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Evaluating default correlations or the probabilities of default by more than one firm is
an important task in credit analysis, derivatives pricing, and risk management. However,
default correlations cannot be measured directly, multiple-default modeling is technically
difficult, and most existing credit models cannot be applied to analyze multiple defaults.
This article develops a first-passage-time model, providing an analytical formula for
calculating default correlations that is easily implemented and conveniently used for a
variety of financial applications. The model also provides a theoretical justification for
several empirical regularities in the credit risk literature.

The fortunes of individual companies are linked together via industry-specific
and/or general economic conditions. As a result, the default events of compa-
nies are often correlated. This correlation is very important in credit analysis.
However, default correlations have not been satisfactorily modeled.
Currently, default correlations are estimated in two ways. One method
uses historical data [e.g., Lucas (1995)]. The problems with this approach
are well known. First, because defaults for bonds are rare—especially highly
rated ones—there are not enough time-series data available to accurately
estimate default correlations. Second, the historical approach as it has been
implemented does not use firm-specific information and, therefore, cannot
recognize that the default correlation between Exxon and Chevron could be
very different from that between Exxon and Wal-Mart. Third, default corre-
lations are time-varying, so past history may not reflect the current reality.
The second approach to estimating default correlations utilizes a particular
theoretical structure of the default process. The most popular structure in
practice is based on Merton’s (1974) framework. In Merton’s (1974) model,
default can only occur at the maturity of a bond. The assumption that a bond
may only default at its maturity is restrictive and unrealistic. For example,
coupon bonds that may default at more than one date require a structure that
accounts for the sample path of the firm’s assets.! For this reason, the first-
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passage-time model of credit evaluation is now widely used in the academic
literature [Black and Cox (1976), Longstaff and Schwartsz (1995), Leland
and Toft (1996), Leland (1998), Zhou (2001a), and many others].

This article develops a first-passage-time model, providing an analyti-
cal formula for calculating default correlations and joint default probability,
which is conveniently used for a variety of financial applications. The article
focuses on the joint default probability of multiple firms, while the exist-
ing first-passage-time models study the default probability of a single firm
only. The contribution of this article is twofold. First, it presents a readily
implementable approach to default correlations that makes use of various
firm-specific information. Second, it provides a theoretical justification for
various empirical regularities in the literature.

The article is organized as follows: Section 1 provides an overview of
default correlation. Section 2 presents the model and investigates its proper-
ties. Section 3 discusses the empirical applications of the model. Section 4
concludes.

1. Default Correlation: Definition and Applications

1.1 Default correlation overview
Consider two random variables D, (¢) and D,(t) that describe the default
status of two firms, firm 1 and firm 2, over a given horizon ¢:

1 if firm i defaults by ¢

D.(t) =
0 0 otherwise

Assuming the independence of default events, the joint default probability of
the two firms is

P(D,(t) = 1 and Dy(t) = 1) = P(D,(t) = 1) - P(Dy(1) = 1).

When examining the joint probability, however, it is reasonable to assume
that when one entity defaults, the other entity may have a higher likelihood
of defaulting. Perhaps both firms are experiencing pressures from the general
economy, their industry, or their region. Thus, the two entities may have a
positive default correlation.

We define the default correlation Corr(D,(¢), D,(t)) as

E[D,(#) - D,(t)] — E[D,(#)] - E[D,()]
VVar[D,(1)] - Var[D,(1)]

Cort[D, (1), Dy(t)] = )

Because D,(t) and D,(t) are Bernoulli binomial random variables, we have

E[D;(®)] = P(D;(t) = 1),
Var[D; ()] = P(D;(t) = 1) - [1 = P(D,(t) = D).

556

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Default Correlations and Multiple Defaults

Default correlation analysis plays a critical role in determining joint default
probability—the probability of multiple defaults. From Equation (1), we have

P(D,(t) =1 and D,(t) = 1) = E[D;(?) - D,(1)]
= E[D, ()] - ELD,(#)] + Cort[D, (),
D,(0)]./ Var[D ()] - Var[D,(0].  (2)

If P(D,(t) = 1) = E[D,(#)] = 5% (i.e., firm 1 has a 5% probability of
default), and P(D,(t) = 1) = E[D,(t)] = 1%, the joint default probability of
both firms, assuming their independence, is 5% x 1% = 0.05%. If the default
correlation equals 0.2, in this example, the joint probability of default would
equal 0.48%. The latter is almost 10 times as large as the former. Thus,
default correlation can have a large impact on the probability of joint default
events.

The default correlation is also useful in evaluating the probability that
either firm defaults:

P(D,(t) =1 or D,(t) = 1)
= P(D,(t) = 1) + P(Dy(t) = 1) = P(D,(t) = 1 and D,(1) = 1)
= ELD, ()] + E[D, (1] — ELD, (1) - D,(0)]. (3)

Because the example shows that E[D, (¢) - D,(¢)] can be very different from
E[D,(t)]-E[D,(t)], it implies that estimates of the probability in Equation (3)
can also be very sensitive to the default correlation.

1.2 Applications of default correlation

Default correlation analysis has many applications in asset pricing and risk
management. Due to the rapid growth in the credit derivatives market and the
increasing importance of measuring and controlling default risks in portfolios
of loans, derivatives, and other securities, the importance of default correla-
tion analysis has been widely recognized by the financial industry in recent
years [J. P. Morgan (1995)]. This section briefly introduces some applications
of default correlation analysis.

1.2.1 Asset pricing. A straightforward application of default correlation is
the evaluation of a letter of credit (LOC)-backed debt. This contract transfers
the risk of default from the debtholder to the LOC bank. Current rating
agency practice is to rate LOC-backed debt with the same credit quality as the
LOC bank. However, this overlooks the protection the debt holder receives
directly from the debt obligor. Essentially, two failures have to occur before
the debtholder experiences a financial loss: Both the LOC bank and the debt
obligor have to default. Assume that the LOC bank has a 0.5% probability
of default, and the debt obligor has a 2.0% probability of default. Using the
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same default probability as the LOC bank, current financial practice would
assess a 0.5% default probability for the LOC-backed debt. However, if the
default correlation between the LLOC bank and the debt obligor is 0.20, the
true default probability of the LOC-backed debt is about 0.2%. If the default
correlation is 0.05, the default probability will be only 0.06%.

The default correlation is also important in pricing credit derivatives. The
market for credit derivatives is relatively new but has grown rapidly in recent
years [Rai et al. (1997)]. As an example, let us consider a simple credit
default swap. This is an agreement between two counterparties in which
a periodic fixed payment or up-front fee is exchanged for the promise of
some specified payment(s) to be made at the maturity of the swap only if
a prespecified reference party has defaulted by that time. In this example,
the default protection buyer will experience a loss before the maturity of the
default swap only if both the protection seller and the reference party have
defaulted by that time. The default correlation must be known to determine
the joint probability of default of the protection seller and the reference party.

1.2.2 Risk management. The problem of portfolio analysis with credit risk
has been examined in the recent literature. A portfolio manager is concerned
with not only the default of any single party but also the probability of
multiple defaults in the portfolio. An effective measurement of credit risk
in a portfolio involves three critical quantities: the probability of default for
each individual position over various investment horizons, the joint proba-
bility of default between every pair of counterparties over various investment
horizons, and the magnitude of financial loss in the event of each possible
default. The most crucial and the most difficult part of credit aggregation
analysis, as noted in the literature, is estimating the default correlations.

Suppose that a hypothetical loan portfolio consists of two loans; the annual
default probability for each loan is 1%, and the annual default correlation
is 10%. The probability that both loans default in a year is approximately
0.11%. Assume that the credit standings of the two loans subsequently dete-
riorate so that the annual default probability for each loan rises to 2%. If the
default correlation remains constant, the probability that both loans default
in a year becomes 0.24%, about twice the original joint default probability.
However, as we shall see, a decline in the credit quality will typically lead to
arise in the default correlation. If the default correlation increases from 0.10
to 0.25, the joint probability of default becomes 0.53%, 5 times as large as
the original probability. Thus, accurate measures of default correlations are
crucial in modelling portfolios with credit risk.

2. The First-Passage-Time Model of Default Correlation

This section provides a basic theoretical model for default correlations based
on first-passage-times. A firm defaults when its value first hits a default

558

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Default Correlations and Multiple Defaults

boundary. Determining the default correlation between two firms amounts to
calculating the probability of a two-dimensional stochastic process passing a
boundary.

Consider the default correlation between two arbitrary firms, firm 1 and
firm 2. Our main assumptions are as follows.

Assumption 1. Let V| and V, denote the total asset values of firm 1 and firm
2. The dynamics of V| and V, are given by the following vector stochastic

process
dIn(V)) y dz,
= dt + Q , 4
[d (V)| = (o] ¥ | dz, @
where w, and p, are constant drift terms, z, and z, are two independent
standard Brownian motions, and Q is a constant 2 x 2 matrix such that

Q- Q’ — 012 PO0;
poo, oy |

The coefficient, p = Corr(d1n(V)), dIn(V,)), reflects the correlation betw-
een the movements in the asset values of the two firms. This correlation
coefficient plays a critical role in determining the default correlation between
the firms.

Assumption 2. The default of a firm is triggered by a decline in its asset
value. For each firm i, there exists a time-dependent value C,(t) such that
the firm continues to operate and meets its contractual obligations as long
as Vi(t) > C;(t). However, if V,(t) falls to the threshold level C(t), the firm
defaults on all of its obligations immediately, and some form of corporate
restructuring takes place. Following Black and Cox (1976), we assume that
the time dependence of C,(t) takes an exponential form: C.(t) = e™'K,.

There are many interpretations of the default boundary C,(¢). Black and
Cox (1976) interpret C;(¢) as the minimum firm value required by the safety
covenant of a debt contract. If the value of the firm falls to C,;(¢), its bond-
holders are entitled to force the firm into bankruptcy and obtain ownership
of the firm’s assets. According to Black and Cox, C;(¢) takes an exponential
form in ¢ because the expected debt value usually takes this form. In many
practical applications, C;(¢) is set to a weighted average of the firm’s long-
term and short-term liabilities, and A; can be interpreted as the growth rate
of firm i’s liabilities.

2.1 Solution: a simplified version
We will first consider a simple case in which A; = u;. Economically, A; = p;

means that the debt value of a firm and the firm value have the same expected
growth rate. Therefore, the assumption implies a constant leverage ratio in
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the steady state. A solution to the general model in which u; and A; are
arbitrary constants will be provided later.

Denote 7; = min,.o{tle™ V() < K;} as the first time that firm i’s value
reaches its default threshold level. Then P(D;(t) = 1) = P(r; < t). Using
the result of Harrison (1990), we have

P(D,()=1)=2. N(_%) o
-2n(-%) ©®)
NG
where
Z;, = M

i
o.

2

is the standardized distance of firm i to its default point and N(.) denotes the
cumulative probability distribution function for a standard normal variable.
Based on Equations (1), (3), and (6), to determine the default correlation, the
only remaining unknown we need to find is

P(D,(t) = 1 or D,(t) = 1),

that is, the probability that at least one default has occurred by time ¢. We
can prove the following result.

Main Result 1. Assume that A; = u;. We have

P(D,(t) =1 or Dy(t) = 1)

2
=1- 21’0 .e_Tg. Z l‘sin(nﬂeo)
o

2t n=l, 3, n

'['%(%H) (:T(i) Ty () (%)} @)

where 1,(z) is the modified Bessel function I with order v and

tan~! (——Vl_pz) ifp<0

P

o =
T+ tan‘l(— Y 1/)—,) ) otherwise.
tan-‘(ZZ—Vl"’z) if()>0

Zy—pZy

V)
7 + tan™! (M> otherwise,

Zy—pZ;

ro = Z,/ sin(@).
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Proof. A thorough technical treatment of this result may be found in
Rebholz (1994). A brief proof is provided in the Appendix to this paper.

2.2 Solution: a general version
This subsection briefly discusses a more general model that allows X; # u;.
Based on the results of Harrison (1990), when A; is not equal to u;, the
default rate of an individual firm is

4

. J—
P(D;(1) = 1) = N(‘j; — %)
204=1)Z;

— _ﬁ I’Li_)\’i
+e N( ﬁ+—0i ft). ®)

Proposition 1. Let A; and u; be any given constants. We can prove

P(D,(t) = 1 or Dy(t) = 1)

[
=1- zea]x]-kazxz-#a,t . Z Sin(l’lﬂeo)
n=1

ot o

2 o 9
e F / sin(ﬂ)g,,w)de
0 o

where 0, 1o, and o are defined as in Main Result 1,

o _2 dyrsin(@—a)—d,r cos(f—a) 7y
g,,(@):/ roe T.eh 2 ~Iu(7)dr,
0

_ (A = 1oy — Ay — )0,
1- :02)‘712‘72

1

E)

(A — pr)oy — (A — py)po;
a- :02)‘722‘71

a, = ,
ajo} aso;

a, = 5 + pa,a,0,0, + > a (A — ) —ay(hy — 11y),

d, = a,01 + pa,0;,

d, = ay0,1/ 1 — p2.

Proof. See Rebholz (1994).

As the result depends on the double integral of Bessel functions, its imple-
mentation becomes very computationally intensive. Table 1 shows three
numerical examples of the impact of the drift terms X; and p; on the default
correlations. The table suggests that the difference between w and A has little
effect on default correlations with one-year or two-year horizons. The drift
terms may have some impact on default correlations over long horizons (5 to

561

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Review of Financial Studies /v 14 n 2 2001

Table 1
The impact of drift terms in firm value processes and default boundaries on default correlations (%)

Horizon (years) 1 2 3 4 5 10

n=2>x 0.04 1.2 3.7 6.5 9.2 17.1
pu=.051x1=.03 0.04 1.1 3.5 6.2 8.9 16.5
pu=.051i=.00 0.04 1.0 33 6.0 8.5 15.7

Parameters in this table are: V) (0)/K,(0) = V,(0)/K,(0) =35, o) =0, = .30, and p = .40.

10 years), but the impact is still relatively small. This result builds confidence
in the assumption used in Main Result 1. The subsequent analyses are based
on the simplified model with u = A.

2.3 Implications of the model

2.3.1 Theoretical implications. Based on Main Result 1, Figure 1 plots the
relation between the default correlations and the investment horizon ¢ for
different values of the asset-level correlation p. It illustrates the following
results:

1. The default correlation and the asset level correlation p have the same
sign. The higher p is, ceteris paribus, the higher the default correla-
tion. This result is intuitive. For instance, if the asset level correlation
p is positive, when one firm defaults, it is likely that the value of the
other firm has also declined and moved closer to its default bound-
ary. The result explains why firms in the same industry (region) often
have higher default correlations than the firms in different industries
(regions) [Lucas (1995)].

2. Default correlations are generally very small over short horizons. They
first increase and then slowly decrease with time. Over a short hori-
zon, default correlations are low because quick defaults are rare and
nearly idiosyncratic. Default correlations eventually decrease with time
because over a sufficiently long time horizon, the default of a firm is
virtually inevitable in the model, and the nondefault events become
rare and idiosyncratic. This result is consistent with an important phe-
nomenon of historical default correlations reported in Lucas (1995).
Lucas conjectures that the phenomenon is caused by business cycle
fluctuations. Our result suggests that business cycle fluctuations are
not necessary to explain this phenomenon.

Figure 2 illustrates the relation between default correlations and time, for
various levels of the credit quality of the firms, proxied by the initial value
of V/K. This figure illustrates some interesting results.

1. High credit quality implies a low default correlation over typical

horizons. For the higher credit quality firms, the conditional default
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0.2

0.15

0.1

DefaultCorrelation

0.05

—p=04 ——p=02 —p=-01

Figure 1

The relation between default correlation and time for given asset return correlations

Here p represents the asset level correlation between firms and ¢ is the length of time horizon. The parameter
values used here are V,/K, =V,/K, = 1.8 and 0, = 0, =0.4.

probability P(D,(t) = 1|D,(t) = 1) is small. Although the default of
firm 1 signals that the value of firm 2, V,, may have declined, because
the original ratio V,/K, is high, the probability that V, falls below
K, is still very small. This result is consistent with the well-known
empirical feature regarding the relation between default correlation
and credit ratings.

2. The time of peak default correlation depends on the credit quality of
the underlying firms. The higher quality firms take a longer time to
peak. Lucas (1995) finds this result puzzling. Our model clarifies the
source of this finding. The intuition here is similar to that in (1). The
short-term defaults of the higher credit quality firms are idiosyncratic
events and the joint defaults of the higher quality firms are rare. It
takes a long time for the default correlation of higher quality firms to
reach a high level.

3. Because the credit quality of firms is time-varying, the default cor-
relation is dynamic. A rise in the credit quality leads to a substantial
drop in the default correlation, and a decline in the credit quality leads
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Figure 2

The relation between default correlation and time for various credit qualities

Here p represents the asset level correlation between firms and ¢ is the length of time horizon. The parameter
values used here are p = 0.4 and 0, = 0, = 0.4,

to a rise in the default correlation. This dynamic behavior arises even
when the underlying assets and liabilities of the firm have constant
expected returns and risks.

2.3.2 Risk management implications. The above results have many useful
implications for credit analysis and risk management. Some examples are
listed here.

1. Because the default correlation over short horizons is small, portfo-
lio diversification should substantially reduce default risk over short
horizons.

2. For long-term investments (e.g., 5 to 10 years), the default correlation
can be quite a significant factor if the underlying firm values are highly
correlated. In this case, concentration in one industry or one region,
where defaults are highly correlated, could be very risky. Diversifica-
tion across different regions or different industries may be desirable.
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3. The dynamic nature of default correlations requires active management
of the portfolio. This is true even if the expected returns and risks of
the underlying assets and liabilities are constant over time.

4. The dynamic nature of default correlations has implications for capital
requirements. Because the change in individual default risks may sub-
stantially affect the credit risk of a portfolio, the capital requirements
must be adjusted accordingly. For example, if the default probability
of each loan doubles, the probability of multiple defaults in a portfolio
may be significantly more than doubled.

3. Applications of the Model

To apply the model in practice, we must estimate the following parameters:
V,, 0, K;, p. We offer two approaches to estimate these parameters. One
approach uses firm-specific information, such as the firm’s stock returns,
book value of liabilities, and so on. The other approach employs the firm’s
credit rating information and the default rates of similar firms.

3.1 An option approach to estimating parameters

3.1.1 Estimating V,, o;, and p. Typically, the total value of a firm’s underly-
ing assets is not observable because the market value of the firm’s liabilities
is not known. In practice, this problem can be circumvented by an option
theoretic model of the firm, which treats the firm’s equity as a call option
on the firm’s underlying assets [Black and Scholes (1973)]. Denote S; as the
equity value of the firm, and assume that the debt structure (i.e., the principal
or face value, the coupon arrangement, and the maturity of all debts) of a
firm is observable; we have

In(S;) = G(n(V)), o0;; other values), 9)

where other values include the book value and the maturity of liabilities as
well as the interest rate. These “other” values are generally observable.
Ito’s lemma implies that the standard deviation of d In(S;)/d¢ satisfies

0G
05 = " 0;
’ 9 1n(V))
= H(V,, 0;; other values), (10)

Assume that we can observe stock price S; and its volatility o, ;. Solving the
joint equation system (9) and (10), we obtain V; and o;. Using Ito’s lemma,
we also have p = Corr,[d In(S)), d In(S,)].

Generally, firm value correlations estimated over finite horizons do not
satisfy the above equation. However, the equation provides a good approxi-
mation for highly rated firms. This is because for a highly rated firm, the firm
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value is close to the equity value (leverage ratio is low). The dynamics of the
firm value are therefore similar to the dynamics of the stock price. Whether
the equation is also a good approximation for highly leveraged (lowly rated)
firms is less certain.

3.1.2 Estimating K;. The default point K, captures or measures the liability
structure of the firm. In practice, K; is often defined as a firm’s short-term
liability plus 50% of the firm’s long-term liability.

3.2 Statistical approach to estimating parameters

One may also use a statistical approach to estimate Z from Equation (6).
If historical data provide cumulative default rates A(¢) for similar firms at
various investment horizons ¢, the parameter Z can be chosen to ﬁt~ the
theoretical default probabilities P(Z, t) to the historical default rates A(z).
One way to accomplish this is via a least-squares approach:

P(Z,1)  AD\
t t)’

Z= arnginZ(
t

In the above expression, cumulative default rates P(Z,¢) and Z(t) are
divided by time the horizon ¢ so that they are transformed to average default
rates per unit of time.

Compared with the option approach, the statistical approach is easier to
use. However, because this approach is based solely on credit ratings, it
does not effectively use all firm-specific information. In addition, because
the default probability corresponding to a rating category is time-varying
[Zhou (2001b)], historical default rates for firms in a given rating category
may not reflect the true default probability of that rating category at any
particular time.

3.3 Empirical analysis

To empirically examine the main result presented in Section 1, one may
calculate default correlations for any two firms by using firm-specific infor-
mation (Z, p, etc.) and then compare the calculated default correlations with
the observed default correlations. Unfortunately, to date, there are no read-
ily available statistics on observed firm-specific default correlations. For this
reason, we can only use pooled data to see if the model can match some
general empirical characteristics of default correlations.

The default data set used here is obtained from Moody’s default studies
as reported in Table 2. Using this data set, default correlations for various
rating categories are estimated and are compared with the empirical results
of Lucas (1995).

Table 3 reports z-values derived from default data. As expected, a high
credit rating generally implies a large z. The only exception is for Aaa- and

566

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Default Correlations and Multiple Defaults

Table 2
Historical cumulative default rates (%), 1970-93

Year Aaa Aa A Baa Ba B
1 0.00 0.02 0.01 0.16 1.79 8.31
2 0.00 0.04 0.09 0.51 4.38 14.85
3 0.00 0.08 0.28 0.91 6.92 20.38
4 0.04 0.20 0.46 1.46 9.41 24.78
5 0.12 0.32 0.62 1.97 11.85 28.38
6 0.22 0.43 0.83 2.46 13.78 31.88
7 0.33 0.52 1.06 3.09 15.33 34,32
8 0.45 0.64 1.31 3.75 16.75 36.71
9 0.58 0.76 1.61 4,39 18.14 38.38
10 0.73 0.91 1.96 4.96 19.48 39.96
11 0.90 1.09 2.30 5.56 20.84 41.08
12 1.09 1.29 2.65 6.19 22.22 41,74
13 1.30 1.51 2.99 6.77 23.54 42,45
14 1.55 1.76 3,29 7.44 24.52 43.04
15 1.84 1.76 3.62 8.16 25.46 43.70
16 2.18 1.76 395 8.91 26.43 44,43
17 2.38 1.89 4.26 9.69 27.29 45.27
18 2.63 2.05 4.58 10.45 28.06 45.58
19 2.63 2.24 4.96 11.07 28.88 45.58
20 2.63 2.48 523 11.70 29.76 45.58

Source: Fons (1994).

Table 3

Z-values implied by historical default rates

Aaa Aa A Baa Ba B
9.28 9.38 8.06 6.46 373 2.10

Aa-rating categories. Table 3 shows that z is 9.28 for Aaa-rated firms and
is 9.38 for Aa-rated firms. This abnormal finding is mainly due to statistical
errors in the default rate data. As shown in Table 2, the statistical default rates
for Aaa-rated firms are constantly higher than those for Aa-rated firms after
15 years. Because of this anomaly, we combine the two rating categories
in the following default correlation analysis. We use Aa to represent this
combined rating category and use 9.30 as its z-value.

The default correlations calculated from z-scores in Table 3 are reported in
Tables 4 through 7. For ease of comparison, some results from Lucas (1995)
are also reproduced. Generally speaking, the model matches the results of
Lucas (1995) and displays the same patterns in the default correlations. The
default correlations for high-rated firms are virtually zero at the short to
middle investment horizons, but default correlations are rather high for low-
rated firms, even at short time horizons.

The model’s correlations over long horizons for high-rated firms are higher
than those estimated by Lucas. There are several potential explanations for
these differences. One is estimation errors. Rai et al. (1997) point out that
the estimates of default correlations from a small sample of historical default
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Table 4
One year default correlations (%)
Model results Lucas (1995) estimates
Aa A Baa Ba B Aa A Baa Ba B
Aa 0.00 0.0
A 0.00 0.00 0.0 0.0
Baa 0.00 0.00 0.00 0.0 0.0 0.0
Ba 0.00 0.00 0.01 1.32 0.0 0.0 0.0 2.0
B 0.00 0.00 0.00 2.47 12.46 1.0 0.0 1.0 4.0 7.0

Asset level correlation p = 0.4,

Table 5
Two-year default correlations (%)

Model results Lucas (1995) estimates
Aa A Baa Ba B Aa A Baa Ba B
Aa 0.00 0.0
A 0.00 0.02 0.0 0.0
Baa 0.01 0.05 0.25 0.0 0.0 0.0
Ba 0.00 0.05 0.63 6.96 1.0 1.0 1.0 6.0
B 0.00 0.02 0.41 9.24 19.61 1.0 1.0 2.0 10.0 16.0

Asset level correlation p = 0.4.

rates are generally downwardly biased. As noted by Lucas, the 15 overlapping
time periods used in his study are possibly too short to represent the values
of the true correlations. Another explanation is that the Z and/or p used in
the calibrations contain errors and that these errors have a larger effect on
default correlations for longer horizons. For instance, given p = 0.4, at a
one-year horizon, the default correlation between two firms with z = 8 is
0%, and the default correlation between two firms with z = 9.4 is also 0%.
At a five-year horizon, however, the default correlation between two firms
with z = 8 is 1.65%, and the default correlation between two firms with
z = 9.4 is only 0.6%. We can similarly show that p has a larger impact on
default correlations over longer horizons. Of course, it is also possible that
the model itself is misspecified so that it cannot precisely estimate default
correlations for certain kinds of firms over long horizons.

Table 6
Five-year default correlations (%)
Model results Lucas (1995) estimates
Aa A Baa Ba B Aa A Baa Ba B
Aa 0.59 0.0
A 0.92 1.65 1.0 1.0
Baa 1.24 2.60 5.01 1.0 1.0 0.0
Ba 1.05 2.74 7.20 17.56 3.0 4.0 3.0 15.0
B 0.65 1.88 5.67 18.43 24.01 4.0 6.0 7.0 25.0 29.0

Asset level correlation p = 0.4.
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Table 7
Ten-year default correlations (%)
Model results Lucas (1995) estimates
Aa A Baa Ba B Aa A Baa Ba B
Aa 4.66 1.0
A 5.84 775 2.0 2.0
Baa 6.76 9.63 13.12 1.0 1.0 0.0
Ba 5.97 9.48 14.98 22.51 3.0 4.0 2.0 8.0
B 4,32 7.21 12.28 21.80 24,37 8.0 9.0 6.0 17.0 38.0

Asset Level Correlation p = 0.4.

The model’s default correlations between B and Ba are typically higher
than the correlations within the category Ba.? This result is consistent with
the estimates of Lucas (1995). We should understand that two companies with
the same credit rating are not the same company and do not have a higher
asset level correlation p. Also, default correlation tends to increase with the
default probabilities of individual companies. The default correlation between
two companies in the same rating category can be lower than the correlation
between one of these companies and a lower-grade company because the
lower-grade company has a larger default probability. If the difference in
credit quality between two companies is too large, the default event of the
lower quality company will provide little information on a higher quality
company’s default likelihood. As a result, the default correlation between
two high-quality companies may be larger than the correlation between a
high-quality company and a company with a much lower credit quality.

3.4 A comparison with the Merton-type model
Because of its simplicity, Merton’s default model has been used widely by
practitioners in credit risk analysis, yet Merton assumes that a firm has only
one bond issue and can only default at the maturity of the bond. This assump-
tion makes it hard to determine the default probability of a bond over a time
horizon shorter than its remaining maturity. To overcome this limitation, prac-
titioners simply assume that a bond can default at the end of whatever time
horizon that they consider, but not at any other time. We can obtain this stan-
dard model as a special case for our analysis, if Assumption 2 in Section 2
is modified to the following: At the end of the specified time horizon t, firm
i defaults if its value V;(t) is less than the default boundary C;(t).

For ease of discussion, we still assume that A, = p,. It is straightforward
to verify that under the new assumption:

PID,(t) = 1] = P[V,(1) < C1)] = N(—%) (11)

2 Similarly, we also find that the model’s coirelations within Baa are higher than those between Baa and Baa,
the correlations between Ba and A are higher than those within the category A, and so on.
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Table 8
Default correlations (%) implied by different models

Time horizon (years)

(Z),Z,) Model 1 2 3 4 5 10
(8,8) Merton 0.00 0.01 0.17 0.60 1.30 6.10
(8,8) Current 0.00 0.02 0.23 0.80 172 7.93
(33) Merton 325 961 13.6 16.2 17.9 217
(33) Current 4.29 12.2 16.8 19.5 21.1 24.0

Asset level correlation p = 0.4.

and

PID,(t) = 1 and D,(t) = 1] = P[V () = C,(1) and V,(r) < Cy(1)]

/Zl/x/; /Zz/x/; 1
JREESE A 21— p?
x} —2px1x, + x2

30— %) i|dx1 - dx,. (12)

X exp[

Knowing the default probability of each single party and the joint default
probability of both parties, we can obtain the default correlation as defined
in Equation (1).

Equations (11) and (6) show that the default probability given by the
Merton-type model is only half of the default probability implied by the
first-passage-time model. This is consistent with the empirical evidence that
Merton’s model understates the default risk [Jones et al. (1984)].

Table 8 provides a comparison between default correlations implied by
the Merton model and the first-passage-time model with given z-scores.
According to Table 3, z = 8 roughly corresponds to A-rated firms and
z = 3 corresponds to certain low-grade firms. Table 8 shows that the Merton
approach typically generates lower default correlations. With z-values being
low or time horizons being long, default correlations implied by the Mer-
ton approach are typically 20-30 % lower than those implied by the first-
passage-time model. The two models generate similar and very low default
correlations for high-quality firms over short time horizons.

Due to the lack of precise estimates of true default correlations, it is hard
to judge how much better a first-passage-time model is than the Merton-type
model in estimating default correlations. However, given that the Merton-
type model substantially underestimates the default probability of a single
party, it cannot provide accurate estimates of joint default probabilities, even
if the true default correlations are known. In summary, the first-passage-time
model has the following advantages over the Merton-type approach:
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1. By ignoring the possibility of early default, the Merton approach under-
estimates both the probability of default of a single party and the prob-
ability of joint default. The first-passage-time model is based on a more
realistic assumption and avoids this problem.

2. The Merton-type approach as used by the financial industry is inconsis-
tent for multiple horizons. For example, to calculate two-year default
correlations, the approach does not allow firms to default in the first
year. The first-passage-time model avoids this inconsistency.

3. The likelihood of early default increases rapidly with the time horizon.
For this reason, the Merton approach is mainly used by the financial
industry to estimate default probabilities or default correlations over a
one-year horizon. The first-passage-time model can be used to estimate
default probabilities and default correlations over any horizon.

4. Our numerical simulations show that the first-passage approach is com-
putationally more efficient than the Merton approach in estimating
default correlations.

4. Conclusion

This article develops a first-passage-time model of default correlations and
multiple defaults, providing an analytical formula for calculating default
correlations and joint default probabilities. Because the formula is easily
implemented, it provides a convenient tool for credit evaluation, risk man-
agement, and capital requirement allocation. The article offers a concrete
illustration of the relation among asset-return correlations, default correla-
tions, and time horizons and provides a theoretical justification for various
empirical results in the credit risk literature.

Appendix
The Appendix provides a proof for the main result. By definition of D, and D,, we have

P(Di=1orD,=1)=P(r;<tort, <t)
=Pt =), (13)

where 7, = min,.,{tle™'V,(t) < K} and 7 = min(7,, 7,).
Define

X,(t) = — Inle ™ V,(1)/ Vi(0)] (14)
and
b, = — K,/ V,O)]. as)

It is straightforward to verify that [X,(¢), X,(¢)] follows a two-dimensional Brownian motion:
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dX, | _ dz
(%] =-=liz] a9
with the initial condition
X, _1|o
[X;(O)] = [O] 17

After this transformation, finding P(r < ¢) is equivalent to finding the first passage time of
[X,, X,]’ to a boundary consisting of two intersecting lines X, = b, and X, = b,, where b, and
b, are as defined in Equation (15). For notational convenience, this boundary will be denoted
henceforth as a(b,, b,).

Suppose that [X,(7), X,(#)] represents the position of a particle at time ¢ and that a(b,, b,)
is an absorbing barrier. Let f(x,,x,, ) be the transition probability density of the particle in
the region {(x,, x,)|x,;s < b, and x, < b,}, that is, the probability density that [X, (#), X, ()] =
[x;, x,]" and that the particle does not reach the barrier 8(b,, b,) in the time interval (0, 7).
Of course, f(x,,x,,t) depends on b, and b,, but because b, and b, are fixed parameters, this
dependence is suppressed in the function for notational convenience. We have

P(X,(1) < yyand X, (1) < »,|X,(s) < b,
and X,(s) < b,, for0 <s <1)

Y1 y2
= [ [ O Ddxda = Fou, w0, (18)

Thus, F(b,, b,, t) is the probability that absorption has not yet occurred by time ¢, that is,
F(by,b,t)y=P(t>t)=1—-P(r<t)=1-P(D,=1o0r D,=1).

According to Cox and Miller (1972) and Karatzas and Shreve (1991), the transition proba-
bility density f(x,, x,, #) satisfies the following Kolmogorov forward equation,

ol O*f o f o} °f of
5 5z T PO, 5 5.2 . a7
2 ox 0x,0x, 2 0x; ot
(xy <by, x,<by), 19)

subject to the following boundary conditions:

f(=00,x,t) = f(x), —00,1) =0,
f(xy, x5, 0) = 8(x1)8(x3),
by by
] / f(xy, x,, )dxdx, <1,t >0,
f(blvxbt):f(x]!bmt):o' (20)

Here, §(x) is a Dirac’s Delta function whose value is infinity at x = 0 and zero elsewhere. The
function satisfies the condition ff; 8(x)-dx =1 so that it can be a probability density function.
The equation f(x,, x,,0) = §(x,)8(x,) describes the initial condition in Equation (17) that at
time zero, X,(0) = 0 and X,(0) = 0.
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Theorem 1. The solution to partial differential equation (PDE) (19) subject to conditions (20)

is given by
2 242
f(x,,xz,t) = —_e_TQ
0,05/ 1 = pPat
o ., (w8 . [ nw6, rr,
X _ I | — |, 21
Esm( - )sm( ~ )T< t) 1)
where

x, =b,— o [(\/1—_;)2)r cos(6) + pr sin(@)],

x, = b, — o,rsin(6).

Proof of Theorem 1. To solve PDE (19), we define

u =—
o

and

Accordingly, we have

9 22)

b, 1 b, u,
H=—ly=——\|——p—
T \/ 1—p*\02 L 0
which are generally not at right angles. The following transformations will put the intersection
point of the barriers to the origin

b]
Uy =iy - —
9
1 (bz u, )
Uy = Uy — —= —p—
1-p*\02 0
The rotation through angle
B =m +tan™ (L)
V1-=p?
gives
w, = —(,/1 - p2>v, + pv,,
and

2= —PY — (\/1 —92>Uz«
Under these rigid transformations, the PDE (22) does not change form. The particle now
starts from some point [w, (0), w,(0)]" away from the origin and is absorbed at the boundaries
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w, = O, w, = —(#)w].
—p

Based on above transformations, we obtain

x = b, —o'][(\/l—_p2>w] +,0w2],

x, = b, —ow,. (23)
Letting

w, = rcos(f)
w, = rsin(6)
PD.E. (22) becomes

192  f 1af _of
[ T I C A IC 24
r? 06° + ar? + r or ot 29

subject to boundary conditions

f(r,0,0) = f(rya, 1) = f(00,0,) =0,
f(r,0,0) =8(r —ry)5(0 — 6,),

f’ / J-f(r6,0)drd < 1,1 > 0, 25)
6=0 vr=0
where
x,(r,0) =b, — 0, [(\/1 _ p2>r cos(6) + pr sin(e)],
x,(r, 0) = b, — o,r sin(6),
tan~" (— ]p_pz) ifp<0
o= . (26)

7+ tan™! (— ]p_p ) otherwise,

and

J =royo/1—p?

is the Jacobian of the overall transformation from (x,, x,) to (r, 6).
Solving the PDE (24), we obtain:?

2r ﬁ;r_'& > nmd nnh, rry
= e m sinf — } sin Inz | — }. 27
Fo e R () () () @
Theorem 1 then follows immediately. |

® The process for solving PDE (24) is available on request to the author.
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Proof of the Main Result. According to Theorem 1,
1 2
F(b,,b,, 1) = /J) /J) fx,, x,, dx,dx,

/:= /j J - f(r,0,)dodr
2

2 [ nmb,
_211 . 0
pawii Zsm( )

n=1 «
00 2
x/a sin<w>d6f re” 7 Inn (ﬂ)dr,
=0 o r=0 « t

where J = ro, 02\/ 1 — p? is the Jacobian of the transformation as defined above.

Using identities
nr | (nm@
—sin| — }d6 =1 — (-1)",
=0 o

I

and —
20 2 A e c2 c2
re~ VI (cr)dr = =2 | 2e%r |1, 2+ 1 2},
/0 L (Ca1) 8, \/SC, o\ 3o to-n{ g,
one obtains the main result immediately. |
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