

θh|xh − x(i)h |ph ≤ 0 (i = 1, . . . , n)

− ln(ri)+
k∑
h=1

θh

(
−|xh − x(i)h |ph

)
≤ 0 (i = 1, . . . , n)

`h ≤ xh ≤ uh (h = 1, . . . , k)

rLi ≤ ri ≤ rUi (i = 1, . . . , n).

To deal with the nonconvexity of the objective function, we use the method
proposed by Androulakis et al. in theirαBB algorithm [2]. This method is based
on finding the Hessian of the objective function and examining its eigenvalues.
Now the Hessian of the objective function in Problem 2 is an(n + k) × (n + k)
matrix since there aren + k variables:r1, . . . , rn andx1, . . . , xk. However, since
x does not appear in the objective function, only the upper leftn× n corner of the
Hessian is non-zero. This upper-left portion is

2σ 2

[
R−1 − (R

−11)(R−11)′

1′R−11

]
. (16)

If all the eigenvalues of this upper-left portion of the Hessian were nonnegative,
then the objective function would be positive semi-definite and we would have no
problem. But what if there is a negative eigenvalue? The key insight of theαBB
algorithm is that we can overpower this negative eigenvalue and simultaneously ob-
tain a valid underestimator by adding a specially constructed term to the objective
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function. In our case, we would modify the objective function to be

−σ 2

[
1− r ′R−1r + (1− 1′R−1r)2

1′R−11

]
+ α

∑
i

(ri − rLi )(ri − rUi ). (17)

The additional ‘α term’ adds a constant to the diagonal of the upper-leftn× n
corner of the Hessian. Thus, if we set

α = max
{

0,−λmin

2

}
,

whereλmin is the minimum eigenvalue of the matrix in Equation (16), then the
Hessian of the modified objective function will be positive semi-definite. Moreover,
since each term(ri− rLi )(ri− rUi ) is negative, the modified objective function must
be less than or equal to the original one. In short, by replacing the original objective
function in Problem 2 by the modified one in (17), we will have relaxed the problem
and made the objective function convex.

Unfortunately, this is not enough, because the constraints in Problem 2 are still
nonconvex. We eliminate this problem by replacing the nonlinear terms in the
constraints with linear underestimators. For example, the nonlinear and noncon-
vex term ln(ri) in the first set of constraints in Problem 2 is replaced by a linear
functiona+ bri that underestimates it over the interval[rLi , rUi ]. This is illustrated
in Figure 13.

Similar linear underestimators are used to replace the other nonlinear terms in
Problem 2:|xh − x(i)h |ph in the first set of constraints and− ln(ri) and−|xh−x(i)h |ph
in the second set. Some of these underestimators are chords, like that shown in
Figure 13, and some are tangent lines (we compute the tangents at the midpoint
of the interval forxh or ri). Because we are underestimating the nonlinear terms,
we are making the constraints easier to satisfy, and therefore relaxing the problem.
Note that it is not strictly necessary to underestimate all the nonlinear terms, since
some of them, such as− ln(ri) are actually convex. We use linear underestimators
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Figure 13. Linear underestimator for the nonlinear term ln(ri).
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for all the nonlinear terms because this leads to alinearly constrained problem that
can be solvedmuchfaster than the relaxation that retains some nonlinearities in the
constraints.

When all this is done, we have a relaxation of the original problem with convex
objective function, linear constraints, and simple bounds. This relaxed problem can
be solved with any good local optimizer. The solution to this relaxed problem, with
a sign reversal (to go from minimization back to maximization), is an upper bound
to Problem 1 and hence an upper bound ons2(x).

Having obtained a convex-relaxation bound ons2(x), the corresponding convex-
relaxation bound on̂y(x) is almost trivial. This is true becausêy(x) is a linear
function ofr :

ŷ(x) = µ̂+ c′r ,

where

c= R−1(y− 1µ̂).

Thus, to find a lower bound on̂y(x), we need merely minimize this linear func-
tion subject to the linear constraints and simple bounds just discussed for bounding
s2(x) – that is, we need merely solve a LP! In practice, however, this lower bound
on ŷ(x) is less tight than the bound, based on a nonconvex relaxation, discussed in
the next subsection.

4.4. BOUNDING THE PREDICTOR VIA NONCONVEX RELAXATION

In the special case when the parametersph in the correlation function are equal
to 2, it is possible to relax the expression forŷ(x) to a sum of nonconvex, one-
dimensional functions that can be easily optimized. When everyph = 2, the
correlation function simplifies to

ri(x) ≡ Corr[ε(x), ε(x(i))] = exp

[
−

k∑
h=1

θh

(
xh − x(i)h

)2
]
.

The predictorŷ(x) is just a linear combination of theseri(x) functions using the
constantsc mentioned at the end of the last subsection:

ŷ(x) = µ̂+
n∑
i=1

ciri(x).

Now let zi(x) be the quadratic function

zi(x) ≡
k∑
h=1

θh

(
xh − x(i)h

)2
. (18)
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If x is restricted to a subregion defined by`h ≤ xh ≤ uh, then these bounds onx
will naturally induce lower and upper bounds onzi(x) via an interval analysis of
Equation (18). Let us call these boundszLi andzUi . Using thesezi(x) functions, let
us rewrite the predictor as

ŷ(x) = µ̂+
n∑
i=1

ci exp[−zi(x)].

We now find linear functionsai + bizi that underestimate the termsci exp(−zi)
over the interval[zLi , zUi ]. If ci ≥ 0 the linear underestimator will be a tangent to
ci exp(−zi) at the midpoint of the interval[zLi , zUi ]. If ci < 0 the underestimator
will be a chord. If we substitute these linear underestimators into the predictor, we
obtain an expression that must always be less than or equal toŷ(x):

ŷ(x) = µ̂+
n∑
i=1

ciri(x) = µ̂+
n∑
i=1

ci exp [−zi(x)]

≥ µ̂+
n∑
i=1

[ai + bizi(x)]

= µ̂+
n∑
i=1

[
ai + bi

k∑
h=1

θh

(
xh − x(i)h

)2
]

= µ̂+
n∑
i=1

ai +
k∑
h=1

θh

n∑
i=1

bi

(
xh − x(i)h

)2
. (19)

Now note that the underestimator in the final expression is a linear combination of
terms

n∑
i=1

bi

(
xh − x(i)h

)2
.

Furthermore, each term is a quadratic inonevariable,xh. A quadratic in one vari-
able can easily be minimized over the interval[`h, uh], regardless of whether the
quadratic is convex or concave. Plugging thexh’s that minimize these quadratics
into the last line of (19) gives us a valid lower bound onŷ(x). This bound is usu-
ally (but not always) stronger than the bound onŷ(x) based on convex relaxation
described at the end of the previous subsection. Moreover, it is incredibly fast to
compute. To save time, therefore, we only use this bound in EGO.

It turns out that we can compute an upper bound ons2(x) using a similar non-
convex relaxation. However, for reasons we do not fully understand, this ‘noncon-
vex’ bound ons2(x) is much weaker than the ‘convex’ one described in Section 4.3,
and hence we do not use it in EGO.
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5. Visualization

One of the advantages of using response surfaces for optimization is that one not
only gets an estimate of the optimum, but also gets a fast approximation to the
computer code. This fast approximation (the predictor from the DACE model) can
then be used to help identify important factors, visualize the nature of the input–
output relationships, and quantify tradeoffs between multiple objectives.

We identify key factors by decomposing the total variation of the predictor into
contributions from individual variables and from pairs of variables (interactions).
To explain how this is done, we will consider the simplest case in which there are
just two variables, both of which are restricted to the unit interval[0,1]. The ex-
tension to more than two variables and general bounds will be obvious, but writing
down the general case requires long, messy equations that obscure the simplicity
of the ideas.

To assess how variablex1 affects the output, we simply integrate out all the other
variables (justx2 in our simple two-variable case). This gives a function solely of
x1 which we denote bya1(x1):

a1(x1) =
∫ 1

0
ŷ(x1, x2) dx2.

Intuitively, the average effecta1(x1) tells us the ‘typical value’ of the objective
function for a given value ofx1, averaging out the variation generated by the dif-
ferent possible values ofx2. It is also known as the ‘main’ effect ofx1. The average
or main effect ofx2, denoteda2(x2), can be defined analogously.

The average effect of apair of variables is defined by integrating out the re-
mainingk − 2 variables. In the simple two-variable case we are considering, there
are no other variables to integrate out. Thus, in this simple case, the average effect
of variablesx1 andx2, denoteda12(x1, x2), is the same as the predictorŷ(x1, x2).
We will still write it as a12(x1, x2), however, in order to make it easier to see how
the formulas generalize.

The final quantity of interest is the overall average of the predictor, denoteda0.
This is found by integrating outall variables (here just two):

a0 =
∫ 1

0

∫ 1

0
ŷ(x1, x2) dx1 dx2.

Now consider the identity

ŷ(x1, x2) = a0

+ [a1(x1)− a0] + [a2(x2)− a0]
+ {a12(x1, x2)− a0− [a1(x1)− a0] − [a2(x2)− a0]}. (20)

This is seen to be true by collecting the coefficients ofa0, a1, anda2, all of which
turn out to be zero. The only term remaining isa12(x1, x2) which, as mentioned
above, is equal tôy(x1, x2).
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The three lines on the right-hand side of (20) involve terms of increasing com-
plexity. The first line is the part of̂y(x1, x2) explained by the overall mean. Having
taken this into account, we are left trying to explainŷ(x1, x2) − a0. The second
line can be interpreted as the portion of thisremainderexplained by the average
effect ofx1 and the average effect ofx2. Having taken these further components into
account, we are left trying to explain the remainderŷ(x1, x2)−a0−[a1(x1)−a0]−
[a2(x2)−a0], or the third line in (20). This component represents the non-additivity
or interaction effect. Now let us rewrite Equation (20) as

ŷ(x1, x2)− a0 =[a1(x1)− a0] + [a2(x2)− a0]
+ {a12(x1, x2)− a0− [a1(x1)− a0] − [a2(x2)− a0]} . (21)

If we square and integrate the left-hand side, we get, by definition, the total variance
of the predictor:

Total variance=
∫ 1

0

∫ 1

0
[ŷ(x1, x2)− a0]2 dx1 dx2.

Squaring and integrating the right-hand side generates a number of terms. One of
them will be∫ 1

0

∫ 1

0
[a1(x1)− a0]2 dx1 dx2 =

∫ 1

0
[a1(x1)− a0]2 dx1.

This term can be interpreted as the component of the the total variance of the
predictor explained just by variablex1. Similarly, we have the term∫ 1

0

∫ 1

0
[a2(x2)− a0]2 dx1 dx2 =

∫ 1

0
[a2(x2)− a0]2 dx2,

which is the component of variance explained just by variablex2. Finally, we have
the term∫ 1

0

∫ 1

0
{a12(x1, x2)− a0− [a1(x1)− a0] − [a2(x2)− a0]}2 dx1 dx2. (22)

This can be interpreted as the variance explained by the interaction ofx1 andx2.
The reader will probably have noticed that we have ignored the ‘cross-product

terms’ that are created when we square and integrate the right-hand side of (21).
All of these cross-product terms, however, reduce to zero. For example,∫ 1

0

∫ 1

0
[a1(x1)− a0][a2(x2)− a0] dx1 dx2

=
∫ 1

0
[a1(x1)− a0] dx1

∫ 1

0
[a2(x2)− a0] dx2

= [a0 − a0][a0 − a0] = 0.
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Figure 14. Actual VCH valuesversuscross-validated predictions in the integrated-circuit
application.

Thus, we see that the total variance in the predictor can be decomposed into com-
ponents due to main effects and interactions. By dividing by the total variance, we
can express these components as percentages. When there are only two variables,
the percentages for the main effects and two-variable interactions will add to 100%.
When there are more than two variables, these percentages will generally add up
to less than 100%, the remainder being due to interactions of higher degree.

Computing this variance decomposition requires us to compute many integrals,
some of which seem, on the surface, to be multidimensional integrals [e.g., Equa-
tion (22)]. However, if all the variables have simple upper and lower bounds, so
that the feasible region is a hyperbox, and if we use the correlation function shown
in Equations (1) and (2), then it turns out that all these multidimensional integrals
reduce to one-dimensional integrals. The reason is that all the integrands are sums
of products of one-dimensional functions in thexh’s, and hence the integral is a sum
of products of the one-dimensional integrals (as long as the limits of integration do
not depend upon the variables). Thus, computing the variance decomposition is
usually not a problem.

To illustrate these methods, we will discuss an application in which DACE mod-
els were used to investigate how the performance of an integrated circuit depended
upon 36 input variables [3]. The integrated circuit was modeled with a computer
program that had a running time of a few minutes. There were several performance
measures for the circuit, but we will consider just one called VCH, a voltage spike
that was to be minimized. (We use the same variable names as in the detailed
paper [3] to facilitate cross referencing.)

The initial experimental design had 120 runs. This was less than would have
been suggested by our ‘10 times the number of variables’ rule, but 120 runs seemed
sufficient because it was thought that many variables would be relatively unimpor-
tant. Figure 14 plots the actual VCH valuesversustheir cross-validated predictions
and shows good agreement. The other diagnostic plots (not shown) suggested that
the standard error of prediction was also realistic.
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Figure 15. Estimated main effects of variables T2 and N2 on VCH in the integrated-circuit
application.

The variance decomposition showed that the main effects of two variables,
called T2 and N2, accounted for 19.1% and 42.8% of the total variability of the
VCH predictor. The interaction between T2 and N2 accounted for another 4.5% of
the variation. Thus, these two variables alone contributed 19.1 + 42.8 + 4.5 =
66.4% of the total variation in the VCH predictor from all 36 input variables.
Further examination of the analysis of variance showed that only about five input
variables were important in predicting VCH. This application illustrates that, even
with a high-dimensional engineering problem, it may be feasible to focus attention
on a fairly small number of variables in optimization.

Figure 15 shows the main effects of variables T2 and N2 [i.e., the analogs of the
functionsah(xh) in our previous notation]. In addition to the main effects, Figure 15
also shows pointwise 95% confidence intervals. It would take us too long to discuss
the derivation of these confidence intervals. Intuitively, they reflect the fact that the
predictor we are averaging when we compute a main effect is only an estimate of
the actual function’s value. The true function could be a little higher or lower, so
if we averaged over the true function we might get a slightly different result. If the
model is working well then, at any given point, the ‘true’ average effect – that is,
the one computed with the true function and not the predictor – would lie in the
interval with 95% confidence. The main effect plots show the nonlinearity of the
relationship between VCH and variables T2 and N2.

Figure 16 shows a contour plot of the estimated joint effect of T2 and N2 on
VCH [the analog ofa12(x1, x2) in our earlier notation]. Note that, for low values
of N2, the VCH contours are almost horizontal. This means that, when the value
of N2 is small, increasing T2 has little effect on VCH. On the other hand, for high
values of N2, the VCH contours are steeper. This implies that increasing T2 has a
major effect on VCH. Thus we see that the effect of T2 depends upon the level of
N2; that is, the variables interact.
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Figure 16. Estimated joint effect of N2 and T2 on VCH in the integrated-circuit application.
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Figure 17. DACE surfaces for viscosity and yield stress in the automotive example.

As an aside, we might mention that one can also compute the standard error
of the estimated joint effect. In this case, the standard error turns out to be small,
suggesting that the estimated interaction in Figure 16 is indeed real.

One final example will illustrate the use of DACE models to identify and quan-
tify tradeoffs. This example is based on an automotive application which is largely
proprietary. Suffice it to say that we were interested in optimizing the properties
of a material by adjusting the quantities of two key ingredients,x1 andx2. Two
performance measures were of interest: viscosity and yield stress. Everything else
equal, it was desirable to have lower viscosity and higher yield stress. Unfortu-
nately, there was a tradeoff between these two performance measures. That is,
material compositions that did well on viscosity were different than those that did
well on yield stress. The goal of the analysis was to find the material compositions
that were ‘efficient’ in the sense that one could not get lower viscosity without
sacrificing (i.e., lowering) yield stress.

DACE models were fit to data based on the same 21-point design used earlier
on the two-dimensional test functions. The resulting surfaces for viscosity and
yield stress are shown in Figure 17. Using these surfaces as surrogates for the
true functions, we could then solve the problem ‘choosex1 andx2 to minimize
viscosity subject to yield stress being greater than or equal toC.’ The solution to
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Figure 18. The tradeoff between viscosity and yield stress in the automotive example.

this minimization problem is necessarily an efficient point, since it is not possible
to do better on viscosity without relaxing the constraint, that is, without allowing
worse yield strength values. By solving this optimization problem for many values
of C, we were able to locate the efficient combinations ofx1 andx2. This efficient
set is the solid line in Figure 17. Furthermore, we can directly visualize the tradeoff
by plotting the combinations of viscosity and yield stress that we obtain from the
minimization problems. This is shown in Figure 18. As a result of this tradeoff
analysis, the engineers discovered an attractive region in the space ofx1 andx2

that had not previously been known. This allowed new materials to be made that
outperformed the previous best material on both viscosity and yield stress.

6. Discussion

One of the challenges we had to face in implementing EGO was the ill-conditioning
of the correlation matrixR. Theoretically, the correlation matrixR is guaranteed to
be positive semi-definite because the DACE correlation function is ‘completely
monotone’ (see Cressie [12, p. 86]). There are two reasons, however, why the
correlation matrix can be nearly singular. First, if the function is very smooth and
predictable, the points in the sample will be highly correlated, which implies that
each column in the correlation matrix will be almost a column of ones. As a result,
the columns will be highly collinear. Second, towards the end of an optimization
run, the algorithm will tend to sample points near previously sampled points. Un-
fortunately, when two sampled points are close together, the corresponding two
columns inR are nearly identical, makingR nearly singular.

This ill-conditioning is usually manageable if one is only computing the pre-
dictor and its standard error, but it creates difficulties in the bounding calculations.
To date, we have addressed these difficulties by using the singular value decompo-
sition of R and zeroing small singular values, as suggested in the bookNumerical
Recipes[28].

Another challenge is to speed up the branch-and-bound algorithm. The time
required by the algorithm depends crucially on the tightness of the upper bound
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for the mean squared error of the predictor,s2(x). Fortunately, we have an idea
that might lead to a better bound. This idea is based on computing an upper bound
on s2(x) via a max-min problem. We describe this idea further in Appendix 2 in
hopes that some reader might be able to help us work out the details. Another
desirable extension of EGO would be to handle nonlinear constraints. We have
already implemented one way to do this with some success [32], but there are
other approaches that might be better and need to be tried.

Since some finite-element codes naturally and cheaply produce gradients in
addition to function values, it would also be desirable to extend EGO to be able
to use such gradients. As it turns out, the DACE predictor is easily extended to
handle derivatives [25]. When this is done, the predictor not only interpolates the
data but also agrees with the gradient at each sampled point. As a result, it is much
more accurate.

Although we have not discussed it here, the DACE methodology can also handle
data collected using physical experiments where there is both signal and noise [17].
With noisy data, the use of DACE for visualization and what-if analyses is virtually
unchanged from the deterministic case. Unfortunately, it is not immediately clear
how to extend ouroptimization algorithmto the case of noisy functions. With noisy
data, we really want to find the point where thesignal is optimized. Similarly, our
expected improvement criterion should be defined in terms of the signal compo-
nent. Since we can not observe the signal directly (it is always masked by noise), it
is less obvious how to proceed. Nevertheless, we believe that an extension to noisy
data is possible, and this will be a focus for us in future work.

Most engineering systems can be approximated with models of varying degrees
of accuracy or ‘fidelity.’ Everything else equal, it would be desirable to work with
the most accurate model. But highly accurate models may take days to compute,
making optimization difficult for almost any algorithm. On the other hand, switch-
ing to a very fast, low-fidelity model may entail an intolerable loss of accuracy.
Rather than searching for the optimal intermediate degree of accuracy, the best
approach is probably to useboth low- and high-fidelity models. We believe that
this is an extremely promising area for further research, and so we will digress for
a moment to describe some of our ideas on this subject as well as those of other
researchers.

In Figure 19a we show (hypothetical) low- and high-fidelity models of how
system performance,y, depends on a design parameter,x. As shown in Figure 19b,
the high-fidelity model has been run at just four points (dots). In contrast, the low-
fidelity model has been run not only at these four points but also at many others
(squares). This reflects our assumption that the low-fidelity model is much cheaper
to run. If we fit a DACE model using only the four high-fidelity observations, we
would obtain the predictor shown in Figure 19c. This predictor is fairly inaccu-
rate, since it entirely misses the sharp increase iny asx approaches zero. This is
understandable, because there are no high-fidelity observations for low values ofx.
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Figure 19. Exploiting engineering models of both high and low fidelity.

In contrast, Figure 19d shows a DACE predictor computed using both the high
and low-fidelity observations. Intuitively, this predictor uses the low-fidelity ob-
servations to suggest the best way to interpolate the high-fidelity observations.
Formally, the predictor in Figure 19d was constructed by using the output of the
low-fidelity model as if it were another input variable. There are still only four
observations on the high-fidelity model, but now we have two explanatory variables
(x and the output of the low-fidelity model). To make a prediction at a new point,
we first run the low-fidelity model to obtain the second ‘input variable’ and then
compute the DACE predictor as usual.

The approach illustrated in Figure 19 is just one way to combine low- and high-
fidelity models. An even more appealing approach, from the conceptual point of
view, would be to treat the outputs of the low- and high-fidelity models as cor-
related dependent variables in a multivariate DACE model. In the mathematical
geology literature, this approach is known as ‘co-kriging’ [12, 35].

As mentioned earlier, other researchers are working on ways to do optimization
using both low- and high-fidelity models. The ideas behind these other approaches,
however, are quite different from those just discussed. For example, Eby et al. [15]
run several genetic algorithms on the low-fidelity model and use the resulting solu-
tions to ‘seed’ the populations of other genetic algorithms run on the high-fidelity
model. In essence, they are using the low-fidelity model to suggest promising areas
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of the search space for further analysis with the high-fidelity model. Alexandrov et
al. [1] developed a variation of the classical trust region method in which search
steps are based on the low-fidelity model instead of the usual local quadratic ap-
proximation. Because the low-fidelity model is presumably more accurate than the
local quadratic model, their method should be able to take larger steps and converge
in fewer iterations.

To sum up, we have discussed the value of using a special kind of response
surface – the DACE model – for optimizing expensive black-box functions and
for visualizing what is going on in a complicated model. The use of DACE for
visualization is fairly mature. In fact, it has been used on quite large problems, such
as the 36-variable integrated-circuit problem in Section 5. However, in the past, the
use of DACE models for optimization has been ad hoc, based on manual direction
of the search. We have nothing against looking at the data and working interac-
tively. Quite the contrary, we have spent quite a few years promoting the value of
gaining insight into a model through visualization. But while engineers appreciate
visualization for generating understanding, at the same time they would welcome
a fairly automatic method for optimization. The results here suggest that such an
automatic procedure is already in hand for many unconstrained, low-dimensional
problems. The challenge is to push this approach further.

Appendix 1

This appendix provides an alternative derivation of the best linear unbiased pre-
dictor given in Equation (7). Suppose we want to predict the function’s value at
some pointx∗. Lety∗ denote some candidate prediction. To assess the goodness of
this candidate prediction, we add the ‘pseudo observation’(x∗, y∗) to the data as
point n+ 1 and compute the likelihood of the augmented sample. This likelihood
measures how well the pseudo observation ‘fits’ with the original data; that is, the
likelihood that they were all generated from the same model. We will now show
that, if one computes the value ofy∗ that maximizes the likelihood, then one gets
the best linear unbiased predictor in Equation (7).

Let ỹ = (y′ y∗)′ denote the vector of observations when augmented by the
new pseudo observation and letR̃ denote the correlation matrix with the pseudo
observation. If we letr denote the vector of correlations of the error atx∗ with the
errors at the originaln data points, then the correlation matrix is:

R̃ =
(

R r
r ′ 1

)
.

Recalling the formula for the likelihood function in Equation (4), it is clear that
the only part of the augmented likelihood function that depends upony∗ is

(ỹ− 1µ̂)′R̃
−1
(ỹ− 1µ̂) =

(
y− 1µ̂
y∗ − µ̂

)′ ( R r
r ′ 1

)−1( y− 1µ̂
y∗ − µ̂

)
.
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By using the partitioned inverse formula [e.g., 34, p. 18], we can get an explicit

expression for̃R
−1

, which then allows us to write the right-hand side of the above
as:

1

1− r ′R−1r
(y∗ − µ̂)2− 2r ′R−1(y− 1µ̂)

1− r ′R−1r
(y∗ − µ̂)+ terms withouty∗.

The y∗ that maximizes the augmented likelihood is then found by taking the
derivative of the above expression and setting it equal to zero:

2

1− r ′R−1r
(y∗ − µ̂)+ 2r ′R−1(y− 1µ̂)

1− r ′R−1r
= 0.

Solving for y∗ then gives us the standard formula for the best linear unbiased
predictor in (7).

Appendix 2

In the standard derivation of the best linear unbiased predictor (which we have not
shown), it turns out thats2(x) is the optimal objective value from the following
minimization problem:

Choosec to minimize: σ 2(c′Rc− 2r ′c+ 1)
subject to: c′1= 1.

It follows that the maximum ofs2(x) over a box defined bỳh ≤ xh ≤ uh for
h = 1, . . . , k, is the solution to the following max-min problem:

max
x,r

min
c

σ 2(c′Rc− 2r ′c+ 1)

subject to: c′1= 1

ln(ri) = −
k∑
h=1

θh|xh − x(i)h |ph (i = 1, . . . , n)

`h ≤ xh ≤ uh (h = 1, . . . , k).

The second constraint ensures thatr is related tox according to the DACE corre-
lation function. It is conceivable that one could find a way to relax the max-min
problem to a form that can be easily solved, and thereby compute a valid upper
bound ons2(x). The appeal of this approach is that the inverse ofR – and all the
associated numerical difficulties – does not appear anywhere in the formulation.
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