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Abstract 
 
We assume that the claims liability process satisfies the distribution-free chain-ladder model assumptions. 

For claims reserving at time I  we predict the total ultimate claim with the information available at time I  

and, similarly, at time 1+I  we predict the same total ultimate claim with the (updated) information 

available at time 1+I . The claims development result at time 1+I  for accounting year ( ]1, +II  is 

then defined to be the difference between these two successive predictions for the total ultimate claim. In 

[6, 10] we have analyzed this claims development result and we have quantified its prediction uncertainty. 

Here, we simplify, modify and illustrate the results obtained in [6, 10]. We emphasize that these results 

have direct consequences for solvency considerations and were (under the new risk-adjusted solvency 

regulation) already implemented in industry. 

 
Keywords. Stochastic Claims Reserving, Chain-Ladder Method, Claims Development Result, Loss 

Experience, Incurred Losses Prior Accident Years, Solvency, Mean Square Error of Prediction. 

 
             
 
1. INTRODUCTION 
 
We consider the problem of quantifying the uncertainty associated with the development of 

claims reserves for prior accident years in general insurance. We assume that we are at time 

I  and we predict the total ultimate claim at time I  (with the available information up to 

time I ), and one period later at time 1+I  we predict the same total ultimate claim with the 

updated information available at time 1+I . The difference between these two successive 

predictions is the so-called claims development result for accounting year ( ]1, +II . The 

realization of this claims development result has a direct impact on the profit & loss (P&L) 

statement and on the financial strength of the insurance company. Therefore, it also needs to 

be studied for solvency purposes. Here, we analyze the prediction of the claims development 

result and the possible fluctuations around this prediction (prediction uncertainty). Basically 

we answer two questions that are of practical relevance: 
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(a) In general, one predicts the claims development result for accounting year ( ]1, +II  

in the budget statement at time I  by 0. We analyze the uncertainty in this prediction. 

This is a prospective view: “how far can the realization of the claims development result 

deviate from 0?” 

Remark: we discuss below, why the claims development result is predicted by 0. 
 

(b) In the P&L statement at time 1+I  one then obtains an observation for the claims 

development result. We analyze whether this observation is within a reasonable range 

around 0 or whether it is an outlier. This is a retrospective view. Moreover, we discuss 

the possible categorization of this uncertainty. 

 
So let us start with the description of the budget statement and of the P&L statement, for an 

example we refer to Table 1. The budget values at Jan. 1, year I , are predicted values for the 

next accounting year ( ]1, +II . The P&L statement are then the observed values at the end 

of this accounting year ( ]1, +II . 

 

Positions a) and b) correspond to the premium income and its associated claims (generated 

by the premium liability). Position d) corresponds to expenses such as acquisition expenses, 

head office expenses, etc. Position e) corresponds to the financial returns generated on the 

balance sheet/assets. All these positions are typically well-understood. They are predicted at 

Jan. 1, year I  (budget values) and one has their observations at Dec. 31, year I  in the P&L 

statement, which describes the financial closing of the insurance company for accounting 

year ( ]1, +II . 
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 budget values 

at Jan. 1, year I
P&L statement 

at Dec. 31, year I  

a)   premiums earned 4’000’000 4’020’000 

b)   claims incurred current accident year -3’200’000 -3’240’000 

c)   loss experience prior accident years 0 -40’000 

d)   underwriting and other expenses -1’000’000 -990’000 

e)   investment income 600’000 610’000 

income before taxes 400’000 360’000 

 
Table 1: Income statement, in $ 1’000 

 

However, position c), “loss experience prior accident years”, is often much less understood. 

It corresponds to the difference between the claims reserves at time It =  and at time 

1+= It   adjusted for the claim payments during accounting year ( ]1, +II  for claims with 

accident years prior to accounting year I . In the sequel we will denote this position by the 

claims development result (CDR). We analyze this position within the framework of the 

distribution-free chain-ladder (CL) method. This is described below. 

 

 

Short-term vs. long-term view 
 
In the classical claims reserving literature, one usually studies the total uncertainty in the 

claims development until the total ultimate claim is finally settled. For the distribution-free 

CL method this has first been done by Mack [7]. The study of the total uncertainty of the 

full run-off is a long-term view. This classical view in claims reserving is very important for 

solving solvency questions, and almost all stochastic claims reserving methods which have 

been proposed up to now concentrate on this long term view (see Wüthrich-Merz [9]). 

However, in the present work we concentrate on a second important view, the short-term view. 

The short-term view is important for a variety of reasons: 
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• If the short-term behaviour is not adequate, the company may simply not get to the 

“long-term”, because it will be declared insolvent before it gets to the long term. 

 
• A short-term view is relevant for management decisions, as actions need to be taken 

on a regular basis. Note that most actions in an insurance company are usually done 

on a yearly basis. These are for example financial closings, pricing of insurance 

products, premium adjustments, etc. 

 
• Reflected through the annual financial statements and reports, the short-term 

performance of the company is of interest and importance to regulators, clients, 

investors, rating agencies, stock-markets, etc. Its consistency will ultimately have an 

impact on the financial strength and the reputation of the company in the insurance 

market. 

 
Hence our goal is to study the development of the claims reserves on a yearly basis where we 

assume that the claims development process satisfies the assumptions of the distribution-

free chain-ladder model. Our main results, Results 3.1-3.3 and 3.5 below, give an improved 

version of the results obtained in [6, 10]. De Felice-Moriconi [4] have implemented similar 

ideas referring to the random variable representing the “Year-End Obligations” of the 

insurer instead of the CDR. They obtained similar formulas for the prediction error and 

verified the numerical results with the help of the bootstrap method.  They have noticed that 

their results for aggregated accident years always lie below the analytical ones obtained in [6]. 

The reason for this is that there is one redundant term in (4.25) of [6]. This is now corrected, 

see formula (A.4) below. Let us mention that the ideas presented in [6, 10] were already 

successfully implemented in practice. Prediction error estimates of Year-End Obligations in 

the overdispersed Poisson model have been derived by ISVAP [5] in a field study on a large 

sample of Italian MTPL companies. A field study in line with [6, 10] has been published by 

AISAM-ACME [1]. Moreover, we would also like to mention that during the writing of this 

paper we have learned that simultaneously similar ideas have been developed by Böhm-

Glaab [2]. 
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2. METHODOLOGY 
 
2.1 Notation 
 
We denote cumulative payments for accident year { }Ii ,,0 K∈  until development year 

{ }Jj ,,0 K∈  by jiC , . This means that the ultimate claim for accident year i  is given by 

JiC , . For simplicity, we assume that JI =  (note that all our results can be generalized to the 

case JI > ). Then the outstanding loss liabilities for accident year { }Ii ,,0 K∈  at time It =  

are given by 

iIiJi
I
i CCR −−= ,, ,         (2.1) 

and at time 1+= It  they are given by 

         1,,
1

+−
+ −= iIiJi

I
i CCR .         (2.2) 

Let 

  { }IiIjiCD jiI ≤≤+=  and ;,         (2.3) 

denote the claims data available at time It =  and 

 

     { } { }IiCDIiIjiCD iIiIjiI ≤∪=≤+≤+= +−+ ; and 1; 1,,1                   (2.4) 

 
denote the claims data available one period later, at time 1+= It . That is, if we go one step 

ahead in time from I  to 1+I , we obtain new observations { }IiC iIi ≤+− ;1,  on the new 

diagonal of the claims development triangle (cf. Figure 1). More formally, this means that we 

get an enlargement of the σ -field generated by the observations ID  to the σ -field 

generated by the observations 1+ID , i.e. 

( ) ( )1+→ II DD σσ .         (2.5) 

 
 
 
2.2 Distribution-free chain-ladder method 
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We study the claims development process and the CDR within the framework of the well-

known distribution-free CL method. That is, we assume that the cumulative payments jiC ,  

satisfy the assumptions of the distribution-free CL model. The distribution-free CL model 

has been introduced by Mack [7] and has been used by many other actuaries. It is probably 

the most popular claims reserving method because it is simple and it delivers, in general, very 

accurate results. 
 

 

accident development year j  accident development year j  

year i  0 K  j  K  J  year i  0 K  j  K  J  

0      0      

M   ID     M   1+ID    

i       i       

M       M       

I       I       

  

Figure 1: Loss development triangle at time It =  and 1+= It  

 

 

Model Assumptions 2.1 
 

• Cumulative payments jiC ,  in different accident years { }Ii ,,0 K∈  are independent. 

 
• ( )

0, ≥jjiC  are Markov processes and there exist constants 0>jf , 0>jσ  such that 

for all Jj ≤≤1  and Ii ≤≤0  we have  

 

[ ] 1,11,, −−− = jijjiji CfCCE ,          (2.6) 
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          ( ) 1,
2

11,, −−− = jijjiji CCCVar σ .        (2.7) 

           □ 

Remarks 2.2 

• In the original work of Mack [7] there were weaker assumptions for the definition of 

the distribution-free CL model, namely the Markov process assumption was replaced 

by an assumption only on the first two  moments (see also Wüthrich-Merz [9]). 

 
• The derivation of an estimate for the estimation error in [10] was done in a time-

series framework. This imposes stronger model assumptions. Note also that in (2.7) 

we require that the cumulative claims jiC ,  are positive in order to get a meaningful 

variance assumption. 

 

Model Assumptions 2.1 imply (using the tower property of conditional expectations) 

[ ] ∏
−

−=
−=

1

,,

J

iIj
jiIiIJi fCDCE  and [ ] ∏

−

+−=
+−+ =

1

1
1,1,

J

iIj
jiIiIJi fCDCE  .    (2.8) 

This means that for known CL factors jf  we are able to calculate the conditionally expected 

ultimate claim JiC ,  given the information ID  and 1+ID , respectively. 

Of course, in general, the CL factors jf  are not known and need to be estimated. Within the 

framework of the CL method this is done as follows: 

 
1. At time It = , given information ID , the CL factors jf  are estimated by 

 

I
j

jI

i
ji

I
j S

C
f

∑
−−

=
+

=

1

0
1,

ˆ ,         where       ∑
−−

=

=
1

0
,

jI

i
ji

I
j CS .       (2.9) 

 
 

2. At time 1+= It , given information 1+ID , the CL factors jf  are estimated by 

Modeling the Claims Development Result For Solvency Purposes

Casualty Actuarial Society E-Forum, Fall 2008 548



Modelling The Claims Development Result For Solvency Purposes 

 

  
 

 

1
0

1,
1ˆ

+

−

=
+

+
∑

= I
j

jI

i
ji

I
j S

C
f ,         where       ∑

−

=

+ =
jI

i
ji

I
j CS

0
,

1 .     (2.10) 

 
This means the CL estimates 1ˆ +I

jf  at time 1+I  use the increase in information about the 

claims development process in the new observed accounting year ( ]1, +II  and are therefore 

based on the additional observation 1, +− jjIC . 

Mack [7] proved that these are unbiased estimators for jf  and, moreover, that m
jf̂  and m

lf̂  

( Im =  or 1+I ) are uncorrelated random variables for lj ≠  (see Theorem 2 in Mack [7] 

and Lemma 2.5 in [9]). This implies that, given iIiC −, , 

 
   I

j
I
j

I
iIiIi

I
ji fffCC 12,,

ˆˆˆˆ
−−−−= L            (2.11) 

 
is an unbiased estimator for [ ]Iji DCE ,  with iIj −≥  and, given 1, +−iIiC , 

 
1

1
1
2

1
11,

1
,

ˆˆˆˆ +
−

+
−

+
+−+−

+ = I
j

I
j

I
iIiIi

I
ji fffCC L       (2.12) 

 
is an unbiased estimator for [ ]1, +Iji DCE  with 1+−≥ iIj . 

 

Remarks 2.3 

 

• The realizations of the estimators I
J

I ff 10
ˆ,,ˆ

−K  are known at time It = , but the 

realizations of 1
1

1
0

ˆ,,ˆ +
−

+ I
J

I ff K  are unknown since the observations JJII CC ,11, ,, +−K  

during the accounting year ( ]1, +II  are unknown at time I . 
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• When indices of accident and development years are such that there are no factor 

products in (2.11) or (2.12), an empty product is replaced by 1. For example, 

iIi
I

iIi CC −− = ,,
ˆ  and 1,

1
1,

ˆ
+−

+
+− = iIi

I
iIi CC . 

 
• The estimators 1

,
ˆ +I

jiC  are based on the CL estimators at time 1+I  and therefore use 

the increase in information given by the new observations in the accounting year 

from I  to 1+I . 

 

 

2.3 Conditional mean square error of prediction 
 
Assume that we are at time I , that is, we have information ID  and our goal is to predict the 

random variable JiC , . Then, I
JiC ,

ˆ  given in (2.11) is a ID -measurable predictor for JiC , . At 

time I , we measure the prediction uncertainty with the so-called conditional mean square 

error of prediction (MSEP) which is defined by 

 

        ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −= I

I
JiJi

I
JiDC DCCECmsep

IJi

2

,,,
ˆˆ

,
                    (2.13) 

 
That is, we measure the prediction uncertainty in the [ ]( )IDPL ⋅2 -distance. Because I

JiC ,
ˆ  is 

ID -measurable this can easily be decoupled into process variance and estimation error: 

 

( ) ( ) [ ]( )2

,,,,
ˆˆ

,

I
JiIJiIJi

I
JiDC CDCEDCVarCmsep

IJi
−+= .    (2.14) 

 
This means that I

JiC ,
ˆ  is used as predictor for the random variable JiC ,  and as estimator for 

the expected value [ ]IJi DCE ,  at time I . Of course, if the conditional expectation 

[ ]IJi DCE ,  is known at time I  (i.e. the CL factors jf  are known), it is used as predictor 
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for JiC ,  and the estimation error term vanishes. For more information on conditional and 

unconditional MSEP’s we refer to Chapter 3 in [9]: 

 

 
 
2.4 Claims development result (CDR) 
 
We ignore any prudential margin and assume that claims reserves are set equal to the 

expected outstanding loss liabilities conditional on the available information at time I  and 

1+I , respectively. That is, in our understanding “best estimate” claims reserves correspond 

to conditional expectations which implies a self-financing property (see Corollary 2.6 in [8]). 

For known CL factors jf  the conditional expectation [ ]IJi DCE ,  is known and  is 

therefore used as predictor for JiC ,  at time I . Similarly, at time 1+I  the conditional 

expectation [ ]1, +IJi DCE  is used as predictor for JiC , . Then the true claims development 

result (true CDR) for accounting year ( ]1, +II  is defined as follows. 

 

Definition 2.4 (True claims development result) 

 
The true CDR for accident year { }Ii ,,1K∈  in accounting year ( ]1, +II  is given by 

 
( ) [ ] [ ]( )1

1
1,1 +

+
+− +−=+ I

I
iiIiI

I
ii DREXDREICDR      (2.15) 

        [ ] [ ]1,, +−= IJiIJi DCEDCE , 

 
where iIiiIiiIi CCX −+−+− −= ,1,1,  denotes the incremental payments. Furthermore, the true aggregate is given 

by 

( )∑
=

+
I

i
i ICDR

1
1 .                           (2.16) 

 
Using the martingale property we see that 
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       ( )[ ] 01 =+ Ii DICDRE .       (2.17) 

 
This means that for known CL factors jf  the expected true CDR (viewed from time I ) is 

equal to zero. Therefore, for known CL factors jf  we refer to ( )1+ICDRi  as the true 

CDR. This also justifies the fact that in the budget values of the income statement position 

c) “loss experience prior accident years” is predicted by $0 (see position c) in Table 1). 

The prediction uncertainty of this prediction 0 can then easily be calculated, namely, 

 

       ( ) ( ) ( )( ) [ ]
iIi

iIiI
IJiIiDICDR C

f
DCEDICDRVarmsep

Ii
−

−−
+ =+=

,

22
2

,1 10
σ

.    (2.18) 

For a proof we refer to formula (5.5) in [10] (apply recursively the model assumptions), and 

the aggregation of accident years can easily be done because accident years i  are 

independent according to Model Assumptions 2.1. 

 

Unfortunately the CL factors jf  are in general not known and therefore the true CDR is not 

observable. Replacing the unknown factors by their estimators, i.e., replacing the expected 

ultimate claims [ ]IJi DCE ,  and [ ]1, +IJi DCE  with their estimates I
JiC ,

ˆ  and 1
,

ˆ +I
JiC , 

respectively, the true CDR for accident year i  ( )Ii ≤≤1  in accounting year ( ]1, +II  is 

predicted/estimated in the CL method by: 

 

Definition 2.5 (Observable claims development result) 

 
The observable CDR for accident year { }Ii ,,1K∈  in accounting year ( ]1, +II  is given by 

 
( ) ( ) 1

,,1,
ˆˆˆˆ1ˆ 1 +

+− −=+−=+ + I
Ji

I
Ji

D
iiIi

D
ii CCRXRIRDC II ,     (2.19) 
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where ID
iR̂  and 1ˆ +ID

iR  are defined below by (2.21) and (2.22), respectively. Furthermore, the observable 

aggregate CDR is given by 

    ( )∑
=

+
I

i
i IRDC

1
1ˆ .       (2.20) 

 
Note that under the Model Assumptions 2.1, given iIiC −, , 

   iIi
I
Ji

D
i CCR I

−−= ,,
ˆˆ      ( )Ii ≤≤1 ,      (2.21) 

 
is an unbiased estimator for [ ]I

I
i DRE  and, given 1, +−iIiC , 

1,
1

,
ˆˆ 1

+−
+ −=+

iIi
I
Ji

D
i CCR I      ( )Ii ≤≤1 ,     (2.22) 

 
is an unbiased estimator for [ ]1

1
+

+
I

I
i DRE . 

 

 

Remarks 2.6 

 
• We point out the (non-observable) true claims development result ( )1+ICDRi  is 

approximated by an observable claims development result ( )1ˆ +IRDC i . In the next 

section we quantify the quality of this approximation (retrospective view). 

 
• Moreover, the observable claims development result ( )1ˆ +IRDC i  is the position that 

occurs in the P&L statement at Dec. 31, year I. This position is in the budget 

statement predicted by 0. In the next section we also measure the quality of this 

prediction, which determines the solvency requirements (prospective view). 

 
• We emphasize that such a solvency consideration is only a one-year view. The 

remaining run-off can, for example, be treated with a cost-of-capital loading that is 
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based on the one-year observable claims development result (this has, for example, 

been done in the Swiss Solvency Test). 

 

 
 
3. MSEP OF THE CLAIMS DEVELOPMENT RESULT 
 
Our goal is to quantify the following two quantities: 

 

 ( ) ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ −+=

+ IiDIRDC DIRDCEmsep
Ii

2

1ˆ 01ˆ0 ,       (3.1) 

          ( ) ( )( ) ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ +−+=++ IiiiDICDR DIRDCICDREIRDCmsep

Ii

2

1 1ˆ11ˆ .      (3.2) 

 
• The first conditional MSEP gives the prospective solvency point of view. It 

quantifies the prediction uncertainty in the budget value 0 for the observable claims 

development result at the end of the accounting period. In the solvency margin we 

need to hold risk capital for possible negative deviations of ( )1+ICDRi  from 0. 

 
• The second conditional MSEP gives a retrospective point of view. It analyzes the 

distance between the true CDR and the observable CDR. It may, for example, 

answer the question whether the true CDR could also be positive (if we would know 

the true CL factors) when we have an observable CDR given by $ -40’000 (see Table 

1). Hence, the retrospective view separates pure randomness (process variance) from 

parameter estimation uncertainties. 

 
In order to quantify the conditional MSEP’s we need an estimator for the variance 

parameters 2
jσ . An unbiased estimate for 2

jσ  is given by (see Lemma 3.5 in [9]) 

∑
−−

=

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−−
=

1

0

2

,

1,
,

2 ˆ
1

1ˆ
jI

i
j

ji

ji
jij f

C
C

C
jI

σ .     (3.3) 
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3.1 Single accident year 
 
In this section we give estimators for the two conditional MSEP’s defined in (3.1)-(3.2). For 

their derivation we refer to the appendix. We define 

 

  
( ) ( )

∑
−

+−=
+

−

−

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Δ

1

1

222

1
,

22

,

ˆˆˆˆˆ
J

iIj
I
j

I
jj

I
j

jjI
I

iI

I
iIiII

Ji S
f

S
C

S
f σσ

,   (3.4) 

  
( )

∑
−

+−= −
+

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Φ

1

1 ,

222

1
,

,

ˆˆˆ
J

iIj jjI

I
jj

I
j

jjII
Ji C

f
S

C σ
,     (3.5) 

  
( )

iIi

I
iIiII

i C
f

−

−−=Ψ
,

22 ˆˆˆ σ
       (3.6) 

 
and 

 
         I

Ji
I
i

I
Ji

I
Ji ,,,

ˆˆˆˆ Φ≥Ψ+Φ=Γ .       (3.7) 

 
We are now ready to give estimators for all the error terms. First of all the variance of the 

true CDR given in (2.18) is estimated by 

 

  ( )( ) ( ) I
i

I
JiIi CDICDRraV Ψ=+ ˆˆ1ˆ

2

, .        (3.8) 

 
The estimator for the conditional MSEP’s are then given by: 
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Result 3.1 (Conditional MSE estimator for a single accident year) 

 
We estimate the conditional MSEP’s given in (3.1)-(3.2) by 

 

( ) ( ) ( ) ( )I
Ji

I
Ji

I
JiDIRDC Cepsm

Ii ,,

2

,1ˆ
ˆˆˆ0ˆ Δ+Γ=

+
,       (3.9) 

( ) ( )( ) ( ) ( )I
Ji

I
Ji

I
JiiDIRDC CIRDCepsm

Ii ,,

2

,1ˆ
ˆˆˆ1ˆˆ Δ+Φ=+

+
.     (3.10) 

 

This immediately implies that we have 

 
       ( ) ( ) ( ) ( )( ) ( )( )IiiDICDRDIRDC DICDRraVIRDCepsmepsm

IiIi
1ˆ1ˆˆ0ˆ 11ˆ +++= ++

 

( ) ( )( )1ˆˆ 1 +≥ + IRDCepsm iDICDR Ii
.      (3.11) 

 
Note that this is intuitively clear since the true and the observable CDR should move into 

the same direction according to the observations in accounting year ( ]1, +II . However, the 

first line in (3.11) is slightly misleading. Note that we have derived estimators which give an 

equality on the first line of (3.11). However, this equality holds true only for our estimators 

where we neglect uncertainties in higher order terms. Note, as already mentioned, for typical 

real data examples higher order terms are of negligible order which means that we get an 

approximate equality on the first line of (3.11) (see also derivation in (A.2)). This is similar to 

the findings presented in Chapter 3 of [9]. 

 

 

3.2 Aggregation over prior accident years 
 
When aggregating over prior accident years, one has to take into account the correlations 

between different accident years, since the same observations are used to estimate the CL 

factors and are then applied to different accident years (see also Section 3.2.4 in [9]). Based 

on the definition of the conditional MSEP for the true aggregate CDR around the 

aggregated observable CDR the following estimator is obtained: 
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Result 3.2 (Conditional MSEP for aggregated accident years, part I) 

 
For aggregated accident years we obtain the following estimator 
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For the conditional MSEP of the aggregated observable CDR around 0 we need an 

additional definition. 
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Result 3.3 (Conditional MSEP for aggregated accident years, part II) 

 
For aggregated accident years we obtain the following estimator 
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Note that (3.15) can be rewritten as follows: 
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Hence, we obtain the same decoupling for aggregated accident years as for single accident 

years. 

 

 

Remarks 3.4 (Comparison to the classical Mack [7] formula) 

 

In Results 3.1-3.3 we have obtained a natural split into process variance and estimation error. 

However, this split has no longer this clear distinction as it appears. The reason is that the 

process variance also influences the volatility of 1ˆ +I
jf  and hence is part of the estimation 

error. In other approaches one may obtain other splits, e.g. in the credibility chain ladder 

method (see Bühlmann et al. [3]) one obtains a different split. Therefore we modify Results 

3.1.-3.3 which leads to a formula that gives interpretations in terms of the classical Mack [7] 

formula, see also (4.2)-(4.3) below. 

 

 

 

 

 

Result 3.5  
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For single accident years we obtain from Result 3.1 
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For aggregated accident years we obtain from Result 3.3 
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We compare this now to the classical Mack [7] formula. For single accident years the 

conditional MSEP of the predictor for the ultimate claim is given in Theorem 3 in Mack [7] 

(see also Estimator 3.12 in [9]). We see from (3.17) that the conditional MSEP of the CDR 

considers only the first term of the process variance of the classical Mack [7] formula 

)( iIj −=  and for the estimation error the next diagonal is fully considered )( iIj −= but 

all remaining runoff cells )1( +−≥ iIj  are scaled by 1/ 1
, ≤+

−
I
jiIi SC . For aggregated 

accident years the conditional MSEP of the predictor for the ultimate claim is given on page 

220 in Mack [7] (see also Estimator 3.16 in [9]). We see from (3.18) that the conditional 

MSEP of the CDR for aggregated accident years considers the estimation error for the next 

accounting year )( iIj −= and all other accounting years )1( +−≥ iIj  are scaled by 

1/ 1
, ≤+

−
I
jiIi SC . 

Hence we have obtained a different split that allows for easy interpretations in terms of the 

Mack [7] formula. However, note that these interpretations only hold true for linear 

approximations (A.1), otherwise the picture is more involved. 
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4. NUMERICAL EXAMPLE AND CONCLUSIONS 
 
For our numerical example we use the dataset given in Table 2. The table contains 

cumulative payments jiC ,  for accident years { }8,,1,0 K∈i  at time 8=I  and at time 

91 =+I . Hence this allows for an explicitly calculation of the observable claims 

development result. 

 

 

Table 2: Run-off triangle (cumulative payments, in $ 1’000) for time 8=I  and 9=I  

 0=j  1 2 3 4 5 6 7 8

0=i  2’202’584 3’210’449 3’468’122 3’545’070 3’621’627 3’644’636 3’669’012 3’674’511 3’678’633

1=i  2’350’650 3’553’023 3’783’846 3’840’067 3’865’187 3’878’744 3’898’281 3’902’425 3’906’738

2=i  2’321’885 3’424’190 3’700’876 3’798’198 3’854’755 3’878’993 3’898’825 3’902’130  

3=i  2’171’487 3’165’274 3’395’841 3’466’453 3’515’703 3’548’422 3’564’470   

4=i  2’140’328 3’157’079 3’399’262 3’500’520 3’585’812 3’624’784    

5=i  2’290’664 3’338’197 3’550’332 3’641’036 3’679’909     

6=i  2’148’216 3’219’775 3’428’335 3’511’860      

7=i  2’143’728 3’158’581 3’376’375       

8=i  2’144’738 3’218’196        

I
jf̂  1.4759 1.0719 1.0232 1.0161 1.0063 1.0056 1.0013 1.0011  

1ˆ +I
jf  1.4786 1.0715 1.0233 1.0152 1.0072 1.0053 1.0011 1.0011  

2ˆ jσ  911.43 189.82 97.81 178.75 20.64 3.23 0.36 0.04  
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Table 2 summarizes the CL estimates I
jf̂  and 1ˆ +I

jf  of the age-to-age factors jf  as well as 

the variance estimates 2ˆ jσ  for 7,,0 K=j . Since we do not have enough data to estimate 

2
7σ  (recall JI = ) we use the extrapolation given in Mack [7]: 

       { }2
5

4
6

2
5

2
6

2
7 ˆˆ,ˆ,ˆminˆ σσσσσ = .      (4.1) 

Using the estimates I
jf̂  and 1ˆ +I

jf  we calculate the claims reserves ID
iR̂  for the outstanding 

claims liabilities I
iR  at time It =  and 1ˆ

1,
+++−

ID
iiIi RX  for 1

1,
+

+− + I
iiIi RX  at time 1+= It , 

respectively. This then gives realizations of the observable CDR for single accident years and 

for aggregated accident years (see Table 3). Observe that we have a negative observable 

aggregate CDR at time 1+I  of about $ -40’000 (which corresponds to position c) in the 

P&L statement in Table 1). 

 

i  ID
iR̂  1ˆ

1,
+++−

ID
iiIi RX  ( )1ˆ +IRDC i  

0 0 0 0 

1 4’378 4’313 65 

2 9’348 7’649 1’698 

3 28’392 24’046 4’347 

4 51’444 66’494 -15’050 

5 111’811 93’451 18’360 

6 187’084 189’851 -2’767 

7 411’864 401’134 10’731 

8 1’433’505 1’490’962 -57’458 

Total 2’237’826 2’277’900 -40’075 

 
Table 3: Realization of the observable CDR at time 1+= It , in $ 1’000 

 

The question which we now have is whether the true aggregate CDR could also be positive 

if we had known the true CL factors jf  at time It =  (retrospective view). We therefore 
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perform the variance and MSEP analysis using the results of Section 3. Table 4 provides the 

estimates for single and aggregated accident years. 

On the other hand we would like to know, how this observation of $ -40’000 corresponds to 

the prediction uncertainty in the budget values, where we have predicted that the CDR is $ 0 

(see position c) in Table 1). This is the prospective (solvency) view. 

We observe that the estimated standard deviation of the true aggregate CDR is equal to $ 

65’412, which means that it is not unlikely to have the true aggregate CDR in the range of 

about $ ± 40’000. Moreover, we see that the square root of the estimate for the MSEP 

between true and observable CDR is of size $ 33’856 (see Table 4), this means that it is likely 

that the true CDR has the same sign as the observable CDR which is $ -40’000. Therefore 

also the knowledge of the true CL factors would probably have led to a negative claims 

development experience. 

Moreover, note that the prediction 0 in the budget values has a prediction uncertainty 

relative to the observable CDR of $ 81’080 which means that it is not unlikely to have an 

observable CDR of $ -40’000. In other words the solvency capital/risk margin for the CDR 

should directly be related to this value of $ 81’080.  
 

i  ID
iR̂  21ˆraV  ( ) 21ˆˆ RDCepsm

IDCDR  ( ) 21
ˆ 0ˆ

IDRDCepsm  21
Mackmsep  

0 0  

1 4’378 395 407 567 567

2 9’348 1’185 900 1’488 1’566

3 28’392 3’395 1’966 3’923 4’157

4 51’444 8’673 4’395 9’723 10’536

5 111’811 25’877 11’804 28’443 30’319

6 187’084 18’875 9’100 20’954 35’967

7 411’864 25’822 11’131 28’119 45’090

8 1’433’505 49’978 18’581 53’320 69’552

21cov   0 20’754 39’746 50’361

Total 2’237’826 65’412 33’856 81’080 108’401

 
Table 4: Volatilities of the estimates in $ 1’000 with: 
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ID
iR̂     estimated reserves at time It = , cf. (2.21) 

21ˆraV     estimated std. dev. of the true CDR, cf. (3.8) 

( ) 21
ˆ

ˆˆ RDCepsm
IDRDC  estimated 21msep  between true and observable CDR, cf. 

(3.10) and (3.12) 
( ) 21

ˆ 0ˆ
IDRDCepsm  prediction std. dev. of 0 compared to ( )1ˆ +IRDC i , cf. (3.9) 

and (3.15) 
21

Mackmsep    21msep  of the ultimate claim, cf. Mack [7] and (4.3) 

 

Note that we only consider the one-year uncertainty of the claims reserves run-off. This is 

exactly the short term view/picture that should look fine to get to the long term. In order to 

treat the full run-off one can then add, for example, a cost-of-capital margin to the 

remaining run-off which ensures that the future solvency capital can be financed. We 

emphasize that it is important to add a margin which ensures the smooth run-off of the 

whole liabilities after the next accounting year. 

Finally, these results are compared to the classical Mack formula [7] for the estimate of the 

conditional MSEP of the ultimate claim JiC ,  by I
JiC ,

ˆ  in the distribution-free CL model. The 

Mack formula [7] gives the total uncertainty of the full run-off (long term view) which 

estimates 
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see also Estimator 3.16 in [9]. Notice that the information in the next accounting year 

(diagonal 1+I ) contributes substantially to the total uncertainty of the total ultimate claim 

over prior accident years. That is, the uncertainty in the next accounting year is $ 81’080 and 
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the total uncertainty is $ 108’401. Note that we have chosen a short-tailed line of business so 

it is clear that a lot of uncertainty is already contained in the next accounting year. Generally 

speaking, the portion of uncertainty which is already contained in the next accounting year is 

larger for short-tailed business than for long-tailed business since in long-tailed business the 

adverse movements in the claims reserves emerge slowly over many years. If one chooses 

long-tailed lines of business then the one-year risk is about 2/3 of the full run-off risk. This 

observation is inline with a European field study in different companies, see AISAM-ACME 

[1]. 

 

APPENDIX A. PROOFS AND DERIVATIONS 
 
Assume that ja  are positive constants with ja>>1  then we have 
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where the right-hand side is a lower bound for the left-hand side. Using the above formula 

we will approximate all product terms from our previous work [10] by summations. 

 

 

Derivation of Result 3.1. We first give the derivation of Result 3.1 for a single accident 

year. Note that the term I
Ji,Δ̂  is given in formula (3.10) of [10]. Henceforth there remains to 

derive the terms I
Ji,Φ̂  and I

Ji,Γ̂ . 

For the term I
Ji,Φ̂  we obtain from formula (3.9) in [10] 
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 for typical claims 

reserving data. 

For the term I
Ji,Γ̂  we obtain from (3.16) in [10] 
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Henceforth, Result 3.1 is obtained from (3.8), (3.14) and (3.15) in [10]. 

   

□ 

Derivations of Results 3.2 and 3.3. We now turn to Result 3.2. All that remains to derive 

are the correlation terms. 

We start with the derivation of I
Jk ,Λ̂  (this differs from the calculation in [6]). From (4.24)-

(4.25) in [6] we see that for ki <  the cross covariance term of the estimation error 
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is estimated by resampled values jf̂ , given ID , which implies 
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Note that the last two lines differ from (4.25) in [6]. This last expression is now equal to (see 

also Section 4.1.2 in [6]) 
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Next we use (A.1), so we see that the last line can be approximated by 
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Next we note that 1
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Hence plugging in the estimators for jf  and 2

jσ  at time I  yields the claim. 

Hence there remains to calculate the second term in Result 3.2. From (3.13) in [10] we again 

obtain the claim, using that 
( )
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I
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C
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−−>>
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σ
 for typical claims reserving data. 

So there remains to derive Result 3.3. The proof is completely analogous, the term 

containing I
Ji,Λ̂  was obtained above. The term I

Ji,Ξ̂  is obtained from (3.17) in [10] 

analogous to (A.3). 

This completes the derivations. 
   

□ 
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