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Abstract

A heat kernel approach is proposed for the development of a general, flexible, and
mathematically tractable asset pricing framework in finite time. The pricing kernel,
giving rise to the price system in an incomplete market, is modelled by weighted heat
kernels that are driven by multivariate Markov processes and that provide enough de-
grees of freedom in order to calibrate to relevant data, e.g. to the term structure of
bond prices. It is shown how, for a class of models, the prices of bonds, caplets, and
swaptions can be computed in closed form. The dynamical equations for the price
processes are derived, and explicit formulae are obtained for the short rate of interest,
the risk premium, and for the stochastic volatility of prices. Several of the closed-form
asset price models presented in this paper are driven by combinations of Markovian
jump processes with different probability laws. Such models provide a rich basis for
consistent applications in several sectors of a financial market including equity, fixed-
income, commodities, and insurance. The flexible, multidimensional and multivariate
structure, on which the asset price models are constructed, lends itself well to the trans-
parent modelling of dependence across asset classes. As an illustration, the impact on
prices by spiralling debt, a typical feature of a financial crisis, is modelled explicitly,
and contagion effects are readily observed in the dynamics of asset returns.

Keywords: Asset pricing, pricing kernel, Markov processes, Lévy random bridges,
weighted heat kernels, equity, interest rate derivatives, debt, spread dynamics, and
contagion.
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1 Introduction

In this paper, we shall take the view that in a modern asset pricing framework (i) pricing
models should be coherent across all asset classes traded in a financial market, (ii) securities
pricing used in the front offices of financial firms should be compatible with asset risk
management, and (iii) pricing formulae should be applicable in the banking industry and
also in the insurance sector. Expressed in other words, these three requirements state that
modern pricing models ought to be consistent under the real probability measure P and
the risk-neutral measure Q, and at the same time they should retain a high degree of
flexibility and mathematical ease while guaranteeing the coherence of the price system for
all financial assets.

In what follows, we propose an asset pricing framework that can be applied, in princi-
ple, to all asset classes and that is mathematically tractable so that Monte Carlo techniques
are never necessary for scenario simulations of asset price dynamics. The proposed ap-
proach includes partial automatic calibration to market data such as initial prices of assets.
The price system of assets traded in a financial market shall be developed by modelling the
pricing kernel (state-price density) first. Once the stochastic framework for the pricing ker-
nel is built and the connection with bond prices is established, we go on to show how price
processes for other asset classes can be derived in a natural way. We also consider how the
situation, in which the debt of a sovereign country gets out of control, can be incorporated
in the same pricing framework without introducing extra assumptions to include effects of
credit risk.

The general setup of the asset pricing framework is developed in finite time, t ∈ [0, U]
for U < ∞. We model a financial market by a filtered probability space (Ω,F ,P, {Ft})
where P denotes the real probability measure, and where {Ft} is the market filtration.
We consider a (multi-dimensional) process {X t} on (Ω,F ,P), and assume that the market
filtration is generated by {X t}. Furthermore, we assume that {X t} has the Markov property
with respect to {Ft}, its natural filtration. Then, we introduce the pricing kernel process
{πt} to model the market agent’s preferences and the dynamics of interest rates in the
economy which {πt} is associated with. We write {St}0≤t≤T<U for the price process of a
dividend-paying asset, and let {Dt}0≤t≤T<U denote the (continuous) dividend stream up
until T . Then the price St at time t is given by

St =
1

πt
EP


πT ST +

∫ T

t

πuDudu

�

�

�

�

Ft



 . (1.1)

In order to calculate asset prices explicitly, the following ingredients need to be specified:
(i) The Markov process {X t} that generates the market filtration, and thus the market in-
formation; (ii) the pricing kernel {πt}, and thus the dynamics of the interest rates and
the agent’s preferences; (iii) the random variable ST and the process {Dt}, thus the asset’s
terminal cash flow and the dividend stream, respectively. All ingredients are specified in
such a way that the price process {St} is adapted to the market filtration generated by {X t}.
For textbooks about the theory of pricing kernels, preferences, asset pricing, and interest
rates modelling, one may consult, e.g., Back (2010), Björk (2009), Cochrane (2005), Duffie
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(2001), and Brigo & Mercurio (2006).
In the next section, we introduce weighted heat kernels to define the class of pricing

kernels, and thus give rise to the asset pricing framework proposed in this paper. Heat ker-
nel models for the development of stochastic price systems have been proposed by Akahori
et al. (2009) in an infinite-time setting, and more recently by Akahori & Macrina (2012)
in a finite-time context. We further develop the weighted heat kernel pricing models intro-
duced in the latter work, and derive formulae for the price processes of discount bonds and
swaptions, and the associated interest rate process. The stochastic short rate of interest is
by construction non-negative.

In Section 3, we construct a class of pricing kernels which leads to closed-form price
processes for bonds, caplets, and swaptions—all in one. Explicit price models are then
obtained by specifying the dynamics of the market information flow and the degrees of
freedom in the formulation of a particular pricing kernel model. The dynamics of certain
price processes have time-dependent lower and upper bounds, a feature we not necessarily
view as being a shortcoming.

In Section 4, we derive the dynamical equation for the bond price processes introduced
in the previous section for the case that the market filtration is generated by a diffusion
process. The market price of risk process is also obtained endogenously, which, for this class
of pricing models, incorporates a discernible part that can be identified as the incentive for
accepting model risk.

In Section 5, we introduce multivariate Lévy random bridges and extend the pricing
framework to an incomplete market. A formula for the computation of option prices by
Fast-Fourier-Transform methods is given, and asset price models with higher-order rational
structures are developed.

In Section 6, the proposed pricing kernel approach is applied to general asset pricing,
and we show how asset price models constructed under the P-measure translate into as-
set price models equipped with stochastic interest rate and stochastic volatility under the
Q-measure. The interaction between the bond price process and, e.g., the equity compo-
nent of the discounted share price process is clearly identifiable. This property renders the
herewith proposed asset pricing framework also appealing for the construction of hedging
strategies against losses due to the exposure of a financial position to a specific market
sector. Additional examples of explicit multivariate asset pricing models driven by jump
processes are given.

In the last chapter, spiralling sovereign deficit is modelled and its impact on the price
dynamics of sovereign bonds is shown. The flexibility of the considered heat kernel state-
price density approach allows for the construction of explicit dependence models linking
the price evolution of, e.g., bonds issued by several sovereign governments. Contagion
effects arise endogenously, and the graphs in Section 7 illustrate the impact of dependent
economies and markets on the price dynamics of assets.

The list of investigations connected with the asset pricing approach presented in this pa-
per is by no means complete. The developed theory is applicable to the modelling of foreign
exchange rates and the pricing of foreign exchange securities. Inflation-linked bonds and
other indexed assets can be priced in a similar way. Then, there are commodity assets, in-
cluding energy and agricultural products, which may involve insurance contracts to hedge
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against substantial losses due to averse weather conditions. In the last section of this paper,
effects on asset prices by perceived solvency risk are considered in the dynamics of their
returns. Further work in this direction, may include the modelling of “costs of funding”
arising from shifts in asset prices due to the deterioration of a creditor’s economic situation.
Even though full-fledged credit risk models have not yet been developed within the present
asset pricing framework (and this is yet another project), the material in Section 7 may also
be looked at from the perspective of modelling “credit valuation adjustments”. The bounds,
within which the dynamics of certain price processes are confined, could be exploited to
model the levels of sustainability for the costs of funding, or applied by financial regula-
tors to impose time-dependent capital requirements. Although treated in this paper, the
explicit modelling of dependence structures for asset portfolios remains somewhat in the
background. The weighted heat kernel approach however offers a versatile basis for the
inclusion of manageable dependence models that could be useful for the risk analysis of
portfolios. One could begin with mean-variance optimization whereby covariance matrices
are explicitly modelled, and partial information about the underlying risk factors drives the
optimal portfolio. Another investigation may concern models for volatility surfaces, which
arise from the selection of particular pricing kernels and their application to specific asset
classes. Such an investigation extends to the analysis of the derived option price models
and their calibration to data relevant for the pricing of assets.

2 Pricing kernel models and the pricing of bonds, caplets
and swaptions

We proceed to specify the form of the pricing kernel model {πt}. We consider the following
class:

πt = f0(t) + f1(t)

∫ U−t

0

E
�

F(t + u, X t+u) |X t
�

w(t, u)du, (2.1)

where {X t} is an unspecified Markov process defined for t ∈ [0, U] such that t+u≤ U , f0(t)
and f1(t) are deterministic, non-negative, non-increasing functions, F(t, x) is a positive
measurable function, and w(t, u) is a so-called weight function satisfying

w(t, u− s)≤ w(t − s, u) (2.2)

for s ≤ t ∧ u. We introduce the following short-hand notation:

ρ(t, u, X t) := E
�

F(t + u, X t+u) |X t
�

. (2.3)

It can be proven that the considered pricing kernel processes are indeed supermartingales
adapted to the filtration generated by {X t}. We refer to Akahori & Macrina (2012) for a
proof that can be applied also in the present context.

As a special case of the general pricing formula (1.1), the price process of a discount
bond with maturity T , is given by

PtT =
1

πt
E
�

πT |X t
�

, (2.4)
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where 0 ≤ t ≤ T < U . We keep in mind that the market filtration is generated by the
Markov process {X t}, and thus it suffices to take the expectation conditional only on X t .
The conditional expectation of πT can be computed explicitly to obtain

E
�

πT |X t
�

= f0(T ) + f1(T )

∫ U−t

T−t

ρ(t, u, X t)w(T, u− T + t)du, (2.5)

where the tower property is invoked and a variable substitution is applied. We define

YtT =

∫ U−t

T−t

ρ(t, u, X t)w(T, u− T + t)du. (2.6)

The bond price process can then be written in the compact form

PtT =
f0(T ) + f1(T )YtT

f0(t) + f1(t)Yt t
, (2.7)

and the initial term structure is given by

P0t =
f0(t) + f1(t)Y0t

f0(0) + f1(0)Y00
. (2.8)

We deduce that
f0(t) = P0t

�

1+ f1(0)Y00
�

− f1(t)Y0t , (2.9)

where we may set f0(0) = 1 with no loss of generality. By inserting (2.9) in (2.7), we obtain

PtT =
P0T + y(T )

�

YtT − Y0T
�

P0t + y(t)
�

Yt t − Y0t
� , (2.10)

where

y(t) =
f1(t)

1+ f1(0)Y00
, (2.11)

for ≤ t ≤ T . Similarly, the expression for the pricing kernel can be written in the form

πt = π0
�

P0t + y(t)
�

Yt t − Y0t
��

, (2.12)

where π0 = 1 + f1(0)Y00. Assuming that the bond price function is differentiable with
respect to T , the expression for the instantaneous forward rate {rtT } is given by

rtT = −∂T ln
�

PtT
�

,

= −
∂T P0T +

�

YtT − Y0T
�

∂T y(T ) + y(T )
�

∂T YtT − ∂T Y0T
�

P0T + y(T )
�

YtT − Y0T
� . (2.13)

The process {rt} for the short rate of interest can then be deduced by setting rt = rtT
�

�T=t
:

rt =−
∂t P0t +

�

Yt t − Y0t
��

∂T y(T )
	

T=t + y(t)
��

∂T YtT − ∂T Y0T
�	

T=t

P0t + y(t)
�

Yt t − Y0t
� . (2.14)
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Once the bond price system is derived, one can calculate the price of fixed-income
derivatives such as caplets and swaptions. We consider a t-maturity swaption contract with
strike K , which is written on a collection of discount bonds PtTi

with maturities {Ti}1,...,n.
An application of the pricing formula (1.1) shows that the price Swp0t of the swaption at
time zero is

Swp0t =
1

π0
E






πt

 

1− PtTn
− K

n
∑

i=1

PtTi

!+





, (2.15)

where

PtTi
=

P0Ti
+ y(Ti)

�

YtTi
− Y0Ti

�

P0t + y(t)
�

Yt t − Y0t
� . (2.16)

Then, by use of (2.12), we obtain

Swp0t = E





 

P0t − P0Tn
− K

n
∑

i

P0Ti
+ y(t)

�

Yt t − Y0t
�

(2.17)

−y(Tn)
�

YtTn
− Y0Tn

�

− K
n
∑

i=1

y(Ti)
�

YtTi
− Y0Ti

�

!+





.

The price of caplets can be calculated in an analogous way. Further details for the calcula-
tion of caplets and swaptions follow in the next section.

We may wonder at this stage whether it might be possible to construct a class of discount
bond price processes for which the associated prices of interest rate derivatives can be
calculated in closed form. We shall present such bond price models in detail in the next
section. Before, we prepare the ground by making the following observation.

Proposition 2.1. Let {Mt}0≤t<U be an {Ft}-adapted P-martingale that induces a change-of-
measure from P to an equivalent auxiliary probability measure M. Analogous to (2.6), let
{YMtT }0≤t≤T<U be defined by

YMtT =

∫ U−t

T−t

ρM(t, u, X t)w(T, u− T + t)du, (2.18)

where
ρM(t, u, X t) = EM

�

F(t + u, X t+u) |X t
�

. (2.19)

Then the process
πt = π0

�

P0t + y(t)
�

YMt t − YM0t

��

Mt (2.20)

is a positive ({Ft},P)-supermartingale where

P0t =
f0(t) + f1(t)YM0t

f0(0) + f1(0)YM00

, (2.21)

and

y(t) =
f1(t)

1+ f1(0)YM00

. (2.22)
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Proof. By construction {πt/Mt} is a positive ({Ft},M)-supermartingale. That is, for
0≤ t ≤ u< U , we have

EP
�

πu |X t
�

= EP
�

π0

�

P0u+ y(u)
�

YMuu − YM0u

��

Mu |X t

�

,

= EM
�

π0

�

P0u+ y(u)
�

YMuu − YM0u

��

X t

�

Mt ,

≤ π0

�

P0t + y(t)
�

YMt t − YM0t

��

Mt = πt . (2.23)

�
Thus, if convenient, we can construct pricing kernel models by considering M-propagators
{ρM(t, u, X t)} while using the form (2.20). In such a case, the form of the asset price
formulae remain unchanged, and for the discount bond price process one has

PtT =
P0T + y(T )

�

YMtT − YM0T

�

P0t + y(t)
�

YMt t − YM0t

� . (2.24)

3 Closed-form and explicit price models

In this section, we construct a class of pricing kernels for which the price processes of
underlying and derivative assets are obtained analytically. We explicitly calculate the price
processes of bonds, caplets, and swaptions, and note that the derived examples lead to
bounded price processes—a property we not necessarily view as a shortcoming.

Proposition 3.1. Let {Mt}0≤t<U define a measure M on Ft such that M is equivalent to P
on t ∈ [0, U). Let {At}0≤t<U be an ({Ft},M)-martingale and let b(t) be a deterministic and
non-increasing function such that πt > 0 for all t ∈ [0, U). Then,

πt = π0
�

P0t + b(t)At
�

Mt (3.1)

is a pricing kernel, and the discount bond system PtT takes the form

PtT =
P0T + b(T )At

P0t + b(t)At
. (3.2)

Proof. To verify that (3.1) is indeed a positive supermartingale, one follows the proof
of Proposition 2.1. The discount bond price process (3.2) is derived by applying (2.4) and
by observing that

PtT =
EP
��

P0T + b(T )AT
�

MT |X t
�

�

P0t + b(t)At
�

Mt
,

=
P0T + b(T )EM

�

AT |X t
�

P0t + b(t)At
. (3.3)

Here we have used the Bayes formula to change the measure from P toM. Since {At} is by
definition an ({Ft},M)-martingale, the result (3.2) holds. �
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Lemma 3.1. The short rate of interest process {rt} associated with the pricing kernel models
(3.1) is of the form

rt =−
∂t P0t + At∂t b(t)

P0t + b(t)At
. (3.4)

Proof. We first derive the instantaneous forward rate {rtT } as in (2.13), and then we
set rt = r

tT
�

�

T=t

. �

Lemma 3.2. In the pricing system specified in Proposition (3.1), the prices C p0t and Swp0t
at time zero of t-maturity caplet and swaption contracts are as follows:

Caplet:

C p0t =−
�

∂t P0t + KP0t
�

∫

aC

a p(a)da−
�

∂t b(t) + K b(t)
�

∫

aC

a p(a)da, (3.5)

where P[At ∈ da] = p(a)da and

aC :=
�

a : a <−
∂t P0t + KP0t

∂t b(t) + K b(t)

�

. (3.6)

Swaption:

Swp0t =

 

P0t − P0Tn
− K

n
∑

i=1

P0Ti

!

∫

aS

p(a)da

+



b(t)− b(Tn)− K
n
∑

i=1

b
�

Ti
�





∫

aS

a p(a)da, (3.7)

where P[At ∈ da] = p(a)da and

aS :=

(

a : a >
K
∑n

i=1 P0Ti
− P0t + P0Tn

b(t)− b
�

Tn
�

− K
∑n

i=1 b
�

Ti
�

)

. (3.8)

Explicit models. In order to obtain explicit pricing models, the following quantities
need to be specified in the definition of the pricing kernel (2.1): (i) The finite-time Markov
process {X t} that generates the market filtration and drives all prices, (ii) the positive func-
tion F(t + u, x) that, to a great extent, characterises the type of pricing model, (iii) the
weight function w(t, u), and (iv) the deterministic functions f0(t) and f1(t). The particular
class of models considered in this paper allows for explicit calibration of f0(t) to the initial
term structure, and for a one-to-one correspondence between the degree of freedom f1(t)
and option data (e.g., caplets and swaptions). Thus we only specify the Markov process
{X t}, F(t + u, x), and w(t, u). In the following two examples, we let the Markov process
{X t} be given by the Brownian random bridge {LtU} defined by

LtU = σ t XU + βtU , (3.9)
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where σ is a constant parameter, XU is a random variable with a priori density p(x), and
{βtU}0≤t≤U is an independent standard Brownian bridge where U is fixed. The change-
of-measure density martingale {Mt} in (3.1) that is associated with such an information
model, satisfies

dMt =−
σU

U − t
EP
�

XU | LtU
�

Mt dWPt (3.10)

where {WPt } is defined by (4.6) in the next section.

Quadratic models: We choose F(t+u, x) = x2, and set w(t, u) = U− t−u. For this class
of models, we obtain

At =
U

(U − t)2
L2

tU −
t

U − t
and b(t) =

(U − t)4 f1(t)

4U
�

1+ 1
12

f1(0)U3
� , (3.11)

which determine explicitly the processes for the pricing kernel, the bond price, and the
associated interest rate. Furthermore, we can now work out the explicit expressions for the
caplet and swaption prices via (3.5) and (3.7), respectively. For the caplet price, we obtain

C p0t =
� t

U − t
�

∂t b(t) + K b(t)
�

−
�

∂t P0t + KP0t
�

�

N(κ)

+
t

U − t
�

∂t b(t) + K b(t)
� 1
p

2π
exp
�

−
1

2
κ2
�

, (3.12)

where N(x) denotes the cumulative normal distribution function, and κ is defined by

κ :=

È

U − t

t

�

t

U − t
−
∂t P0t + KP0t

∂t b(t) + K b(t)

�

. (3.13)

Exponential quadratic models: In this case we choose a function F(t+u, x) that depends
explicitly on time, that is:

F(t + u, x) = exp

�

x2

2(U − t − u)

�

, (3.14)

and take the weight function to be w(t, u) = (U − t − u)η−1/2 where η > 1/2. Then, we
have:

At =

Ç

1−
t

U
exp

�

L2
tU

2(U − t)

�

− 1 and b(t) =
(U − t)η−1/2 U1/2 f1(t)

1+ f1(0)Uη
. (3.15)

As for the quadratic models, the pricing kernel, the bond price, and the associated interest
rate are all determined in closed form. For the price of a swaption contract, we obtain, for
this class of models, the following:

Swp0t =

 

P0t − P0Tn
− K

n
∑

i=1

P0Ti

!

N(−ν)

+



b(t)− b
�

Tn
�

− K
n
∑

i=1

b
�

Ti
�





h

N(ν)− N
�

ν
p

1− t/U
�i

, (3.16)
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where

ν :=

√

√

√

√

2U

t
ln





�

1−
t

U

�−1/2
 

K
∑n

i=1 P0Ti
+ P0Tn

− P0t

b(t)− b
�

Tn
�

− K
∑n

i=1 b
�

Ti
� + 1

!

. (3.17)

Analogous applications of Lemma 3.2 lead to the explicit expressions for the price of a
swaption utilising the quadratic models, and for the price of caplets in the case of the ex-
ponential quaratic models. Although written in a less unifying form—and in the case of the
quadratic models, including less useful degrees of freedom—the quadratic and exponential
quadratic models were first developed in Akahori & Macrina (2012). We also note that
interest rate models with a quadratic or exponential quadratic structure have been studied
in Jamashidian (1996) and McCloud (2009, 2012), too.

Boundedness of prices. Bond prices fluctuate by construction between zero and one,
and the associated interest rate is non-negative. However, the bond price processes pro-
duced by the above models have tighter bounds, and the same holds for the interest rate
and the yield of the bond. As a consequence, the strike price of call bond options have
an upper bound for in-the-money options. One might think that having bounded bond
prices and associated interest rates is a shortcoming. On the contrary, we think that such
a feature may be advantageous, especially if the time-dependent bounds are wide enough
for the interest rate to have sufficient freedom. The bounds may be put in relation with
economic policies of which goal is to keep bond prices within a certain range. In turn, this
may suggest to use the additional degree of freedom f1(t), cast inside the deterministic
function b(t), to include regulators’ policies, for instance. Research regarding bounded as-
set prices and the relation to regulators’ policies and markets shall be continued elsewhere.
We shall keep the boundedness property inherent in certain rational asset pricing models
in our mind for when we later turn to general asset pricing, Section 6, and to the impact on
prices by an economy’s spiralling deficit, Section 7.

4 Dynamical equations

We derive the stochastic differential equation of the bond price for the case that the mar-
tingale {At} in Proposition 3.1 is a continuous diffusion process. The drift term of the
stochastic differential equation reveals the market price of risk, which is obtained endoge-
nously. It turns out that the market price of risk process is constituted by two distinct
components. One part is associated with the stochasticity of a financial market due to noisy
information about the market factors. The second component of the market price of risk
can be identified as model risk that is directly related to the choice of the class of price
models. Furthermore, the Brownian motion that drives the bond price process emerges
also endogenously, and in fact it is the innovations process updating the price process as
the quality of market information improves.
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Proposition 4.1. Let {WPt } be a standard ({Ft},P)-Brownian motion. Let the ({Ft},M)-
martingale {At} satisfy

dAt = νt

�

dWPt + ϑtdt
�

, (4.1)

where {νt} and {ϑt} are well-defined {Ft}-adapted processes. Then the dynamical equation of
the discount bond with price process (3.2) is given by

dPtT

PtT
=
�

rt +λtΩtT
�

dt +ΩtT dWPt , (4.2)

where

rt = −
∂t P0t + At∂t b(t)

P0t + b(t)At
, (4.3)

λt = ϑt − νt
b(t)

P0t + b(t)At
, (4.4)

ΩtT = νt

�

b(T )
P0T + b(T )At

−
b(t)

P0t + b(t)At

�

. (4.5)

Proof. We apply Ito’s Lemma to (3.2) and use (4.1). �

By specifying the driving Markov process and by selecting a particular type of process
{At} in Proposition (4.1), we also obtain the result in the following lemma.

Lemma 4.1. Let the Markov process generating the market filtration {Ft} be the information
process (3.9). Then the Brownian motion {WPt } satisfies

dWPt = dLtU −
1

U − t

�

σU EP
�

XU | LtU
�

− LtU

�

dt, (4.6)

and the process {θt} in Proposition 4.1 is given by

ϑt =
σU

U − t
EP
�

XU | LtU
�

. (4.7)

The process {νt} in Proposition 4.1 satisfies

νt =
2U

(U − t)2
LtU (4.8)

in the case of the quadratic models (3.11), and it satisfies

νt =

�

U−t
U

�1/2

U − t
LtU exp

�

L2
tU

2(U − t)

�

(4.9)

in the case of the exponential quadratic models (3.15).
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The process {WMt }, satisfying dWMt = dWPt + ϑtdt, is an ({Ft},M)-Brownian motion.
This follows from the Girsanov theorem. We emphasize here that the risk premium process
{λt} is constituted by the process {ϑt} and {νt}. We observe (a) that {ϑt} is determined
by the filtration model, that is, by the choice of the generating Markov process {LtU}, and
(b) that {νt} depends on the selection of the heat kernel models, that is, on the choice for
F(t, x) and w(t, u). We can view {ϑt} as the risk premium component associated with the
uncertainty in the market modelled via the information flow process {LtU}. The component
{νt} may however be interpreted as the premium associated with model risk since it is
closely related to the choice of the specific asset price model. By applying Ito’s formula to
(2.13), we obtain the following result:

Proposition 4.2. The instantaneous forward rate {rtT } of the bond price process (3.2) satisfies
the dynamical equation

drtT

rtT
=−σtT ΩtT dt +σtT

�

dWPt +λtdt
�

, (4.10)

where the instantaneous forward rate volatility {σtT } is defined by

σtT = νt

�

b(T )
P0T + b(T )At

−
∂T b(T )

∂T P0T + At∂T b(T )

�

. (4.11)

Applying Ito’s formula to (2.14) gives the stochastic differential equation for the short
rate of interest {rt} in the same set-up:

drt

rt
= µtdt +σt

�

dWPt +λtdt
�

, (4.12)

where {λt} is the instantaneous market price of risk (4.4), σt = σtT
�

�T=t
, and

µt =
∂t P0t + At∂t b(t)

P0t + b(t)At
−
∂t t P0t + At∂t t b(t)
∂t P0t + At∂t b(t)

. (4.13)

The processes driving the dynamics of the presented models have Gaussian laws, and
the dynamics of the deduced instantaneous forward rates have the HJM-form, c.f. Heath
et al. (1992), Filipović (2009). It can be shown that {WPt }0≤t<U is an ({Ft},P)-Brownian
motion, see, e.g., Brody et al. (2008).

5 Incomplete market models driven by LRBs

In this section, we extend the pricing framework to include multi-dimensional risk factors,
and we generate asset pricing models in an incomplete market. We consider a class of
finite-time Markov processes, the so-called “Lévy random bridges” (LRBs), as constructed
in Hoyle et al. (2011). An LRB can be interpreted as a Lévy process that is bound to
have a prescribed, albeit arbitrary, distribution at a fixed future time. The LRB and the
generating Lévy process are linked by a an equivalent probability measure with respect to
which the LRB has the law of the generating Lévy process. Before we slightly extend this
result appearing in Hoyle et al. (2011), we first give the definition of a multivariate LRB:
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Definition 5.1. We say that {LtU}0≤t≤U is a multivariate LRB on Rm if the following are
satisfied:

1. The random variable LUU on Rm has multivariate marginal law ν(z), z ∈ Rm.

2. There exist a multivariate Lévy process {Lt}0≤t≤U on Rm such that Lt has multivariate
density function ρt(x) on Rm for all t ∈ (0, U].

3. The marginal law ν(z) concentrates mass where ρU(z) is positive and finite, that is
0< ρU(z)<∞ for ν(z) almost every z.

4. For every n ∈ N+, every 0 < t1 < . . . < tn < U, every (x1, . . . , xn) ∈ Rm ×Rn, and ν(z)
almost every z, we have

P
�

Lt1U ≤ x1, . . . , LtnU ≤ xn | LUU = z
�

= P
�

Lt1
≤ x1, . . . Ltn

≤ xn | LU = z
�

. (5.1)

Proposition 5.1. Let {LtU}0≤t≤U denote a multivariate LRB with marginal law P[LUU ∈
dz] = ν(dz). Let the multivariate Lévy process {Lt}0≤t≤U , which generates the LRB, have
density ρt(x) for all t ∈ (0, U]. Under the measure L defined by

`−1
t :=

dP
dL

�

�

�

�

Ft

=

∫

R

ρU−t(z− LtU)
ρU(z)

ν(dz), (5.2)

the LRB {LtU} has the law of the generating Lévy process for t ∈ [0, U).

Proof. The verification of this proposition follows closely the results leading to Proposi-
tion 3.7 in Hoyle et al. (2011). �

The measure L is rather useful for several calculations. LRBs, which have joint marginal
law at t = U and which are generated by independent Lévy processes, are independent
under L:

Proposition 5.2. Let {LtU}0≤t≤U be a multivariate LRB on Rm generated by a Lévy process
on Rm of which multivariate density function ρt(z) factorises, that is

ρt(z) =
m
∏

k=1

ρk
t (zk). (5.3)

Under L, the components, {L(i)tU} and {L( j)tU} i 6= j, of the LRB on Rm are independent and each
LRB component has the law of the respective component of the generating Lévy process {Lt},
for t ∈ [0, U).

Proof. We show that the generating function of the multivariate LRB factorises under
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L. We have:

EP


`t exp

 

m
∑

k=1

αk L(k)tU

!

 = EL


exp

 

m
∑

k=1

αk L(k)tU

!

 ,

=

∫

Rm

exp

 

m
∑

k=1

αk yk

!

L
h

L(1)tU ∈ dy1, . . . , L(k)tU ∈ dym

i

,

=

∫

Rm

exp

 

m
∑

k=1

αk yk

!

m
∏

k=1

L
h

L(k)tU ∈ dyk

i

,

=
m
∏

k=1

∫

R
exp
�

αk yk
�

L
h

L(k)tU ∈ dyk

i

,

=
m
∏

k=1

EL
h

exp
�

αk L(k)tU

�i

. (5.4)

�
Next we make use of the L-independence property of the LRBs to propose multi-factor

pricing kernel models in the situation where the driving Markov process is a multivariate
LRB. We assume that the market filtration {Ft} is generated by a two-dimensional LRB, of
which first component is a Brownian random bridge,

L(1)tU = σ X (1)U t + βtU , (5.5)

and of which second component is a gamma random bridge defined by

L(2)tU = X (2)U γtU . (5.6)

The Brownian bridge {βtU} and the gamma bridge {γtU} are assumed independent of each
other and also independent of the random variables X (1)U and X (2)U . However, the two X
random variables are dependent and have a priori joint marginal law ν(z1, z2). This set-up
is of the kind considered in Proposition 5.2. Next we recall the bond pricing formula (2.24)
where, this time,

Y LtT =

∫ U−t

T−t

∫ U−t

T−t

w(T, u1− T + t, u2− T + t)

×EL
h

F
�

t + u1, t + u2, L(1)t+u1,U , L(2)t+u2,U

�

�

� L(1)tU , L(2)tU

i

du1du2. (5.7)

Since, for t ∈ [0, U), the two LRB components have each the law of the corresponding
underlying Lévy process component—that is respectively the Brownian motion and the
gamma process—the conditional expectation simplifies considerably under L. That is,

EL
h

F
�

t + u1, t + u2, L(1)t+u1,U , L(2)t+u2,U

�

�

� L(1)tU = x1, L(2)tU = x2

i

= EL
h

F
�

t + u1, t + u2,
�

L(1)t+u1,U − L(1)tU

�

+ x1,
�

L(2)t+u2,U − L(2)tU

�

+ x2

�i

. (5.8)
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Since the LRB components are L-independent, and since the L-laws of the LRB components
are known, the probability densities of the increments in the above equation are known.
We thus have:

L
h

L(1)t+u1,U − L(1)tU ∈ dy1

i

=
1

p

2πu1

exp

�

−
y2

1

2 u1

�

dy1, (5.9)

L
h

L(2)t+u2,U − L(2)tU ∈ dy2

i

=
1l{y2 > 0}
Γ[mu2]

ymu2−1
2 exp(−y2)dy2, (5.10)

where m> 0 and Γ[x] is the gamma function. In order to work out an explicit example, we
need to specify F(t, y1, y2) and the weight function w(t, u1, u2). We choose the following
example:

F
�

t + u1, t + u2, y1+ x1, y2+ x2
�

= exp
�

a
�

y1+ x1
�

− c
�

y2+ x2
��

, (5.11)

w(t, u1, u2) = exp
�

−1
2
a2(t + u1)

�

(c+ 1)m(t+u2), (5.12)

where a ∈ [−∞,∞), c ≥ 0 are constants. Then we insert (5.9) and (5.10) together with
(5.11) and (5.12) in (5.7) and calculate the integrals over u1 and u2. The result is:

Y LtT = (U − T )2(c+ 1)mt exp
�

a L(1)tU − c L(2)tU −
1
2

a2 t
�

. (5.13)

The two-factor pricing kernel, jointly driven by a Brownian random bridge and a gamma
random bridge, is thus given by a formula similar to (2.20) where {`t} is the reciprocal of
(5.2) while Y Lt t , Y L0t , and Y L00 are deduced from (5.13). For this class of models, the bond
price process can be written as follows:

PtT =
P0T + b(T )ALt
P0t + b(t)ALt

, (5.14)

where

b(t) =
(U − t)2 f1(t)
1+ f1(0)U2 , (5.15)

ALt = (c+ 1)mt exp
�

a L(1)tU − c L(2)tU −
1
2

a2 t
�

− 1, (5.16)

for 0 ≤ t ≤ T < U . It is straightforward to show that {ALt } is an ({Ft},L)-martingale for
t ∈ [0, U). Then the process {`tA

L
t } is an ({Ft},P)-martingale, and the bond price process

(5.14) has a representation in terms of ({Ft},P)-martingales, that is

PtT =
P0T `t + b(T )APt
P0t `t + b(t)APt

, (5.17)

where APt = `t ALt . Such models might be regarded as belonging to the finite-time equiva-
lence class of Flesaker & Hughston (1996) bond price models. We note that pricing kernel
models over infinite time, as in Flesaker & Hughston (1996), must be potentials of class D,
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see Rogers (1997), Meyer (1962). In finite time, pricing kernel processes merely need to
be positive ({Ft},P)-supermartingales to ensure non-negative interest rates. Furthermore,
the martingale processes underlying the price models arise endogenously from the pricing
kernel structure (2.1). Formula (2.1) can be viewed as a “machine” that implicitly produces
martingales for pricing formulae with a rational form. Bermin (2012) revisits the Flesaker-
Hughston approach to bond pricing and shows how yield curves may be inverted for any
short rate process consistent with bond price processes that have an exponentially-affine
structure.

In Section 3, explicit pricing models are derived, and one may ask at this point what
the connection is between those pricing models and the ones specified in (5.14). It turns
out, as expected, that the link is a change of probability measure. Let us consider an
({Ft},L)-martingale {ALt } and an ({Ft},M)-martingale {AMt }. Furthermore, we introduce
an ({Ft},L)-density-martingale {ηt}0≤t<U that changes the probability measure L to the
equivalent measure M. Then we set ALt = ηt AMt , and finally observe, for 0 ≤ s ≤ t < U ,
that

EL
�

ALt
�

�Fs

�

= EL
�

ηt AMt
�

�Fs

�

= ηs EM
�

AMt
�

�Fs

�

= ηs AMs = ALs . (5.18)

This type of relation is also what connects (5.14) and (5.17).

A useful formula. The fact that an LRB has the law of its generating Lévy process
under the “Lévy probability measure” L can be exploited to derive a rather useful formula
involving the characteristic function of a Lévy process and its Fourier transform. This for-
mula might be particularly useful for numerical implementations of option pricing formulae
based on Fast Fourier Transform techniques, see, e.g., Carr & Madan (1999). We consider
again the L-conditional expectation

EL
�

F(t + u, Lt+u,U) | LtU

�

, (5.19)

where {LtU} is an LRB. We specify F(t, x) by its Fourier transform bF(t, y), that is

F(t, x) =

∫

R
exp(−i x y)bF(t, y)dy, (5.20)

where bF(t, y) is selected such that F(t, x) is positive and integrable. Then we have,

EL
�

F(t + u, Lt+u,U) | LtU

�

= EL
�
∫

R
exp(−i y Lt+u,U) bF(t + u, y)dy

�

�

�

�

LtU

�

. (5.21)

Assuming that Fubini’s Theorem is herewith satisfied, we swap the expectation with the
integral, and obtain

EL
�

F(t + u, Lt+u,U) | LtU

�

=

∫

R
EL
�

exp
�

−i y Lt+u,U

� �

� LtU

�

bF(t + u, y)dy. (5.22)
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Since the LRB has the L-law of the underlying Lévy process for t ∈ [0, U), we can cal-
culate the conditional expectation by recalling that the increments of a Lévy process are
independent and stationary:

EL
�

exp
�

−i y Lt+u,U

� �

� LtU

�

= exp
�

−i y LtU
�

EL
�

exp
�

−i y LuU
��

. (5.23)

The expectation on the right-hand-side of the equation above is the generating function of
a Lévy process. We denote the characteristic function of a Lévy process by Ψ(y), and thus
write

EL
�

exp
�

−i y LuU
��

= exp
�

−uΨ(y)
�

, (5.24)

for u ∈ [0, U). This leads to

EL
�

F(t + u, Lt+u,U) | LtU

�

=

∫

R
exp
�

−i y LtU − uΨ(u)
�

bF(t + u, y)dy, (5.25)

and hence to the useful formula

Y LtT =

∫ U−t

T−t

w(T, u− T + t)EL
�

F(t + u, Lt+u,U) |X tU

�

du,

=

∫ U−t

T−t

w(T, u− T + t)

∫

R
exp
�

−i y LtU − uΨ(u)
�

bF(t + u, y)dy du. (5.26)

Expression (5.26) is valid also in the multi-factor case, in which the LRB {LtU} is a multi-
dimensional vector. The elements of the LRB vector may be dependent through their termi-
nal marginal laws as considered at the beginning of this section. The model (5.13) may be
derived as a special case of the formula (5.26).

We conclude this section by producing multi-dimensional and multi-factor asset price
processes, and note that for the rest of this section the process {Y (i)tT } that follows is defined
under the L-measure. For i = 1, 2, . . . , n, let

Y (i)tT =

∫ U−t

T−t

EL
�

Fi(t + u, Lt+u,U) | LtU

�

wi(T, u− T + t)du, (5.27)

where Fi(t, x) is a positive and integrable function, and wi(t, u) is a weight function. We
emphasize that the Markov process {LtU}0≤t may be multi-dimensional. Then, the follow-
ing is a multi-dimensional and multi-factor model for the bond price:

PtT =
P0T +

∑n
i=1 yi(T )

�

Y (i)tT − Y (i)0T

�

P0t +
∑n

i=1 yi(t)
�

Y (i)t t − Y (i)0t

� , (5.28)

where

yi(t) =
fi(t)

1+
∑n

i=1 Y (i)00

. (5.29)
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These models can be extended further. Let us assume that the multivariate LRBs generat-
ing the market filtration {Ft} satisfy Proposition 5.2. Then, the product of an ({Ft},L)-
supermartingale is again an ({Ft},L)-supermartingale. This leads us to the construction of
higher-order asset pricing models, hereunder applied to the pricing of bonds. We generalise
the bond price model (5.14): For 0≤ t ≤ T and N ∈ N,

PtT =
P0T +

∑N
i=1Λ

(i)
tT

P0t +
∑N

i=1Λ
(i)
t t

, (5.30)

where

Λ(i)tT =
ni−mi
∑

jni−mi
=1

b(i)jni−mi
(T )A

(i, jni−mi
)

t

ni−(mi−1)
∑

jni−(mi−1)= jni−mi
+1

b(i)jni−(mi−1)
(T )A

(i, jni−(mi−1))
t

· · ·
ni−1
∑

jni−1= jni−2+1

b(i)jni−1
(T )A

(i, jni−1)
t

n
∑

jni
= jni−1+1

b(i)jni
(T )A

(i, jni
)

t (5.31)

for ni ≥ mi ∈ N. By setting T = t in (5.31) one obtains {Λt t}. The deterministic
functions b(i)1 (t), b(i)2 (t), . . . , b(i)n (t) are such that the product b(i)1 (t)b

(i)
2 (t) · · · b

(i)
n (t) is non-

negative and non-increasing. The processes {A(i, j)t }0≤t<U and {A(i,k)t }0≤t<U are ({Ft},L)-
martingales, and these are L-independent for j 6= k. For instance, for N = 1, n1 = 3 and
m1 = 2, one obtains

PtT =
P0T + b123(T )A

(1)
t A(2)t A(3)t

P0t + b123(t)A
(1)
t A(2)t A(3)t

, (5.32)

where b123(t) = b1(t) b2(t) b3(t) for 0≤ t ≤ T . For N = 1, n1 = 3 and m1 = 1, we have

PtT =
P0T + b12(T )A

(1)
t A(2)t + b13(T )A

(1)
t A(3)t + b23(T )A

(2)
t A(3)t

P0t + b12(t)A
(1)
t A(2)t + b13(t)A

(1)
t A(3)t + b23(t)A

(2)
t A(3)t

, (5.33)

where bi j(t) = b j(t)bk(t) for j 6= k and 0 ≤ t ≤ T . In order to lighten the notation, the
i-index is suppressed in (5.32) and (5.33) since we have only one type of higher-order term
in the sum over i. For N = 2, n1 = 3 and m1 = 2, n2 = 3 and m2 = 1, a combination of
third-order and second-order models is obtained:

PtT =

P0T + b(1)123(T )A
(1,1)
t A(1,2)

t A(1,3)
t + b(2)12 (T )A

(2,1)
t A(2,2)

t + b(2)13 (T )A
(2,1)
t A(2,3)

t + b(2)23 (T )A
(2,2)
t A(2,3)

t

P0t + b(1)123(t)A
(1,1)
t A(1,2)

t A(1,3)
t + b(2)12 (t)A

(2,1)
t A(2,2)

t + b(2)13 (t)A
(2,1)
t A(2,3)

t + b(2)23 (t)A
(2,2)
t A(2,3)

t
(5.34)

We note that the construction of higher-order pricing formulae is not limited to models
driven by LRBs. The pricing kernel model (2.1) can be used to construct higher-order price
models driven by other Markov processes. Higher-order models gain in importance when
considering general asset pricing including dependences across several types of assets.
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6 General asset pricing in finite time

The pricing formula (1.1) states that the no-arbitrage price process of an asset is an ({Ft},P)-
martingale. There are several ways of constructing ({Ft},P)-martingales—we consider
however a natural method within the framework developed thus far. For some fixed T , we
denote by {mtT }0≤t≤T an ({Ft},P)-martingale, and write

πtStT = mtT . (6.1)

Definition 6.1. Let {ZtT }0≤t≤T<U be defined by

ZtT =

∫ U−t

T−t

EP
�

G
�

t + u, X t+u
�

|X t
�

ψ(T, u− T + t)du, (6.2)

where the deterministic function G(t, x) is measurable, and ψ(t, u) is a deterministic function
with the property ψ(t, u− s) =ψ(t − s, u) for s ≤ t ∧ u.

Proposition 6.1. Let 0 ≤ t ≤ T < U, and let g0(T ) and g1(T ) be deterministic functions.
Then, for each fixed T,

mtT = g0(T ) + g1(T )ZtT (6.3)

is an ({Ft},P)-martingale.

Proof. This proposition can be proven by following the steps in the proof of Proposition
2.2 in Akahori & Macrina (2012). We observe thatψ(t, u−s) =ψ(t−s, u) impliesψ(t, u) =
ψ(t + u). �

We now have the necessary ingredients in order to propose the following class of asset
price models.

Proposition 6.2. Let {πt} and {mtT } be the processes (2.12) and (6.3), respectively. Then
the asset price model (6.1) takes the form

StT =
S0T + z(T )

�

ZtT − Z0T
�

P0t + y(t)
�

Yt t − Y0t
� , (6.4)

where z(T ) = g1(T )/π0.

Proof. The relation (6.4) follows from (6.1) by inserting (2.12) and (6.3). The degree
of freedom g0(T ) can be calibrated to the asset price S0T at time 0 via

g0(T ) = S0Tπ0− g1(T )Z0T , (6.5)

where π0 = 1+ f1(0)Y00. �
As at the beginning of Section 3, we next derive general asset price models for which

explicit expressions for derivatives can be computed. In doing so, we implicitly apply the
results in Proposition 2.1.
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Lemma 6.1. Let {Mt}0≤t<U be the {Ft}-adapted density martingale inducing a change-of-
measure from P toM. Let {A(i)t }

i=1,2
0≤t<U be ({Ft},M)-martingales, and consider a pricing kernel

model of the form (3.1). Furthermore, let

ST T =
S0T + b1(T )A

(1)
T

P0T + b2(T )A
(2)
T

, (6.6)

where bi(T ), i = 1, 2, are deterministic functions, and b2(t) is non-negative and non-increasing.
Then the associated asset price process {StT } is given by

StT =
S0T + b1(T )A

(1)
t

P0t + b2(t)A
(2)
t

. (6.7)

Proof. The expression (6.7) is obtained by computing the expectation in

StT =
1

πt
EP
�

πT ST T |Ft
�

(6.8)

where, by use of {Mt}, the measure P is changed to M in order to exploit the martingale
property of {A(i)t }

i=1,2
0≤t<U underM. �

Dynamical equation of the asset price process. We consider the price process given
in (6.7) and assume that it is adapted to a market filtration generated by two Brownian
random bridges {L(i)tU}, i = 1,2, c.f. (3.9). We then follow the calculations in Section 4 to
deduce the subsequent result:

Proposition 6.3. Let {Ft} be jointly generated by {L(i)tU}, i = 1, 2. Let the price process of an

asset be of the form (6.7) where {A(i)t }0≤t<U satisfies

dA(i)t = ν
(i)
t

�

dWP (i)t + ϑ(i)t dt
�

(6.9)

for i = 1,2. The process {ν (i)t } is {Ft}-adapted, and

ϑ
(i)
t =

σi U

U − t
EP
h

X (i)U

�

�Ft

i

, dWP (i)t = dL(i)tU −
1

U − t

�

σi U EP
h

X (i)U

�

�Ft

i

− L(i)tU

�

dt

where σi is constant. The dynamical equation of such a price process is given by

dStT

StT
=
�

rt +λtΣtT
�

dt +ΣtT dWPt , (6.10)

where

rt =−
Ṗ0t + ḃ2(t)A

(2)
t

P0t + b2(t)A
(2)
t

, λt =











ϑ
(1)
t −ρi j ν

(2)
t

b2(t)
P0t+b2(t)A

(2)
t

ϑ
(2)
t − ν

(2)
t

b2(t)
P0t+b2(t)A

(2)
t











, ΣtT =













b1(T )ν
(1)
t

S0T+b1(T )A
(1)
t

− b2(t)ν
(2)
t

P0t+b2(t)A
(2)
t













.

The process WPt = (W
P (1)
t , WP (2)t ) is a two-dimensional ({Ft},P)-Brownian motion where

dWP (i)t dWP ( j)t = ρi j dt for i 6= j, and dWP (i)t dWP ( j)t = dt for i = j.
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As in Lemma 4.1, {ν (i)t }, i = 1,2, are determined by the specific choice of the models
at the base of the processes {A(i)t }, i = 1,2, and thus are model-specific. Furthermore, the
dynamics (6.10) can be represented in the form so as to obtain the risk-neutral dynamical
equation of the asset price process {StT }0≤t≤T . We have:

dStT

StT
= rtdt +ΣtT dWQt , (6.11)

where dWQt = dWPt + λtdt is the risk-neutral Brownian motion defined in terms of the
P-Brownian motion {WPt } and the market price of risk process {λt}. The solution to the
stochastic differential equation (6.11) has the familiar Q-log-normal form

StT = S0T exp

�
∫ t

0

�

rs −
1
2
Σ2

sT

�

ds+

∫ t

0

ΣsT dWQs

�

. (6.12)

How one may obtain “finite-time Black-Scholes-type models” from (6.12) can be deduced
by consulting Brody et al. (2008), Section 9. In addition, appropriate choices for the func-
tions F(x), G(x), and the related weight functions will need to be made.

Example. Let the market filtration be generated by two Brownian random bridges
{L(i)tU}, i = 1,2. Let us consider the quadratic model (3.11) for the pricing kernel modelled

by {A(2)t } driven by {L(2)tU }, and the exponential quadratic model (3.15) for the equity com-

ponent modelled by {A(1)t } and driven by {L(1)tU }. In such a case, one obtains an asset price
process of the form

StT =
S0T +

(U−T )η−1/2U1/2 g1(T )
4U[1+(1/12) f1(0)U3]

�

p

1− t/U exp
�

L(1) 2
tU

2(U−t)

�

− 1
�

P0t +
(U−t)4 f1(t)

4U[1+(1/12) f1(0)U3]

h

U
(U−t)2 L(2) 2

tU − t
U−t

i . (6.13)

In the case that {LtU} is multidimensional, that is, LtU = {L
(1)
tU , L(2)tU , . . . , L(n)tU }, the asset with

price process (6.13) is traded in an incomplete market.

Example. Let the market filtration be generated by four LRBs: a stable-1/2 random
bridge {L(1)tU }, two gamma random bridges {L(2)tU } and {L(3)tU }, and a Brownian random bridge

{L(4)tU }. For details about 1/2-stable random bridges, we refer to Hoyle et al. (2010). The
four random bridges are assumed to be independent under the “Lévy probability measure”
L. Next we make use of Definition 6.1 and Proposition 6.2. It is convenient to take the
expectations under an auxiliary probability measure as presented in Proposition 2.1. Given
that in this example the market filtration is generated by four LRBs, we choose to compute
the expectations under the “Lévy probability measure” L, under which the LRBs have the
law of the generating underlying Lévy process. For the function G(t+u, X t+u) in Definition
(6.1), we set

G
�

t + u1, t + u2, L(1)t+u1,U , L(2)t+u2,U

�

= exp
�

−κL(1)t+u1,U + cL(2)t+u2,U

�

(6.14)
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where κ ≥ 0, 0 ≤ c ≤ 1. The Laplace transform of the stable-1/2 subordinator {Lt}, which
is a Lévy process, is

E
�

exp
�

−κLt
��

= exp

�

−
α
p
κ

p
2

t

�

(6.15)

where α > 0 is the activity parameter that features in the subordinator’s density function

ρt(y) = 1l{y > 0}
α t

p
2π y3/2

exp

�

−
α2 t2

2 y

�

. (6.16)

We now calculate (6.2) with the specification (6.14) and by setting

ψ(t + u) = eψ(t, u1, u2) = exp

�

α
p
κ

p
2
(t + u1)

�

(1− c)m(t+u2) (6.17)

where m> 0. The result is:

ZtT = (U − T )2 exp

�

−κL(1)tU +
α
p
κ

p
2

t

�

(1− c)mt exp
�

cL(2)tU

�

. (6.18)

In this case, the price process {StT } given in (6.4) can be written in the form (6.7). For the
denominator, we choose a discount factor of the kind (5.14). We obtain the following price
process for, e.g., equity:

StT =
S0T + b1(T )A

(1)
t

P0t + b2(t)A
(2)
t

, (6.19)

where, for η≥ 0, a ∈ [−∞,∞), and q > 0,

A(1)t = (1− c)mt exp

�

−κL(1)tU +
α
p
κ

p
2

t + cL(2)tU

�

− 1, b1(T ) =
(U − T )2 g1(T )

1+ f1(0)U2 ,

A(2)t = (η+ 1)qt exp
�

−ηL(3)tU + aL(4)tU −
1

2
a2 t
�

− 1, b2(t) =
(U − t)2 f1(t)
1+ f1(0)U2 . (6.20)

Another example could be constructed by generating equity models driven by “VG ran-
dom bridges” and quoted in units of the natural numeraire at the basis of the model (5.14).
In the case that the economic factors modelled by the random variables L(i)UU are dependent,
one obtains simple dependence structures between the dynamics of the equity and the as-
sociated discount bond system that determines the discount rate in the financial market.
The more advanced dependence models introduced in the next section can also be applied
to model more complex interactions between different segments of a financial market.

7 Spiralling debt and its impact on global bond markets

We now address in more detail the pricing of sovereign bonds. Even though the majority of
sovereign bonds pay coupons, we focus on discount bonds, for convenience. This simplifi-
cation does not affect the view taken or the problem we intend to tackle here. The emphasis
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is shifted on the value of a sovereign bond that should reflect the level of economic health
of the issuing country. News regarding the bond market over the last few years has con-
stantly reminded us that investors frequently balance the capability of a sovereign economy
to grow vis-a-vis the amount of accumulated debt held at any one time. We choose this
point of view, and wonder how to construct asset pricing models, which take into account
at least some of this perspective.

We consider a simple model for the economic structure of a country. We assume that
a central government has a source of income, for instance taxes and the revenues of state-
owned companies. On the other hand it also has expenditures in order, for instance, to
finance armed forces, public education, a public health system, and other welfare. While the
difference between income and expenditures fluctuates over the course of time, we assume
that it is unlikely, at least in a well-run and periodically well-assessed economy, that this
difference spikes for the better or for the worse. If it were the case, then we might see an
economy’s growth rate move from 1% to 10% within a few months, or a drop in the growth
rate by a similar amount in the same time span. It is more likely though that a central
government has to step-in to cover huge unexpected losses due to, e.g., the unfolding of
an international financial crisis, domestic or international wars, natural catastrophes, and
other calamities hard to predict and with disastrous impact on the economic health of
a country. So, in addition to the “structural” income and outcomes of an economy, we
consider the accumulation of significant debt due to severe losses, which may very well
make the level of financial stress of an economy “jump”. We model the structural part of
the various cash flows of an economy by a Brownian random bridge

L(1)tU = σtXU + βtU , (7.1)

where XU may represent the economic wealth of a country at a future time U . We model
the spiralling cumulative debt amassed by a sovereign country in the time interval [0, U]
by a gamma random bridge {L(2)tU }. The random total (extraordinary) debt amassed by

time U is modelled by L(2)UU = X (2)U . Its distribution can be arbitrarily specified. We imagine

that the “structural” or “non-crisis” balance L(1)UU is dependent on the total debt (losses)

L(2)UU accumulated by time U . For instance, a sovereign government may decide at time U to
make substantial cuts to the expenditures for public welfare if the amount of “extraordinary
losses (debt)” will have spiralled by time U beyond what is perceived to be manageable.
Therefore L(1)UU and L(2)UU are assumed to have a joint marginal distribution, and this means
that we are in the same modelling environment as in Section 5.

The bond pricing model presented next is one of the simplest, though still rich enough
to capture the desiderata within this discussion. One can of course choose to develop more
sophisticated models. We choose a class of bond price models similar to (5.14), and follow
the steps from (5.7) to (5.16) with one minor change in equation (5.11). We consider

F(t + u1, t + u2, y1+ x1, y2+ x2) = exp
�

−a(y1+ x1) + c(y2+ x2)
�

,

w(t, u1, u2) = exp

�

−
a2

2
(t + u1)

�

(1− c)m(t+u2). (7.2)
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The reason for the change in the sign is that this way the losses will be recognised as
downward jumps in the time series of the bond price. We emphasize that expectations
are computed under the L-measure, under which LRBs with joint terminal marginals are
nevertheless independent and inherit the law of the generating Lévy processes. The bond
price is then given by

PtT =
P0T + b(T )ALt
P0t + b(t)ALt

, (7.3)

where, for 0≤ t ≤ T < U , a ≥ 0, 0≤ c ≤ 1, m> 0, we have

b(t) =
(U − t)2 f1(t)
1+ f1(0)U2 , ALt = (1− c)mt exp

�

−a L(1)tU −
1
2
a2 t + c L(2)tU

�

− 1. (7.4)

Dependence in international markets. The effects of losses getting out of control
are not confined to ones domestic economy. Especially in a global financial market, the
deterioration of an economy’s health exposes, for instance, foreign creditors holding debt
of the distressed economy to higher credit risk. Bond markets are global “debt networks”
linking several national economies with one another. The result of such network might be
“contagion”: an ailing economy may severely damage creditors which, through financial
exposure, can be affected by spiralling losses experienced by the debtor. For instance, a
foreign investor may see their investments in foreign bonds significantly devalued if the
bond price declines due to unexpected losses, or out-of-control debt management. The
foreign investor’s loss may be commensurate with the percentage investment in an ailing
economy compared with their total financial exposure and reserves gained through income.
Here size matters, of course, and the discussions about the magnitude of the Greek versus
the Italian debt impacting on the Eurozone or world economy come to ones mind. The
next example aims at illustrating how contagion effects can be modelled in the present
asset pricing framework. We introduce a linear combination of cumulative random bridge
processes defined by

eL( j)tU =
n
∑

i

w( j)i L(i)tU , (7.5)

where {L(i)tU} are, e.g., gamma random bridges with joint terminal distribution and gen-

erated by independent gamma processes. The weight parameter w( j)i measures the level

of exposure to each cumulative process {L(i)tU}. Since the linear combination may not be

the same for any creditor exposed to the pool {eL( j)tU}, further freedom is given through j-
indexing the exposed entity (sovereign state, private company, etc.). For instance Country
A may have a financial exposure of 15% to Country X and 8% to Country Y. The percentage
exposures, which can be collected form various financial intelligence organizations, can be
used to determine the weights for Country A. On the other hand, Country B may be exposed
by 34% to Country Y’s economic performance and by 65% to Country Z’s. One sees that,
even though Country A and B may not hold any of each others financial assets, they are
linked to each other through the common exposure to Counrty Y’s economy, albeit to dif-
ferent levels. The bonds of Country A and Country B are expected to both show the impact
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of their respective exposures to Country Y. The bond price processes of Country A then may
have the form (7.3) where

b(t) =
(U − t)n+1 f1(t)
1+ f1(0)Un+1 , ALt =

n
∏

i=1

�

1−w( j)i

�mi t
exp
�

−a L(1)tU −
1
2
a2 t + eL( j)tU

�

− 1,

(7.6)

and 0≤ w( j)i ≤ 1, mi > 0. The level of financial exposure to a specific economy can be mea-
sured, at least in part, in terms of debt instruments held. Hereafter, we look at a simulation
of contagion due to exposure to sovereign debt of two foreign countries. In particular, we
suppose that Germany and France are exposed to the Spanish and Italian economic envi-
ronment. The level of exposures w( j)i , governing in part the levels of dependence among
the debt holders, are selected as follows:

GER FRA ESP ITA
GER 1 0 0 0
FRA 0 1 0 0
ESP 0.57 0.47 1 0
ITA 0.49 0.25 0 1

In this basic illustration, Germany has no exposure to the French economy, however it has
exposure levels 0.57 and 0.49 to Spain and Italy, respectively. The numbers listed in the
table are not normalised. Dependence among the four economies is also subject to the joint
marginal distribution of the LRBs underlying the dynamics of the yield processes. The closer
the time horizon U , the more the joint marginal distribution of the multivariate random
variable LUU will govern the dynamics of the dependent yield processes. The simulations
that follow are based on bond price models of the form (7.3) where b(t) and {ALt } are
specified in (7.6).

Figure 1: Simulation of the yield process of the two-year-maturity bonds issued by Germany,
France, Italy, and Spain.

In Figure 1, we see the impact of spiralling debt on the yield process of sovereign
bonds. The significant jumps in the yield processes of Spain and Italy (first and second
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trajectories from above) are due to unexpected losses (e.g. bank bail-outs, natural disasters)
over relatively short periods of time. These spikes then have repercussions on the yield
processes of France and Germany to various degrees of severity. The level of repercussion
on each exposed country is relative to the health of the own economy. In the simulation
above, we see that France’s yield process (third trajectory from above) needs more time
than Germany’s yield trajectory to recover from the shocks. The implication is that although
Germany has a higher exposure level to Spain’s and Italy’s finances, it has a more robust
domestic economy—with, e.g., higher growth rate—than France. Thus, Germany is in a
position to better weather foreign economic shocks. Contagion effects, due to increased
economic stress, are also observed in the behaviour of the spread process when comparing
the performance of bonds issued by different sovereign states.

Figure 2: Simulation of the price spread process for the two-year-maturity bonds issued by
France, Italy, and Spain compared with the two-year bond issued by Germany.

In Figure 2, we plot the difference between the yield processes of France, Spain, and
Italy when compared with the yield process of the German sovereign bond. We observe the
widening of the spread level for Spain and Italy, due to the two upward jumps in economic
deficit. France keeps the evolution of the spread between the yield of its bond and the one
by Germany in check even though it takes the hit from the exposures to the Spanish and
Italian economies.
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M. Forde, A. E. V. Hoyle, M. Kupper, C. Mainberger, P. McCloud, P. A. Parbhoo, M. Riedle, and
J. Sekine for useful discussions, and to conference and seminar participants at the African
Institute for Mathematical Science, Cape Town, and at the Technische Universität Berlin for
helpful comments. A substantial part of this work was carried out while the author was a
member of the Department of Mathematics, King’s College London.

26



References

[1] J. Akahori, Y. Hishida, J. Teichmann, T. Tsuchiya (2009) A Heat Kernel Approach to Interest
Rate Models. arXiv.org, No. 0910.5033.

[2] J. Akahori and A. Macrina (2012) Heat Kernel Interest Rate Models with Time-
Inhomogeneous Markov Processes. International Journal of Theoretical and Applied Finance
Vol. 15, No. 1, Special Issue on Financial Derivatives and Risk Management.

[3] K. E. Back (2010) Asset Pricing and Portfolio Choice Theory. Oxford University Press.
[4] H.-P. Bermin (2012) Bonds and Options in Exponentially Affine Bond Models. Applied Math-

ematical Finance, iFirst, 1-22.
[5] T. Björk (2009) Arbitrage Theory in Continuous Time. Oxford University Press, 3rd edition.
[6] D. Brigo and F. Mercurio (2006) Interest Rate Models - Theory and Practice: With Smile,

Inflation and Credit. Springer Verlag.
[7] D. C. Brody, L.P. Hughston, A. Macrina (2008) Information-Based Asset Pricing. International

Journal of Theoretical and Applied Finance Vol. 11, No. 1, 107-142.
[8] A. J. G. Cairns (2004) Interest Rate Models: An Introduction. Princeton University Press.
[9] P. Carr and D. B. Madan (1999) Option Valuation Using the Fast Fourier Transform. Journal of

Computational Finance Vol. 2, No. 4, 61-73.
[10] J. H. Cochrane (2005) Asset Pricing. Princeton University Press.
[11] D. Duffie (2001) Dynamic Asset Pricing Theory. Princeton University Press.
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