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Abstract

Business and credit cycles have an impact on credit insurance as they do on
other businesses. Nevertheless, a credit insurer can adapt faster than other busi-
nesses can. In particular, it limits the consequences of a down-turning cycle. This
paper proposes a model of estimating future losses of a credit insurance portfolio.
The model takes into account both cycles (regimes) and the capacity of the credit
insurer to take less risk in case of a downturn and inversely in case of a cycle upturn.
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Introduction
Credit insurance is concerned by business or credit cycle fluctuations, but in an
unusual way. Commercial businesses need a credit insurer if they think their clients
won’t be able to pay their invoices on time, or risk to become insolvent shortly.
So they take an insurance policy which guarantees them that a part or the whole
invoice amount will be reimbursed by the insurer in case the client couldn’t pay.
The credit insurer thus takes on the risk of insolvency or protracted default1. This
makes the credit insurer very sensitive to credit and eventually business cycle.
Many papers aim to find out whether these cycles coincide, and it seems there is no
definitive answer on this question (see for example [14] and references therein). Both
cycles seem to follow some macro-economic variables, and GDP variations seem to
explain partly the credit cycle movements. Anyway the difference between these
two cycles will not be important in what follows. We can work with both of them
as long as we distinguish upturns from downturns and that in downturns there are
(significantly) more defaults than in upturn periods. For us the important issue
will be being able to distinguish the point where the number of defaults changes
significantly, where the default regime switches.
When the cycle goes down, the number of insolvent firms or those not being able to
pay their invoices increases dramatically. Hence the insurer should reimburse huge
amounts of money and risks to be insolvent itself. It would probably be the case if
credit insurers could not limit their losses. They can do this by diminishing their
exposure towards firms (clients of the insured business) whose creditworthiness is
decreasing. In this case the insurer prevents the insured firm whose granted amount
decreased that its client may not be solvent anymore and that it should itself reduce
the amount of commercial exchanges with the client. On the other hand, when the
insurer thinks that economic conditions are more favourable, it takes more risks,
and increases its exposures.
The large number of firms defaulting at the same time at the beginning of a crises
impact the credit insurer quite considerably (if the insurer has not correctly pre-
dicted its starting point). However once the number of defaults increases and the
crises is real, the credit insurer can lower its exposures towards the riskier firms -
there is an arbitrage between immediate losses of money or credibility for future
wealth - and diminish its losses. The insurer has the power to increase or decrease
the risk it is bearing, which is more difficult for banks for example.
For all these reasons it is important for a credit insurer to predict the state of the
economy and for the actuarial teams to compute a risk capital which is depending
on the state of the economy.
Our paper presents a way to better adjust to cycles and introduce lowering or in-
creasing exposures. In the first section we will present the one-period model where
all parameters are fixed during the period. In the second section we will introduce a
two-period modelling, which allows to adjust to the cycle phases. In the last section
after apply the model to a credit insurance portfolio and give the results we have.

1There is default if the payment period lasts longer than it was initially agreed on by the insured
and its client
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1 Single-period modelling
The model we will introduce in this section is the cornerstone of the two-period
model we propose. Let us start by describing this model, so that the new steps we
want to introduce and their usefulness may be clearer later on.

1.1 Default modelling
The current defaulting model is a multifactor Merton model. It is a Merton-like
model (see [16], [4], [9], [8]) since one client, that we will call onward buyer, will
default if a latent value called ability to pay and noted Z, falls below a certain
threshold, d. In the true Merton model the latent value is the value of the assets of
the firm, and it will default if the asset value falls below the liabilities amount. The
probability of default for buyer n is then:

pn = P (Zn 6 dn)

The parameter estimated here is not the default threshold, because we are working
with a latent variable, but the default probabilities pn. In our case we will assume
they are given and are exogenous to our main concern. The default modelling is a
multifactor one because the latent variable Zn is modelled as the sum of systemic
risk and buyer individual risk. See [5], [6], [18], [19], [10] for further information on
one-factor, multi-factor models and associated copulae. In our case, we have:

Zn = %n
twnR +

√
1− %2

nεn

where

• R is the systemic risk vector following a multivariate Gaussian distribution
N (0,Σ), with Σ the covariance matrix;

• εn is the idiosyncratic (individual) risk of buyer n and follows a standard
Gaussian distribution N (0, 1);

• εn and R are independent from one another;

• wn is the vector of weights of buyer n for factors in R;

• %n describes the correlation of buyer n to systemic risk (economy); the bigger
it is, the higher the correlation to systemic risk, thus the higher the correlation
to other firms also.

In the multifactor model the parameters needed to be estimated are the covari-
ance matrix Σ, %n and the weights wn. In practice the estimation of Σ and %n seem
to be the hardest part but it will not be the object of our paper. We should also
notice that since it is easier to manipulate standard Gaussian variables, and Zn with
the above definition is not a standard one, we will use instead this definition of Z

Zn = %n

twnR

‖ 〈twnM〉 ‖
+
√

1− %2
nεn
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where M is such that Σ = tMM (Cholesky decomposition).

1.2 Loss modelling
A defaulting buyer will produce a loss. This loss will be equal to the insured amount
which is defined as minimum value among the invoice amount and exposure the in-
surer has on the buyer 2. Since the insured amount is not known until the default
occurs, it is modelled through UGDs, Usage Given Default, defined with the follow-
ing formula:

UGDn = Insured amountn

Current Exposuren

UGDn is another parameter the insurer should model or estimate. Given UGDn,
the insurer estimates the loss from buyer n to be equal to UGDn×Current Exposuren

in case buyer n defaults. 3

2 A new modelling approach
There are a large number of ways to model default probabilities and UGDs. We
will not expose here those modelling techniques. Nevertheless we want to emphasize
the importance of a consistent modelling since it is crucial for the estimation of
losses-to-come and consistent reserving.
The current modelling is a single-period, which means that the whole parameters as
well as the variables considered are defined over one period as well. The ability-to-
pay is the one-period ability-to-pay. If there is default, there is one default in the
period, but we don’t know exactly when it occurs, so we assume all defaults occur
at the end of the period. In practice the period we work on is the year.
We want to introduce in the modelling the possibility for the insurer to manage
exposures during the year. Indeed it can lower exposures for buyers whose credit-
worthiness decreases and even cancel them. This former case is modelled through
the change in the UGD, whereas the later is taken in account in the default prob-
abilities since in case of default of the buyer after the guarantee is cancelled, the
insurer pays nothing; it is like the default never occurred.
The contract (exposure) management takes all its importance during tough periods,
when economic conditions influence the creditworthiness of firms and make them
insolvent or incapable of paying invoices at the due date.
This means that estimated parameters, i.e should be different during high and low
cycle periods because the contract management will be different.
Our aim is to take account of this by introducing a half-period step into the model,
which gives us a two-period model. This two-period model can easily be transposed
in a multi-period model.

2The maximum amount of money the insurer guarantees the insured in case of default of his
client, the buyer n

3This will not be the final loss because other contract clauses, as reinsurance or deductibles for
example, will be taken into account. We will not consider those clauses in this paper.
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2.1 Two-period modelling
We will describe here the general idea of the model and deduce afterwards the
parameters to be estimated.

2.1.1 Basic description and parameters to estimate

Parameters to be applied are predicted for the first period. Default probabilities
are the parameters we are more interested in for now. They withhold information
about the phase of the cycle we are in during the period.
At the end of the period we compute the number of insolvencies and given a criterion
applied to this number, we say if it is more probable for the first period to be in a
high or low phase cycle. We will give more details about this criterion in the section
below.
We then compute the losses related to insolvency defaults and protracted defaults.
The creditworthiness of buyers may change at the end of the period, and their grades
may change consequently. Whereas in the one-period model buyers could change
rating class only at the end of the period.
At the beginning of the second period we thus have a new portfolio since buyers
might have changed grading classes and some of them have defaulted so they have
exited the portfolio.
The exposures might also have changed from the beginning of the first period if the
creditworthiness is lower. In the single-period model this was not possible.
The cycle phase of the second period may be high or low; it depends on the a poste-
riori phase of the cycle in the first period. The dependence is modelled by a Markov
chain, i.e. probabilities of transition between high or low cycle phases. Examples in
the literature are many, for example [2], where they work with business cycles.
The losses of the second semester are then added to those of the first.

The parameters we need to estimate for recession and expansion periods are then
the following, for high or low cycle phases:
• Grades transition matrices, with insolvency probability defaults in the last

column, noted Pl and Ph;

• A vector of protracted default probabilities for each grade, πl and πh;

• A vector with UGDs for each grade, UGDl and UGDh;

• A vector (0r matrix ) of coefficients indicating the variation of exposures, cl

and ch.
The parameters for the first semester should be predicted, especially insolvency

default probabilities. The grades transition matrix should be given too.
The estimation of those parameters will not be the object of this article, but

finding consistent estimators for those parameters would be of great interest in a
future work. A consistent estimation approach would be a Hidden Markov Chain
(ou Regime-Switching Markov chain) (see [11], [2], [? ]). Some other papers which
present estimation techniques for conditional (on business, credit cycles or other
factors) are [3], [7], [13],[14],[17], [15].
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2.1.2 Mathematical computation of the losses

Let N be the total number of buyers in the portfolio.
Let Ln be the exposure of buyer n at the beginning of the period. Let Gn be the
grade of buyer n at the beginning of the period, Gn ∈ {1, ..., J}.

Losses of the first period The total loss at the end of the first period will be:

Loss1 =
N∑

n=1
Ln × UGD(Gn)× [Zn < d(Gn)]

Remark: In the formula we have UGDGn because the UGDs are estimated by
grades and probabilities of default too. Practically, we compute d(Gn) for each grade
as a standard Gaussian quantile d(Gn) = Φ−1 (pGn) 4.

Changes in the portfolio during the first period Let def be the number of
defaults in the first period, def = ∑N

n=1 [Zn < d(Gn)]. If the default rate def
N

=∑N
n=1

[Zn < d(Gn)]
N

satisfies a certain criterion, then El, otherwise E = h. We will
develop this part in 2.2.
Concerning transitions between grades the same principles as for defaults apply:
default thresholds are computed using the transition matrices P and the assumption
on Z being a standard Gaussian.
The probability for a buyer n to go from Gn = i to j ∈ {1, ..., J} is the following:

P (di,j+1 < Z < dij) = Φ (dij)− Φ (di,j+1) = pij

with di,j+1 < dij.
The thresholds dij of going from grade i to grade j are computed:

∀j ∈ {J, ..., 1} , dij = Φ−1

J−1∑
k=j

pik + pi

 (1)

where J is the number of grades and J = 10 in our case.
At the end of the first period the structure of the portfolio would have changed:
buyers having defaulted have exited the portfolio, and the others may have change
grades, which implies that their characteristics as default probabilities change for
the second period.

4Φ denotes the cumulative distribution function of a standard normal distribution, as is Zn.
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Losses in the second period E and E2 are the cycle phases in the first and
second period. They take values in {l, h} where l stand for low cycle and h for high
cycle phase.
The transition matrix on the second semester will be given conditionally on the cycle
phase in first period.

P2 =
{
Ph with probability P (E2 = h E)
Pl with probability P (E2 = l E)

The protracted default probabilities will be randomly chosen, conditionally on
the first period, so that:

π2 =
{
πh with probability P (E2 = h E)
πl with probability P (E2 = l E)

We compute new default threshold with formula 1 for high and low cycle phases,
and then we just have to choose between the two.
The losses of the second period are given by the formula:

Loss2 =
N−def∑

n=1
L2

n × UGD(E,G2
n)×

[
Z2

n < d2(G2
n)
]

where L2
n is the exposure of buyer n at the beginning of the second period. It is

estimated to be equal to cn × Ln where cn is a coefficient indicating if the exposure
of grade n has fallen or increased.

The estimation of the coefficients cn is highly important. They can be estimated
using the history of claims declarations, and seeing how the exposure of buyers
having defaulted has evolved during the year before the default. We would expect
that in high cycles the exposures go up and when the cycle is low the exposures
fall. Ideally we could estimate a matrix C of coefficients indicating the evolution
of the exposure for buyers going from one grade to another. However in order to
have more observations and a more robust estimation we choose to give a vector of
coefficients, indicating the evolution of exposures of buyers relatively to their grade
at the beginning of the period.

The total loss of the year would then be Loss = Loss1 + Loss2.

2.2 Hypothesis

If the default rate at the end of the period is "high enough", namely∑N
n=1

[Zn < d(Gn)]
N

>

def? than El is more probable than E = h. Otherwise E = h is more probable than
El.

Proposition 1 The default rate for a given R, noted def

N
, is a good estimator of

the mean of conditional probabilities of all buyers in the portfolio 1
N

∑N
n=1 p

n R.
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Proof
We will use the Kolmogorov’s theorem, see Appendix.
We may apply the Kolmogorov’s theorem to the "sequence" of random variables

representing conditional default, i.e. Xn = [Zn < dn R] =
[
εn <

dn−%nR√
1−%2

n

R
]
for

n = 1, ..., N . Indeed those variables are independent (εn) pour n = 1, ..., N .
We choose an = n for n = 1, ...,+∞.

The first hypothesis is satisfied.

E ([Zn < dn R])2 = V ([Zn < dn R]) + (E ([Zn < dn R]))2 (2)

= pn R(1− pn R) +
(
pn R

)2
= pn R < 1 (3)

The second hypothesis is satisfied since we have:

+∞∑
n=1

V ([Zn < dn R])
n2 =

+∞∑
n=1

pn R(1− pn R)
n2 <

+∞∑
n=1

1
4n2 < +∞ (4)

So ∑N
n=1 [Zn < dn R]− E

(∑N
n=1 [Zn < dn R]

)
N

−→ 0 a.s.

Then, using the following :

1
N
E
(

N∑
n=1

[Zn < dn] R
)

=
N∑

n=1
P (Zn < dn R) (5)

= 1
N

N∑
n=1

pn R (6)

1
N

N∑
n=1

[Zn < dn R]− 1
N

N∑
n=1

pn R −→ 0 a.s. (7)

Thus the observed default rate for a given R is a converging estimator of the
conditional expectation of the mean of the Bernoulli random variables representing
defaults. This estimator is unbiased and efficient.

End of proof

Remark: The sum of the individual conditional probabilities of default
will always be greater in low than in high cycle.
This is due to the fact that if pr

n > pe
n then Φ−1(pr

n) = dr
n > Φ−1(pe

n) = de
n.

Then

1
N

N∑
n=1

P
(
εn <

dr
n − %nwnR√

1− %2 R

)
>

1
N

N∑
n=1

P
(
εn <

de
n − %nwnR√

1− %2 R

)
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.
So conditionally to R, the number of defaults will always be greater in low cycle

than in high cycle. Sometimes, for some R observations the difference between the
two conditional probabilities will not be very high, and some other times the change
between the two will be a lot greater. Thus the R vector implies a certain correlation
structure between the buyers, which is always greater in recession than in expansion.
The following is the plot of approximations of the density functions of defaults, in
black in low and in red in high cycle phase.

Figure 1: Default densities approximations

We can see that the two density functions intersect at a certain point. This
means that for this point, def? the probability of having this number of defaults
in low cycle is the same as the one in high cycle. For default numbers lower than
def?, def < def?,the probability they are coming from a high cycle phase is greater
than the probability they come from low cycle phase, and the other way around for
def > def?. We may also compute a posteriori probabilities of being in high or low
cycle.

The data we entry in the model is made of default probabilities which contain
inherent information on being in a high or low cycle phase. With the previous rule

9



we "decode" this information. After applying the rule we will know if these proba-
bilities are more alike those in high or low cycles. In practice this is deduced from
the number of cases where we "fall" into low cycle phases, noted xl and in high cycle
phases, xh. If xh > xl, the probabilities entering the model "describe" an economy
state closer to high cycle phase rather than to low cycle.

Remark: We want to emphasize the fact that the more disjoint the two densities
are, the better we recognize a cycle phase just by computing the number of defaults
in it. This is why if just business of credit cycle phases cannot be distinguished well
regarding the number of defaults, relevant macro-variables should be tested.

3 Algorithm and simulations
There is no closed formula for the loss quantiles and we should use Monte Carlo
simulations to find them. In this section we describe the algorithm and simulations
necessary to have the loss distribution numerically.

We have computed all default thresholds.

pd2 = pdh × P (E2 = h E) + pdl × P (E2 = l E) .

For each simulation t = {1, ..., T}

1. Simulate Rt following a multivariate Gaussian distribution N (0,Σ).

2. Simulate N independent standard Gaussian variables εt
n for n ∈ 1...N

3. Abilities to pay for each buyer are computed

Zt
n = %n

twnR
t

‖ 〈twnM〉 ‖2
+
√

1− %2
nε

t
n

4. For each buyer n if Zt
n < d(Gn) then buyer n is insolvent and exits the portfolio.

5. For each buyer n if dGn < Zt
n < D(Gn) buyer n has a protracted default.

6. Loss equals to the sum of losses for protracted and insolvency defaults.

7. For each buyer n not having defaulted if d(Gn)j+1 < Zt
n < d(Gn)j, the buyer

n goes from rating Gn to rating j for j ∈ {1, ..., J}

8. def is equal to the number of insolvencies.

9. Pt is the new portfolio at the end of the period.

If def < def? then E = h, otherwise El.
Let u be a random number from a uniform distribution on [0, 1].
If u < P (E2 = h E) than E2 = h, otherwise E2 = l.
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1. Simulate Rt′ following a multivariate Gaussian distribution N (0,Σ).

2. N − def standard Gaussian variables εt′
n for n ∈ 1...N − def

3. Abilities to pay for each buyer are computed

Zt′

n = %n

twnR
t′

‖ 〈twnM〉 ‖2
+
√

1− %2
nε

t′

n

4. For each buyer n if Zt′
n < d2

(Gn) then buyer n is insolvent.

5. For each buyer n if d2
(Gn) < Zt′

n < D2
(Gn) buyer n has a protracted default.

6. Loss equals to the sum of losses for protracted and insolvency defaults and the
loss of the first period.

4 Data and results

4.1 Data and some details on the estimation of parameters
We estimated the parameters on the monthly rating history of a credit insurance
portfolio. The portfolio was made of firms in France between 2005 and 2011. There
were almost 2 million firms in our database and computations relted to the estima-
tion of parameters needed machines of at least 16Gb of RAM. Simulations of losses
needed servers of 32 machines computing simultaneously in order to have come re-
sults after a reasonable delay.

We chose to use business cycle as the leading variable of our application here.
So we estimated six-months transition matrices in recession and expansion times.
We had quaterly data of GDP variation. If the GDP decreased in one quarter
than we assumed it was recession time, otherwise it was expansion. If a quarter is
recession,resp. expansion, than every month in it is a recession, resp. expansion,
month. We computed a generator matrix like in [15], and then six-months recession
and expansion transition matrices.
We computed similarly UGDs and the coefficients giving the exposure variation in
recession and expansion.

The graphic in Figure 2 gives an idea of the convergence for quantiles at 0.99.5

4.2 Results
The following annual loss densities are obtained by simulating the two-period model.
We compared the single-period model, with high cycle hypothesis, noted 1 period H,

5In the Solvency II directive it is recommended to compute quantiles at 0.995 for the economic
capital estimation, but here for practical issues, since it requires less simulations to converge we
chose to use the quantile at 0.99.
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Figure 2: Convergence of quantiles at 0.99

and midway between high and low cycle, noted 1 period TTC, single period along
with low cycle hypothesis, noted 1 period L, with the above two-period modelling
where the first period is more likely to be in a high cycle phase, noted 2 period H,
and the last case where we suppose the first period is more likely to be a low cycle
phase, noted 2 period L.

The variations of economic capital at 0.99, i.e. Loss quantile at 0.99 - Expected
loss, are:

CE 2 period L −CE 1 period L
CE 1 period L −9.3%

CE 2 period H −CE 1 period H
CE 1 period H −1.8%

CE 2 period L −CE 1 period TTC
CE 1 period TTC −3.9%

CE 2 period H −CE 1 period TTC
CE 1 period TTC −9.6%

First we observe that the Economic Capital computed with the two-period model
is always lower than the one where losses are modelled with the single-period model.

In the case where the cycle is expected to be high during at least the first
semester, modelling losses with the two-period model will decrease the Economic
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Figure 3: Loss densities

Capital by 1.8% compared to the same hypothesis under the single-period model.
This is due to the fact that in the second semester, there is a chance that the cycle is
low and in that case the exposures of the insurer will decrease. When compared to
the case of a single-period model where the cycle has the same probability of being
high or low (we call it through-the-cycle later on), then the Economic Capital with
the single period model goes down by 9.6%. This is coherent with what we expected.

When the cycle is expected to be low during the first semester, the two-period
model Economic Capital is lower by 9.3% compared to the one of the single-period
where the cycle is low during the whole year. When we compare to the single-period
Economic Capital under the through-the-cycle assumption, it is lower by 3.9%. It
is coherent to have a smaller decrease under the through-the-cycle assumption com-
pared to the case where the cycle is low the whole year.
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Conclusion
We presented in this paper a model considering business or credit cycles. This model
is especially suited to credit insurance because it predicts that guarantees the in-
surer offers can lower when the cycle is low and otherwise increase. The numerical
application seems to tell that the economic capital computed with our two-period
model is lower than the one with one single period, which may be an appreciated
feature. It also allows the insurer to better adapt its reserves level to the business
cycle and do less estimation errors than in a one period model. Indeed the more
flexible model allows to have reserves that better fit to the real needs.
The major difficulty in applying this model is finding the best discriminatory vari-
able, which will help distinguish between cycle phases, and thus different actions
taken by the insurer. After finding this variable, Markov transition matrices should
be estimated, in a consistent way. Applying the theory of Hidden Markov Chains
to find a method to estimate these transition matrices will require further work.

5 Appendix

5.1 Kolmogorov’s theorem
Theorem 1 Kolmogorov

Let (Xn)n>1 be a sequence of independent random variables such that:

• for all n > 1, E (X2
n) < +∞

• There exists a sequence (an)n>1 of positive numbers which grows to +∞ such
that

+∞∑
n=1

V (Xn)
a2

n

< +∞.

Then ∑N
n=1 Xn − E

(∑N
n=1 Xn

)
an

−→N→+∞ 0

If

a−1
n E

(
N∑

n=1
Xn

)
−→ m

then
∑N

n=1 Xk

an
−→ m .
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