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Abstract

This paper proposes a statistical test of the martingale hypothesis. It can be used to test
whether a given time series is a martingale process against certain non-martingale alterna-
tives. The class of alternative processes against which our test has power is very general and
it encompasses many nonlinear non-martingale processes which may not be detected using
traditional spectrum-based or variance-ratio tests. We look at the hypothesis of martingale,
in contrast with other existing methods which test for the hypothesis of martingale differ-
ence. Two different types of test are considered: one is a generalized Kolmogorov-Smirnov
test and the other is a Cramer-von Mises type test. For the processes that are first order
Markovian in mean, in particular, our approach yields the test statistics that neither de-
pend upon any smoothing parameter nor require any resampling procedure to simulate the
null distributions. Their null limiting distributions are nicely characterized as functionals
of a continuous stochastic process so that the critical values are easily tabulated. We prove
consistency of our tests and further investigate their finite sample properties via simulation.
Our tests are found to be rather powerful in moderate size samples against a wide variety
of non-martingales including exponential autoregressive, threshold autoregressive, markov
switching, chaotic, and some of nonstationary processes.
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1. Introduction

In this paper, we introduce a statistical test of the martingale hypothesis. The martingale
hypothesis has been considered to be very important in economics and other related fields,
since it implies that the best predictor (in the sense of least mean squared errors) of future
values of a time series given the current information set is just the current value of the
time series. See, e.g., Hall (1978) for some supportive arguments that consumption is
a martingale. The reader is also referred to Durlauf (1991) for more discussions on the
martingale hypothesis arising in other contexts of economic theory. Our tests can be used
to test whether a given time series is a martingale process against certain non-martingale
alternative processes. The class of alternative processes against which our tests have power
is very general and it encompasses, for example, many interesting nonlinear non-martingale
processes including exponential and threshold autoregressive processes, markov switching
and chaotic processes (possibly with stochastic noise), and some of nonstationary processes,
see Tong (1990) for more examples of nonlinear time series processes.

We consider two types of tests, which can be regarded as generalizations respectively
of the Kolmogorov-Smirnov test and the Cramer-von Mises test of goodness of fit to the
regression framework. Though they are expected to have discriminatory powers against a
wide class of non-martingale processes, our tests are very simple to implement in practical
applications. In particular, if used to test for the martingale hypothesis within the class
of first order Markovian processes, the proposed tests become extremely simple to use: the
test statistics are easy to compute and they neither depend upon any smoothing parameter
nor require any resampling procedure to simulate the null distributions. Their null limiting
distributions are nicely characterized as functionals of a continuous stochastic process. Since
the distributions are free of any nuisance parameters, we provide a set of critical values which
can be used readily in practical applications. For the test of the martingale hypothesis in a
more general context, they are still free of any nuisance parameters if the test statistics are
appropriately formulated, see Section 2 below for a discussion.

Our tests are closely related, among others, to the tests by Durlauf (1991), Hong (1999),
Deo (2000), Dominguez and Lobato (2000), and Kuan and Lee (2003). Their tests are, how-
ever, not directly comparable to ours, since theirs are the tests of the martingale difference

hypothesis. Durlauf (1991) looks at the spectrum of the first differences and see whether it is
constant. Naturally, his tests are designed to be powerful against all non-martingales gener-
ated by serially correlated innovations. For the Gaussian model, the absence of correlation in
the first differences occurs when and only when the underlying process is a martingale. His
test is thus consistent also against all Gaussian non-martingale processes. However, there
are nonlinear non-Gaussian processes which are non-martingales with serially uncorrelated
processes [see, e.g., Brockett, Hinich and Patterson (1988, p.658) for an example]. The
Durlauf tests are not expected to have discriminatory powers against such non-martingale
processes. Our tests do have powers against such nonlinear non-Gaussian non-martingales,
and are more general than his in this respect. On the other hand, Hong (1999) suggests
a test for the martingale hypothesis based on the so-called generalized spectral derivative.
His test does have powers against non-linear non-Gaussian non-martingales but it might
be sensitive to choice of smoothing parameters in practice. Furthermore, the test requires
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the innovation sequence to be strictly stationary, whereas our tests allow some degree of
heterogeneity of the innovations. See Section 2 for a more discussion on comparison between
our tests and the existing tests of the martingale difference hypothesis.

We also note that there is a huge literature related to the testing problem considered
here. One branch of the literature deals with testing for a unit root [see, e.g., Stock (1994) or
Phillips (1997) for a survey on the subject]. The unit root hypothesis, however, is obviously
more general than our martingale hypothesis. Also, the alternatives considered by most
of the existing unit root tests are much more restrictive than ours: Their alternatives are
usually stationary linear autoregressive processes, whereas our alternatives allow general
nonlinear processes which might be either stationary or nonstationary. Therefore, we believe
that our tests would deliver further insight on the property of a given time series, especially
when the underlying data generating mechanism is nonlinear. The other branch of the
related literature consists of the nonlinearity tests for time series. Examples of such tests
include, among others, An and Bing (1991), Brockett, Hinich, and Patterson (1988), Chan
and Tong (1986), Hinich (1982), Hjellvik and Tjøstheim (1995) and Koul and Stute (1999),
Luukkonen, Saikkonen, and Teräsvirta (1988).2 Some of these tests are also consistent
against general nonlinear alternatives, but they only look at stationary null and alternative
hypotheses. Our tests consider nonstationary processes. To the best of our knowledge, the
asymptotic behavior of the nonlinearity tests for nonstationary processes has not yet been
investigated. Our tests are also related to the model specification tests by Bierens(1990),
Bierens and Ploberger (1997) and de Jong (1996), see the next section for more discussions.

The remainder of this paper is organized as follows. Section 2 introduces the null and
alternative hypotheses and defines the test statistics. In Section 3, we derive the asymptotic
null distributions of the test statistics and tabulate their critical values. Section 4 considers
the consistency of our tests. In particular, we establish the consistency of our tests against
general non-martingales that are asymptotically stationary. The test consistency against
some nonstationary non-martingales is also discussed. Section 5 reports some simulation
results, and Section 6 contains the proofs for the theorems in the main text.

2. The Hypotheses and Test Statistics

Let a time series (yt) be given, and let (Ft) be a filtration to which (yt) is adapted. The
null hypothesis of interest is that (yt) is a martingale process with respect to the filtration
(Ft), i.e.,

H0 : P(E(yt|Ft−1) = yt−1) = 1 (1)

for each t ≥ 1, where E(·|Ft−1) denotes as usual the conditional expectation given Ft−1.
The alternative hypothesis is the negation of (1). To test the hypothesis (1), it is of course
essential to further specify the filtration (Ft). For many applications, the most relevant
choice of (Ft) appears to be the natural filtration of (yt), in which case Ft for each t ≥ 1 is
defined to be the σ-field generated by (ys) for all s ≤ t. Different specifications of (Ft), which

2Some of these tests are used to check the departures in each moment, while ours concentrate on testing
for serial dependence in mean.
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may in particular include other covariates, are also possible and can be more interesting
choices.

In this paper, we mainly consider the simple case in which

E(yt|Ft−1) = E(yt|yt−1) (2)

for all t ≥ 1, see below for a discussion on its multivariate generalization. Clearly, (2) holds
if (yt) is first order Markovian. We call (yt) the first order Markovian-in-mean if it satisfies
(2). Note that, as shown in, e.g., Billingsley (1995, Theorem 16.10 (iii), p.213),

E(4yt|yt−1) = 0 a.s. iff E4yt1{yt−1 ≤ x} = 0 for almost all x ∈ R, (3)

where and elsewhere in the paper we denote by 4 the usual difference operator (i.e., 4yt =
yt − yt−1) and by 1{·} the indicator function. On the other hand, (3) implies that, when
P(E(4yt|yt−1) = 0) < 1, i.e., when (1) is not true, we have E4yt1{yt−1 ≤ x} 6= 0 for some
x ∈ R, see Section 4 below for more details. This motivates us to consider the following as
the basis of our test statistics for the martingale hypothesis (1)3:

Qn(x) =
1√
n

n
∑

t=1

4yt1{yt−1 ≤ x}. (4)

Of course, our assumption (2) can be too restrictive for some applications. To deal with
more general processes, we may wish to look at the case

E(yt|Ft−1) = E(yt|yt−1, . . . , yt−κ) (5)

for all t ≥ 1, with some κ ≥ 2. Similarly as above, we may call (yt) the κ-th order

Markovian-in-mean if it satisfies (5). In this case, we may use the statistics based on

Qn(x1, . . . , xκ) =
1√
n

n
∑

t=1

4yt1{yt−1≤x1} · · · 1{yt−κ≤xκ} (6)

in place of Qn(x) introduced in (4) to more effectively discriminate our martingale null
hypothesis against nonmartingale alternatives. Clearly, Qn(x) in (4) may be regarded as
a special case κ = 1 of Qn(x1, . . . , xκ) defined in (6). We may consider even more general
cases where (Ft) includes the information from other covariates in a similar way. Moreover,
it is also conceivable to increase κ in (5) and (6) as the sample size grows. All these
generalizations and extensions, however, will not be pursued in this paper. They require
some new development of the functional central limit theory, and will therefore be reported
in our subsequent work.

3In the specification testing literature, Stinchcombe and White (1988, p.299) call the class of indicator
functions (1{x ≤ t}, t ∈ R) as the totally revealing set. Examples of specification tests that are based on this
class of functions include An and Bing (1991), Delgado (1993), Andrews (1997), Stute (1997) and Whang
(2000). On the other hand, other choices of function classes are possible (e.g., the exponential functions
used by Bierens (1990), but the indicator function has an advantage that it does not require an arbitrary
choice of a nuisance parameter space.
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We assume that the time series (4yt) are martingale differences with non-vanishing
variances, as will be more formally introduced in the next section. Roughly, this implies that
(yt) becomes a nonstationary integrated process. The formulation in (6) clearly distinguishes
the tests of the martingale hypothesis from those of the martingale difference hypothesis. We
have to deal with the levels for the former, while we may rely only on the first differences for
the latter.4 There is a large class of models used in economic and financial applications that
specify the mean changes as functions of the lagged levels rather than the lagged differences,
including, for instance, threshold autoregressive models, (both linear and nonlinear) error
correction models and various diffusion models. As will be seen clearly in later sections,
our tests for the martingale hypothesis yield asymptotics that are very different from those
for the existing tests of the martingale difference hypothesis. This is mainly due to the
presence of the lagged level in our test statistics.

We may construct two different types of statistics from Qn(x) defined in (4). A Kolmogorov-
Smirnov type statistic is given by

Sn = sup
x∈R

|Qn(x)|. (7)

Moreover, a Cramer-von Mises type statistic is defined as

Tn =

∫

Q2
n(x)µn(dx),

where µn denotes some measure. In this paper, we define µn to be the empirical distribution
of (yt−1), in which case Tn reduces to

Tn =
1

n

n
∑

t=1

Q2
n(yt−1). (8)

See, e.g., Shorack and Wellner (1986) for other choices of µn.
The martingale hypothesis is intimately related to the unit root hypothesis, though

strictly speaking none of them generally implies the other.5 It therefore seems interesting
to compare our tests with the unit root test by Dickey and Fuller (1979). Their test is most
commonly used to test for the unit root. The test relies on the t-statistic on the coefficient
β in the regression

4yt = βyt−1 + εt ,

where (εt) is assumed to be martingale differences. We may thus expect that the test
has some discriminatory powers against our alternatives, which may be reformulated as

4After the first draft of our paper was written, Dominguez and Lobato (2000) proposed a test of the
hypothesis E(4yt|4yt−1, . . . ,4yt−p) = 0 a.s. against its negation. The test also uses the indicator function
as the weight function, similary to ours. Their test can indeed be viewed as the test of the martingale
difference hypothesis, corresponding to our tests of the martingale hypothesis.

5Here we use the term ‘unit root’ as defined in Stock (1994) or Phillips (1997). The unit root process
with correlated innovations is in general not a martingale. Conversely, the martingale whose differences
vanishing asymptotically is not a unit root process. We, however, are mostly concerned with the unit root
martingales in the paper.
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E(4yt|Ft−1) 6= 0. The test, however, concentrates on one possible violation of the martin-
gale hypothesis, i.e., the one into the direction spanned linearly by yt−1, as is the case for the
stationary first order autoregression. In contrast, our tests look into many other nonlinear
directions as well for the violation of the martingale hypothesis. Our generalization in (5),
of course, can be similarly compared with the augmented Dickey-Fuller test.

If the martingale difference hypothesis, not the martingale hypothesis, is what we want
to test, it can also be done using the approaches taken by Bierens (1990) and de Jong (1996)
in a broader context of general model specifications. In particular, the test proposed by de
Jong (1996) can be used to test the martingale difference hypothesis

E(4yt|4yt−1, . . . ,4y1) = 0 a.s.

with the natural filtration, if it is applied to the first differences (4yt). However, de Jong
(1996)’s test appears not to be very attractive in our context. His test is a bit too general,
and hence has very low power in small samples as is indicated by the author. Furthermore,
his test is computationally very demanding since it depends on high dimensional integration
and cumbersome Monte Carlo simulations.

3. The Null Distributions

In this section, we derive the null distributions of the test statistics Sn and Tn introduced
in the previous section. We let

ut = 4yt

and define (Ft) to be the filtration introduced earlier. Throughout this section, we suppose
that (yt) is first order Markovian-in-mean. The condition in (2) therefore holds. We assume

3.1 Assumption (ut,Ft) is a martingale difference sequence such that

(a)
1

n

n
∑

t=1

E
(

u2
t

∣

∣Ft−1

)

→p σ2 > 0, and

(b) sup
t≥1

E
(

u4
t

∣

∣Ft−1

)

< K a.s. for some constant K < ∞.

Note that the condition in the part (a) of Assumption 3.1 allows the innovation sequence
(ut) to be heteroskedastic, conditionally and/or unconditionally, as long as it is averaged
out in the limit. It is satisfied for instance by the martingales driven by ARCH-type in-
novations. The part (b) of Assumption 3.1 requires that the fourth conditional moment is
uniformly bounded.6 The condition implies in particular the conditional version of Linder-

6Strictly speaking, Assumption 3.1(b) rules out the standard GARCH(1,1) process. However, this as-
sumption is standard in the nonstationary time series literature (see, e.g. Stock (1994)) and we believe that
this assumption is not entirely necessary for our asymptotic results to hold. Furthermore, our simulation
experiments in Section 5 show that our tests have good size and power performance in the presence of
GARCH errors.
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berg condition, i.e.,

1

n

n
∑

t=1

E
(

u2
t 1{|ut| > ε

√
n}
∣

∣Ft−1

)

→p 0

as n → ∞ for any ε > 0, which is routinely imposed to obtain the martingale limit theory.
Under Assumption 3.1, the usual variance estimator σ2

n = (1/n)
∑n

t=1 u2
t of (ut) is

consistent for its asymptotic variance σ2, i.e., σ2
n →p σ2, which we state formally as a

lemma.

3.2 Lemma Let Assumption 3.1 hold. Then we have σ2
n →p σ2 as n → ∞.

In what follows, we assume that σ2 = 1 and (ut) is normalized so that σ2
n = 1. Of course,

the normalization can be done by dividing (yt) by σn.7 This is to ease the exposition of our
theory. Given the consistency of σ2

n in Lemma 3.2, the convention imposes no restriction
on our subsequent theory.

Let

Wn(r) =
1√
n

[nr]
∑

t=1

ut (9)

for 0 ≤ r ≤ 1, where [z] is the largest integer which does not exceed z. Under Assumption
3.1, invariance principle holds, as shown by, e.g., Hall and Heyde (1980, Theorem 4.1, p.
99). More precisely, we have the weak convergence

Wn →d W (10)

in D[0, 1], the space of cadlag functions on [0, 1], endowed with the Skorohod topology,
where W is the standard Brownian motion.

Now we define
Mn(x) = Qn(x

√
n). (11)

We may write Sn as
Sn = sup

x∈R

|Mn(x)|. (12)

Moreover, we have

Tn =

∫ 1

0
M2

n(Wn(r)) dr, (13)

where Wn is the process introduced in (9).
From now on, we regard Mn defined in (11) as a stochastic process with parameter

x ∈ R. It takes values in D(R), i.e., the space of cadlag functions on R. As before, we

7The normalized sequences should be more precisely denoted by (ynt) and (unt), since they depend upon
n. We will, however, continue to use (yt) and (ut) to simplify the notation
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endow D(R) also with the Skorohod topology. We now write the process Mn introduced in
(11) as

Mn(x) =
1√
n

n
∑

t=1

ut 1

{

yt−1√
n

≤ x

}

=

∫ 1

0
1{Wn(r) ≤ x} dWn(r)

for x ∈ R. We may extend the definition of Mn to ±∞ by putting

Mn(−∞) = 0 and Mn(∞) =
1√
n

n
∑

t=1

ut = Wn(1).

Then, Mn becomes a process taking values in D[−∞,∞] which, up to a strictly increasing
continuous transformation, is the same as D[0, 1].

Given the weak convergence (10) of Wn to W in D[0, 1], it is well expected that the
stochastic process Mn weakly converges as n → ∞ in D[−∞,∞] to M defined by

M(x) =

∫ 1

0
1{W (r) ≤ x} dW (r) (14)

for x ∈ R with M(−∞) = 0 and M(∞) = W (1). The weak convergence is presented in the
following lemma.

3.3 Lemma Under Assumption 3.1, we have Mn →d M in D[−∞,∞] as n → ∞.

The asymptotic distributions of the statistics Sn and Tn can now be readily derived from
the result in Lemma 3.3 and the continuous mapping theorem, since they are continuous
functionals of Mn.

3.4 Theorem Suppose that Assumption 3.1 holds. Then, we have

Sn →d S = sup
x∈R

|M(x)|

Tn →d T =

∫ 1

0
M2(W (r)) dr

as n → ∞.

The proof of the above theorems and some of our subsequent results involves the local
time of the limit Brownian motion W , which we denote by L(t, s) with t and s signifying
respectively the time and space parameters. It may be defined as

L(t, s) = lim
ε→0

1

2ε

∫ t

0
1{|W (r) − s| ≤ ε} dr (15)
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Figure 1: Probability Density of S

and can be interpreted as the time spent by W , up to time t, in the immediate vicinity of
the level s. The local time L yields the equality

∫ t

0
F (W (r)) dr =

∫ ∞

−∞
F (s)L(t, s) ds

for any locally integrable function F : R → R, which is known as the occupation times
formula. The reader is referred to Chung and Williams (1990) for an introduction to the
Brownian local time and occupation times formula.

We also need to further investigate the properties of the limit process M to fully under-
stand the asymptotic properties of the test statistics Sn and Tn.

3.5 Lemma We have for any p ≥ 2 and x, y ∈ R,

E|M(x) − M(y)|p ≤ cp|x − y|p/2,

where cp is a constant depending only upon p.

3.6 Proposition There is a modification of M , whose paths are Hölder continuous of
order p ∈ [0, 1/2).

We may therefore assume that M is a continuous stochastic process.
Since the process M is continuous and effectively stopped at

smin = inf
r∈[0,1]

W (r) and smax = sup
r∈[0,1]

W (r),

i.e., M(x) = M(smin) = 0 for all x ≤ smin and M(x) = M(smax) = W (1) for all x ≥ smax, it
is obvious that the limit random variable S introduced in Theorem 3.4 is a.s. well defined.
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Figure 2: Probability Density of T

Moreover, the process M is a.s. of locally integrable sample path, and therefore we have

∫ 1

0
M2(W (r)) dr =

∫ ∞

−∞
M2(s)L(1, s) ds

due to the occupation times formula. This shows that the limit random variable T in
Theorem 3.4 is also well defined a.s.

Table 1: Asymptotic Critical Values of Sn and Tn

sig. level (α) 0.99 0.95 0.90 0.10 0.05 0.01

Sn 0.612 0.765 0.865 2.119 2.388 2.911
Tn 0.055 0.101 0.145 1.650 2.165 3.328

The distributions of S and T , i.e., the limit distributions of the test statistics Sn and Tn

defined in (7) and (8) respectively, are free of any nuisance parameters. They can readily
be obtained through simulations and their probability densities are sketched in Figures 1
and 2. Approximately, the distribution of S (T ) has mean 1.433 (0.746), median 1.350
(0.520), standard deviation 0.502 (0.704) and excess kurtosis 1.044 (7.274) and is skewed
to the right with skewness 0.911 (2.198). The asymptotic critical values of the tests Sn and
Tn are given in Table 1.

As we have noted above, our tests have asymptotic null distributions that are distribution-
free and do not require any resampling procedure to simulate the critical values. Therefore,
they are extremely simple to use in practical applications. This is in sharp contrast with
other existing tests for the martingale difference hypothesis, whose critical values are heav-
ily dependent upon the underlying distribution and have to be estimated by bootstrap or
by any other methods that may substitute bootstrap. The distributional results for our
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tests are, of course, not directly comparable to those for the existing martingale difference
tests. The former include the lagged level that is nonstationary, while the latter only con-
sider the lagged differences that are assumed to be stationary. The distribution-free nature
of our tests is not particularly due to the first order Markovian-in-mean structure of the
model that we consider in the paper. They continue to be independent of the underlying
distribution if we consider the statistic (6) for the general κ-th order Markovian-in-mean
model (5). The details will be reported in our subsequent work.

4. Consistency of the Tests

In this section, we establish consistency of our tests based on the statistics Sn and Tn against
certain non-martingale alternatives.

Suppose, for now, that (yt) is strictly stationary. By definition, (yt) is in the alternative
hypothesis if it satisfies

P(E(4yt|yt−1) 6= 0) > 0. (16)

Note that (16) is equivalent to (17):

E4yt1{yt−1 ≤ x} =

∫

E(4yt|yt−1 = z)1{z ≤ x} dP(z) (17)

6= 0 for some x ∈ R,

where P denotes the time invariant stationary distribution of (yt). Therefore, we can see
that the tests based on the sample analogue of (17) might be consistent againt general
alternatives satisfying (16). This is shown in Theorem 4.4 below.

We now relax the assumption of strict stationarity. To allow for some degree of hetero-
geneity of alternative processes, we write explicitly the random variables (yt) to be trian-
gular arrays, i.e., (ynt) for n ≥ 1 and 1 ≤ t ≤ n. By definition, (ynt) is in the alternative
hypothesis if it satisfies:

4.1 Assumption Assume that we have, for all z ∈ R, (1/n)
∑n

t=1 E(4ynt|yn,t−1 = z) →
H(z) as n → ∞, where H is a measurable function on R, and that we have, for any
Borel set A ⊂ R, (1/n)

∑n
t=1 Pnt(A) → P(A) as n → ∞, where P is a probability measure

on R and Pnt are the distributions of (ynt) for 1 ≤ t ≤ n, n ≥ 1. Furthermore, we let
∫

1{H(z) 6= 0} dP(z) > 0.

Clearly, Assumption 4.1 includes (16) as a special case and is easy to check in practice. For
example, suppose (yt) is a stationary AR(1) process, i.e., yt = αyt−1 +εt, where |α| < 1 and
(εt) are i.i.d. (0, σ2). Then we have H(z) = E(4yt|yt−1 = z) = (α − 1)z and P becomes
the time invariant stationary distribution of (yt). In this case, Assumption 4.1 holds unless
P is degenerate and puts mass 1 at the origin (in which case we have yt = 0 a.s. for all t).
Similarly, suppose (yt) is a deterministically trending process, i.e., yt = α0 + α1(t/n) + εt,
where (εt) are i.i.d. U [−1, 1]. Then, H(z) = limn→∞(1/n)

∑n
t=1 E(4yt|yt−1 = z) = −z +

α0 +α1/2 and P is given by the uniform distribution U [α0−(1−α1)/2, 1+α0−(1−α1)/2].
In this case also, Assumption 4.1 holds with

∫

1{H(z) 6= 0} dP(z) = 1
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We further assume that the triangular array of random variables (ynt) is weakly depen-
dent and satisfies a moment condition.

4.2 Assumption Assume that (ynt) is a strong mixing triangular array that satisfies
supn≥1,1≤t≤n E|4ynt|p < ∞ for some p ∈ [1,∞].

This assumption might be relaxed along the lines discussed below, if needed.
For our consistency result, we need the following uniform Weak Law of Large Numbers

(WLLN):

4.3 Lemma Under Assumption 4.2, we have

sup
x∈R

∣

∣

∣

∣

∣

1

n

n
∑

t=1

[4ynt1{yn,t−1 ≤ x} − E4ynt1{yn,t−1 ≤ x}]
∣

∣

∣

∣

∣

→p 0 (18)

as n → ∞.

Consistency of our tests is established in the following theorem:

4.4 Theorem Suppose that Assumptions 4.1 and 4.2 hold with p ≥ 2. Then, we have

Sn, Tn →p ∞

as n → ∞.

Theorem 4.4 shows that the tests Sn and Tn are consistent if we reject the null hypothesis
when they take large values.

4.5 Remarks (a) The strong mixing assumption and Lp-boundedness condition in As-
sumption 4.2 were assumed to use the pointwise WLLN result of Andrews (1988, exam-
ple 4, p.462), see proof of Theorem 4.4 and Lemma 4.3 below. They can be relaxed if
needed. For example, to allow for trending random variables, one can use the result of
de Jong (1995, Theorems 1 or 3) to verify the pointwise WLLN which requires the trian-
gular array of random variables (4ynt1{yn,t−1 ≤ x}) and (4y2

nt) minus their respective
means are Lq-mixingale or Lq-near epoch dependent on some strong mixing sequence with
1 ≤ q ≤ 2 and satisfy other additional moment conditions in the Theorems. In this case, the
bracketing condition (33) in the proof of Lemma 4.3 can be verified under the assumption
lim supn→∞(1/n)

∑n
t=1 E|4ynt|p < ∞ for some p > 1.

(b) Lemma 4.3 gives a uniform WLLN for unbounded and non-differentiable functions
of weakly dependent and non-identically distributed random variables. To the best of our
knowledge, such result is not yet available in the literature and hence would be of separate
interest. This lemma also differs from the uniform WLLN of Koul and Stute (1999, equation
(4.1)) who assume stationarity of the random variables whereas we allow for heterogeneous
random variables.
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The alternatives we consider in Assumptions 4.1 and 4.2 are processes that are essen-
tially stationary. Though we allow for quite flexible forms of nonstationarity there, it is
required that the nonstationarity be vanished asymptotically. Unfortunately, it does not
seem possible to obtain any general theoretical results for the powers of our tests against
the non-martingale processes with non-vanishing nonstationarity. Our tests may or may
not have powers against such non-martingales that are intrinsically nonstationary. Among
the processes we consider in our simulations reported in the next section, Sn appears to
have desirable power against the explosive process that is intrinsically nonstationary. On
the other hand, both Sn and Tn fail to have effective powers against many non-martingale
unit root processes. For the intrinsically nonstationary models, (16) does not warrant the
consistency of our tests, even if it holds for all t ≥ 1. If (yt) is nonstationary even asymp-
totically, our tests may become inconsistent against the non-martingale alternatives. We
may indeed show that the basis of our tests Qn, introduced in (4), does not diverge under
many unit root non-martingale alternatives.8

To see this, we first consider the simple random walk (yt) given by 4yt = ut, where (ut)
is an i.i.d. innovation sequence with mean zero and unit variance. As shown in Chang and
Park (2004), we have for this process

1√
n

n
∑

t=1

ut1{yt ≤ 0} →d M(0) + KL(1, 0), (19)

where M is the process defined in (14), K > 0 is some constant and L is the local time
given in (15). We may compare the result in (19) with Lemma 3.3 to understand the effects
of the presence of dependency in the innovation ut and the argument yt in the indicator
function. The dependency does not change the rate of convergence. However, it alters the
limit distribution, and in particular, it shifts the limit distribution to the right by KL(1, 0).
Note that L(1, 0) > 0 a.s.

We now look at the non-martingale unit root process (yt) generated by 4yt = ut with
(ut) that is serially correlated. The result in (19) for the simple random walk gives us an
obvious clue on how our tests would behave for this class of nonmartingales. Note that
ut is correlated with yt−1 when (ut) are serially correated, so in this case we may expect
that our tests have the asymptotics similar to (19). Therefore, it is clear that our tests
are generally inconsistent for the unit root nonmartingales driven by serially correlated
innovations. Yet, we may predict that our tests would have some nontrivial powers against
such non-martingales, since the presence of serial correlation in (ut) would shift the limit
distributions of our tests. The appearance of the additional term involving L(1, 0) in (19) is
due to the nonzero correlation of ut and yt, and we may see that a similar term will appear
in our case here. In fact, this is exactly what we observe in our simulation study.

8For the unit root non-martingales, the conditional expectation E(4yt|Ft−1) is generally given as a
function of the lagged differences 4yt−1,4yt−2, . . ., and in particular, our maintained assumption (2) does
not hold. Therefore, strictly speaking, they are not allowed in our framework. To test the martingale
hypothesis against such alternatives, it seems preferred to use any of the existing martingale difference tests.
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5. Simulation Results

In this section, we examine the finite sample performance of our tests in a small scale
simulation experiment. We choose ten different models as described in Table 2 to generate
simulated data. Model NULL generates random walk processes possibly with GARCH
errors and is considered to evaluate the size performance of our tests. The other models are
considered to see the power performance of our tests.

Table 2. Data Generating Processes

Model DGP (εt ∼ i.i.d. N(0, 1))

NULL yt = yt−1 + ut; ut = σtεt, σ2
t = 1 + θ1u

2
t−1 + θ2σ

2
t−1

ARMA yt = θ1yt−1 + θ2εt−1 + εt

EXAR yt = θ1yt−1 + θ2yt−1 exp (−0.1 |yt−1|) + εt

TAR yt = θ1yt−11{|yt−1| < θ2} + 0.9yt−11{|yt−1| ≥ θ2} + εt

BL yt = θ1yt−1 + θ2yt−1εt−1 + εt

NLMA yt = θ1yt−1 + θ2εt−1εt−2 + εt

MARKOV yt − µst
= θ1(yt−1 − µst−1

) + εt, st = 0 or 1, µ0 = 0, µ1 = 1.
θ2 = P (st = 0|st−1 = 0) = P (st = 1|st−1 = 1)

FM yt = mt + ut; mt = θ1yt−1(1 − yt−1), ut = θ2vtηt,
vt = min{mt, 1 − mt}, ηt ∼ i.i.d. Uniform(0, 1)

EXP yt = θ1yt−1 + ut; |θ1| > 1, ut = σtεt, σ2
t = 1 + θ2u

2
t−1 + θ3σ

2
t−1

UNIT yt = yt−1 + ut; ut = θ1ut−1 + εt

TREND yt = θ1 + θ2(t/n) + yt−1 + εt

Model ARMA generates an autoregressive moving average process of order (1,1). Model
EXAR is an exponential autoregressive model. Model TAR is a threshold autoregressive
model of order 1. This model can capture the possibility of asymmetric movements in a time
series, see Tong (1990, Section 3.3).9 Model BL is a bilinear model. This model introduces
coefficients that are linear function of the error term and is considered to lie somewhere
between the “fixed coefficient” autoregressive models and the “random coefficient” autore-
gressive models, see also Tong (1990, p.114). Model NLMA is a nonlinear moving average
model. Model MARKOV is a markov switching model, see Hamilton (1989) for motivation.
Model FM is a Feigenbaum map with system noise. When θ1 = 4, this map generates a
chaotic process which is a globally bounded but locally explosive stationary process, see for
example Whang and Linton (1999) and the references therein for discussions about chaotic
processes. Model EXP is an explosive AR(1) model and Model UNIT is a unit root process
with an AR(1) innovation sequence. Finally, Model TREND is a random walk model with
a deterministic trend.

In each of the model, we generate (εt) independently from the standard normal distribu-
tion and set the initial values, e.g., y0, ε0, ε−1 to zero. A total of 1,000 replications are used
for each experiment. We take n = 100, 250, 500, 1000 and report for each n the rejection

9We have also considered momentum threshold autoregressive models (or MTAR models), which are
introduced by Enders and Granger (1998), but the simulation results were similar to those of TAR and
hence are not reported here.
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probabilities of the test with nominal size α = 0.05. The results corresponding to different
nominal sizes were similar and hence are not reported.

Tables 3-13 present the rejection probabilities of our tests based on the statistics Sn and
Tn. We compare the performance of our tests with the Cramer-von Mises type test of the
martingale hypothesis proposed by Durlauf (1991), denoted as CVMn.10

Table 3 shows that our tests, designated as Sn and Tn, have reasonably good size per-
formance and the size performance is little affected by the GARCH structure of the errors.
On the other hand, the test CVMn tends to over-reject when the errors follow GARCH
processes.11

Tables 4-13 report the finite sample performances of our tests against a wide variety of
alternative non-martingale processes. The performances of our tests are reasonably good in
general, but they are somewhat critically dependent upon the underlying data generating
processes.

Table 4 considers the case of the ARMA(1,1) process. The overall performance of our
tests against the stationary ARMA processes appears to be reasonably good. However, the
performances of our tests against the near-unit root process are somewhat unsatisfactory
especially when the sample size is small. When the autoregressive coefficient is close to
unity, i.e., θ1 = .95, our tests indeed do not seem to have any discriminatory power in
samples of size less than n = 250. Though it is also far from being satisfactory, the Durlauf
test has better powers than our tests in small samples. The comparison, however, is reversed
drastically as the sample size increases. For the samples as large as n = 1, 000, our tests
Sn and Tn, especially the one based on Tn, have effective discriminating powers against
the near-unit root alternative. The power of the Durlauf CVMn test, however, improves
only very slowly as the sample size increases. When there is a moving average component,
i.e., θ2 6= 0, the performances of all three tests become slightly worse but, nevertheless, the
comparison between our tests Sn and Tn with the Durlauf CVMn remains to be largely the
same.

Table 5 gives the rejection probabilities when the data are generated from exponential
autoregressive processes. It shows that both Sn and Tn perform well for samples of mod-
erately large size. In particular, their performances are substantially better than that of
CVMn in large samples. For samples of small size, however, CVMn performs better than Sn

and Tn in several cases. As for the case of the stationary ARMA alternatives, performances
of our tests Sn and Tn improve rapidly as the sample size increases. This is not so for the
Durlauf CVMn test. The power of CVMn increases only very slowly.

Table 6 shows that our tests are consistent against threshold autoregressive models.
The rejection probabilities increase as θ1 decreases (i.e., more asymmetry exists) or as θ2

increases (i.e., the regime with high frequency movements occurs more often). The results
also show that our tests have superior power to CVMn especially when n is large. Table 7
reports the power performance of the tests against bilinear models. Our tests are consistent

10In our simulation experiment, we also considered the Kolomogorov-Smirnov type test KSn of Durlauf
(1991). But the test was unambiguously dominated by CVMn in both size and power performance in almost
all the cases we considered and hence the results for KSn are not reported here.

11This result is not surprising because it is now well known that CV Mn is not robust to volatility clustering,
see Deo (2000) for this point.



15

in all of the cases we considered and have generally better performance than CVMn except
for a few cases with small sample sizes.

Table 8 presents the results for nonlinear moving average models. Our tests exhibit
substantially better power performance than CVMn in relatively large samples, as the co-
efficient for the linear autoregressive part θ1 gets close to unity. The results for the markov
switching models are reported in Table 9. All three tests appear to have satisfactory dis-
criminatory powers against the nonmartingale markov switching models unless they have
the autoregressive coefficient θ1 close to unity. The finite sample powers of our tests Sn and
Tn against the nonmartingale markov switching models with the near-unity autoregressive
coefficient can be quite low, when the sample size is small. However, they increase rapidly
as the sample size increases. For the CVMn test, the rate of increase in powers with respect
to sample size is much slower, as is for many other cases considered here.

Table 10 shows that our tests are consistent against the Feigenbaum map with noise.
It shows that the powers increase as the process becomes chaotic (i.e., θ1 = 4) and as the
process has more system noise (i.e., as θ2 increases). One can see that our tests perform
better than CVMn when θ1 = 2.5, while all the tests have complete distinguishing power
against the case θ2 = 4.

Table 11 presents the power performance against an explosive AR(1) process. Although
the latter process violates our Assumption 4.2, both Sn and Tn are consistent against the
midly explosive alternatives (i.e., θ2 = 1.01) and more powerful than CV Mn. However, when
the process becomes more explosive (i.e., θ2 = 1.05), Tn does not appear to be consistent.

Table 12 shows that our tests are not consistent against a unit root process with AR(1)
disturbances, except the case when the AR coefficient θ1 = 1. This is expected because,
even if this process satisfies E(4yt|yt−1) 6= 0 with positive probability, the correlation of
ut = 4yt and yt−1 (which is nonstationary) merely shifts the limiting distributions of
our test statistics, see Section 4 for details. However, our tests do have some nontrivial
powers against this alternative process and their powers tend to increase as we have more
persistency in the innovation sequence, i.e. as θ1 gets larger.

Finally, Table 13 shows that both Sn and Tn have satisfactory power performance against
a nonstationary process with a deterministic trend. As expected, CV Mn does not have any
distinguishing power against such alternative.
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Table 3. Rejection Probabilities (DGP: NULL)

(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .043 .044 .033 100 .042 .047 .076
(.0, .0) 250 .048 .047 .030 (.2, .3) 250 .049 .042 090

500 .028 .041 .031 500 .039 .045 .082
1000 .042 .042 .035 1000 .040 .044 .095

100 .043 .050 .101 100 .039 .050 .116
(.3, .0) 250 .049 .043 .114 (.3, .4) 250 .050 .041 145

500 .040 .047 .118 500 .040 .044 .164
1000 .039 .049 .114 1000 .039 .038 .171

100 .032 .054 .310 100 .035 .051 .271
(.9, .0) 250 .035 .049 .453 (.7, .2) 250 .043 .045 403

500 .038 .047 .535 500 .040 .051 .483
1000 .043 .051 .656 1000 .043 .051 .578

Table 4. Rejection Probabilities (DGP: ARMA)

(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .822 .989 .990 100 .457 .818 .657
(.3, .0) 250 1.00 1.00. 1.00 (.3, .2) 250 1.00 1.00 1.00

500 1.00 1.00 1.00 500 1.00 1.00 1.00
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

100 .337 .688 .755 100 .094 .229 .160
(.5, .0) 250 1.00 1.00 .998 (.5, .2) 250 .993 1.00 700

500 1.00 1.00 1.00 500 1.00 1.00 .995
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

100 .000 .000 .038 100 .001 .008 .045
(.95, .0) 250 .003 .001 .045 (.7, .2) 250 .530 .855 182

500 .040 .040 .067 500 1.00 1.00 .588
1000 .484 .735 .103 1000 1.00 1.00 .986

Table 5. Rejection Probabilities (DGP: EXAR)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .010 .022 .188 100 .005 .021 .030
(.6, .2) 250 .598 .905 .515 (.9, .2) 250 .020 .028 044

500 1.00 1.00 .905 500 .071 .118 .067
1000 1.00 1.00 1.00 1000 .176 .177 .096

100 .001 .001 .111 100 .086 .224 .031
(.6, .3) 250 .148 .308 .257 (.9, .3) 250 .185 .342 061

500 .947 1.00 .582 500 .609 .703 .145
1000 1.00 1.00 .931 1000 .976 .976 .319

100 .000 .000 .070 100 .299 .474 .021
(.6, .4) 250 .012 .024 .114 (.9, .4) 250 .427 .505 057

500 .307 .692 .278 500 .837 .937 .198
1000 1.00 1.00 .556 1000 1.00 1.00 .536
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Table 6. Rejection Probabilities (DGP: TAR)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .016 .011 .090 100 .500 .616 .655
(.3, 1.0) 250 .379 .270 .166 (.3, 2.0) 250 .997 .997 948

500 .972 .950 .349 500 1.00 1.00 1.00
1000 1.00 1.00 .664 1000 1.00 1.00 1.00

100 .005 .004 .071 100 .151 .211 .328
(.5, 1.0) 250 .207 .167 .128 (.5, 2.0) 250 .956 .957 688

500 .880 .894 .276 500 1.00 1.00 .952
1000 1.00 1.00 .547 1000 1.00 1.00 1.00

100 .001 .000 .060 100 .017 .029 .118
(.7, 1.0) 250 .073 .085 .102 (.7, 2.0) 250 .456 .499 249

500 .690 .810 .221 500 .990 .994 .525
1000 1.00 1.00 .441 1000 1.00 1.00 .869

Table 7. Rejection Probabilities (DGP:BL)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .606 .908 .892 100 .001 .013 .117
(.4, .1) 250 1.00 1.00 1.00 (.8, .1) 250 .361 .630 185

500 1.00 1.00 1.00 500 .997 1.00 .392
1000 1.00 1.00 1.00 1000 1.00 1.00 .762

100 .563 .865 .793 100 .001 .008 .178
(.4, .2) 250 1.00 1.00 .997 (.8, .2) 250 .220 .438 296

500 1.00 1.00 1.00 500 .938 .996 .509
1000 1.00 1.00 1.00 1000 1.00 1.00 .818

100 .460 .758 .621 100 .001 .004 .263
(.4, .3) 250 1.00 1.00 .981 (.8, .3) 250 .070 .217 566

500 1.00 1.00 1.00 500 .521 .852 .860
1000 1.00 1.00 1.00 1000 .985 .999 .979

Table 8. Rejection Probabilities (DGP: NLMA)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .598 .914 .922 100 .005 .009 .135
(.4, .2) 250 1.00 1.00 1.00 (.8, .2) 250 .410 .671 352

500 1.00 1.00 1.00 500 .999 1.00 .710
1000 1.00 1.00 1.00 1000 1.00 1.00 .986

100 .596 .926 .912 100 .006 .010 .146
(.4, .4) 250 1.00 1.00 1.00 (.8, .4) 250 .453 .709 349

500 1.00 1.00 1.00 500 .995 1.00 .710
1000 1.00 1.00 1.00 1000 1.00 1.00 .968

100 .577 .918 .902 100 .007 .011 .168
(.4, .6) 250 1.00 1.00 1.00 (.8, .6) 250 .463 .742 368

500 1.00 1.00 1.00 500 .998 1.00 .697
1000 1.00 1.00 1.00 1000 1.00 1.00 .957
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Table 9. Rejection Probabilities (DGP: MARKOV)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .906 .995 .991 100 .796 .984 .961
(.3, .3) 250 1.00 1.00 1.00 (.3, .7) 250 1.00 1.00 1.00

500 1.00 1.00 1.00 500 1.00 1.00 1.00
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

100 .432 .790 .813 100 .386 .708 .665
(.5, .3) 250 1.00 1.00 .999 (.5, .7) 250 1.00 1.00 996

500 1.00 1.00 1.00 500 1.00 1.00 1.00
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

100 .001 .001 .060 100 .001 .001 .057
(.9, .3) 250 .033 .051 .091 (.9, .7) 250 .028 .053 089

500 .472 .730 .199 500 .482 .732 .187
1000 1.00 1.00 .410 1000 .999 1.00 .368

Table 10. Rejection Probabilities (DGP: FM)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .151 1.00 .000 100 1.00 1.00 1.00
(2.5, .04) 250 1.00 1.00 .006 (4.0, .04) 250 1.00 1.00 1.00

500 1.00 1.00 .998 500 1.00 1.00 1.00
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

100 .680 1.00 .000 100 1.00 1.00 1.00
(2.5, .05) 250 1.00 1.00 .506 (4.0, .05) 250 1.00 1.00 1.00

500 1.00 1.00 1.00 500 1.00 1.00 1.00
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

100 .947 1.00 .000 100 1.00 1.00 1.00
(2.5, .06) 250 1.00 1.00 .969 (4.0, .06) 250 1.00 1.00 1.00

500 1.00 1.00 1.00 500 1.00 1.00 1.00
1000 1.00 1.00 1.00 1000 1.00 1.00 1.00

Table 11. Rejection Probabilities (DGP: EXP)
(θ1, θ2, θ3) n Sn Tn CVMn (θ1, θ2, θ3) n Sn Tn CVMn

100 .237 .216 .035 100 .955 .928 .931
(1.01, 0, 0) 250 .661 .614 .141 (1.05, 0, 0) 250 1.00 501 1.00

500 .962 .941 .910 500 1.00 .492 1.00
1000 1.00 1.00 1.00 1000 1.00 .523 1.00

100 .222 .196 .311 100 .948 .913 .928
(1.01, .9, 0) 250 .626 .562 .483 (1.05, .9, 0) 250 1.00 502 1.00

500 .948 .933 .946 500 1.00 .487 1.00
1000 1.00 1.00 .999 1000 1.00 .505 1.00

100 .232 .207 .119 100 .937 .914 .921
(1.01, .3, .4) 250 .648 .597 .221 (1.05, .3, .4) 250 1.00 498 1.00

500 .957 .938 .908 500 1.00 .480 1.00
1000 1.00 .999 1.00 1000 1.00 .515 1.00
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Table 12. Rejection Probabilities (DGP: UNIT)
θ1 n Sn Tn CVMn θ1 n Sn Tn CVMn

100 .062 .064 .112 100 .367 .343 1.00
0.1 250 .059 .060 .303 0.7 250 .347 .302 1.00

500 .056 .060 .560 500 .360 .312 1.00
1000 .061 .059 .874 1000 .338 .302 1.00

100 .119 .113 .774 100 .647 .613 1.00
0.3 250 .113 .102 .998 0.9 250 .612 .572 1.00

500 .110 .099 1.00 500 .601 .568 1.00
1000 .109 .099 1.00 1000 .596 .560 1.00

100 .219 .206 .996 100 .900 .870 1.00
0.5 250 .209 .185 1.00 1.0 250 .941 .934 1.00

500 .207 .185 1.00 500 .958 .943 1.00
1000 .194 .177 1.00 1000 .972 .960 1.00

Table 13. Rejection Probabilities (DGP: TREND)
(θ1, θ2) n Sn Tn CVMn (θ1, θ2) n Sn Tn CVMn

100 .083 .101 .037 100 .158 .164 .037
(.01, .1) 250 .150 .131 .036 (.05, .1) 250 .325 .287 036

500 .249 .204 .031 500 .583 .498 .031
1000 .447 .320 .036 1000 .858 .751 .036

100 .283 .229 .040 100 .443 .339 .040
(.01, .3) 250 .635 .444 .039 (.05, .3) 250 .833 .668 039

500 .914 .727 .039 500 .987 .916 .039
1000 .998 .957 .049 1000 1.00 .997 .049

100 .638 .419 .041 100 .754 .577 .041
(.01, .5) 250 .961 .812 .048 (.05, .5) 250 .989 .922 048

500 1.00 .985 .066 500 1.00 .997 .066
1000 1.00 1.00 .099 1000 1.00 1.00 .099

6. Proofs

6.1 Proof of Lemma 3.2 The stated result follows directly from Theorem 2.23 of Hall
and Heyde (1980), which shows that
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6.2 Proof of Lemma 3.3 The proof for the weak convergence of Mn to M consists of
two parts: weak convergence of finite dimensional distribution of Mn to that of M , and
tightness of (Mn). To prove the first part, we let (ci) and (xi) be finite sets of numbers that
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are given arbitrarily, and consider the transformation Π defined by

Π(f)(r) =
∑

i

ci1{f(r) ≤ xi}

on D[0, 1]. It is straightforward to see that the transformation Π is continuous on C[0, 1] ⊂
D[0, 1] a.s. Note that the Skorohod metric coincides with the uniform norm if restricted to
the set of continuous functions C[0, 1] defined on [0, 1]. It now follows from the continuous
mapping theorem that

Π(Wn) =
∑

i

ci1{Wn(·) ≤ xi}

→d Π(W ) =
∑

i

ci1{W (·) ≤ xi} (20)

in D[0, 1], and therefore, we have

∑

i

ciMn(xi) =

∫ 1

0

∑

i

ci1{Wn(r) ≤ xi} dWn(r)

→d

∫ 1

0

∑

i

ci1{W (r) ≤ xi} dW (r)

=
∑

i

ciM(xi) (21)

due to the result in Kurtz and Protter (1991).
To establish the tightness, we show that Chentsov criterion [see, e.g., Billingsley (1968,

Theorem 15.6)] holds. Fix −∞ ≤ x < y ≤ ∞ and let w be an arbitrary number between x
and y. We consider
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using the fact that (ut,Ft) is a martingale difference sequence and (yt) is adapted to (Ft).
We will only consider the first term in (22). The treatment of the second term is entirely
analogous. For the first term in (22), we have
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.(23)

The inequality in the last line, in particular, follows from Cauchy-Schwarz inequality.
We now consider two terms appearing in (23). To analyze the first term, we may apply a

maximal inequality for martingale [see, e.g., Revuz and Yor (1994, Corollary 1.6, pp 50-51)]
to get
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(24)
Moreover, it can be deduced from Rosenthal’s inequality [see, e.g., Hall and Heyde (1980,
Theorem 2.12, pp 23-24)],
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for some absolute constant K. Under the condition given in Assumption 3.1(b), the second
term in (25) is of order Op(n

−1) uniformly in w. Therefore, it will be ignored in our
subsequent derivation. We also have under Assumption 3.1(b)
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)

< K a.s. (26)

due to the conditional Jensen’s inequality. Consequently,
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Therefore, it follows from (24) and (25) that
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for some constant K. To deal with the second term in (23), we use (26) to deduce that
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for some constant K.
Let k = 1, 2. For any fixed x and y, we have
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which holds as a special case of (20). However, since

(

1

n

n
∑

t=1

1

{

x <
yt−1√

n
≤ y

}

)k

≤ 1

and bounded, we have
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as n → ∞.
By the occupation times formula, we have

∫ 1

0
1{x < W (r) ≤ y} dr =

∫ ∞

−∞
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where L is the local time of the standard Brownian motion. Therefore, it follows that
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where the last inequality is due to Fubini’s theorem.
Let a and b be constants such that

P

{

a ≤ min
0≤r≤1

W (r), max
0≤r≤1

W (r) ≤ b

}

> 1 − ε

for ε > 0 arbitrarily small. For x, y ∈ [a, b], we now have from (22), (23), (27), (28), (29)
and (30) that

E
(

Mn(x) − Mn(w)
)2(

Mn(w) − Mn(y)
)2

≤ K(w − x)(y − w)1/2

≤ K(y − x)3/2 (31)

for some constant K. This establishes Chenstov condition for tightness. The tightness
result in (31), together with the weak convergence of the finite dimensional distributions
shown in (21), proves the stated result. �

6.3 Proof of Theorem 3.4 The stated results follow directly from the continuous map-
ping theorem, given the weak convergence of Mn to M that is established in Lemma 3.3.
�

6.4 Proof of Lemma 3.5 Let x < y, and note that
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for some constant c, as shown in, e.g., Revuz and Yor (1994, Proposition 4.3, p154), and
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Consequently, it follows that
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and we may simply let
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to get the stated result. �
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6.5 Proof of Proposition 3.6 The result follows from Lemma 3.5. See, for instance,
Revuz and Yor (1994, Theorem 2.1, p. 25). �

6.6 Proof of Lemma 4.3 Let Fnt(·) denote the distribution function of ynt. For an
integer K > 1, let

ξntm = inf
{

x ∈ R :Fnt(x) ≥ m

K

}

for m = 1, ...,K − 1,

and also let ξnt0 = −∞ and ξntK = +∞. Define F = {4ynt1{yn,t−1 ≤ x} : x ∈ R} to
be a class of functions and we denote a uniform analogue of the L1- norm by ρ(f) =
supn,t E|f(xnt)| for f ∈ F , where xnt = (ynt, yn,t−1)

′.
By construction, for each x ∈ R, there exists m ∈ {1, ...,K − 1} such that

|Fnt(x) − Fnt(ξntm)| ≤ 1

K
,

so that
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≡ bntm, say. (32)

This result implies that for any function 4ynt1{yn,t−1 ≤ x} in F , there exists m ∈ {1, ...,K−
1} such that

lm ≤ 4ynt1{yn,t−1 ≤ x} ≤ um ,

where

lm = 1{yn,t−1 ≤ ξntm} − bntm,

um = 1{yn,t−1 ≤ ξntm} + bntm.

Note that we have
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K
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, (33)

where C1 = 21−1/p supn,t E|4ynt|p < ∞ by Assumption 4.2 and the second inequality holds
by Hölder’s inequality. Therefore,

{[lm, um] : m = 1, ...,K − 1}}
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forms an ε = 2C1K
1/p−1 bracket for (F , ρ) . Hence, the bracketing number (see, e.g., van

der Vaart and Wellner (1996, p.83) for the definition) satisfies

N(ε,F , ρ) ≤
(

2C1

ε

)p/(p−1)

< ∞. (34)

This result and pointwise WLLN of Andrews (1988, example 4, p.462) give the desired result
using an argument similar to Lemma 2.4.1 of van der Vaart and Wellner (1996, p.123). �

6.7 Proof of Theorem 4.4 Under Assumption 4.2, we have

σn →p

(

lim
n→∞

1

n

n
∑

t=1

E (4ynt)
2

)1/2

≡ σ∗ < ∞ (35)

by WLLN of Andrews (1988, example 4, p.462). Define

Q(y) =

∫

H(z)1(z ≤ y) dP(z). (36)

Then, by Lemma 4.3, (35) and rearranging terms, we have

n−1/2Sn →p (1/σ∗) sup
y∈R

|Q(y)| (37)

and

n−1Tn →p (1/σ∗)

∫

Q2(y) dP(y). (38)

The stated result now follows since the right hand sides of (37) and (38) are positive under
Assumption 4.1. �
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