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Abstract

The standard approach used by Solvency II for interest rate risk assessment is a sim-
plification of the RiskMetrics approach, designed in 1989 by JPMorgan. Based on this
approach, we demonstrate that the Solvency II directive, in its current state, leads to
a biased assessment of risk but especially to a pro cyclical effect caused by a negative
correlation between SCR and Net Assets. We introduce a proposal of correction, so called
interest rate dampener, where the stress is time dependent through mean reversion model-
ing. To illustrate the counter cyclical property of our method we apply it on two fictive life
and non-life insurance undertakings and we show that our proposal allows a stabilization
of the Solvency ratio without affecting the level of prudency.
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Introduction

The Solvency II Directive is an EU directive that both reforms and harmonizes the EU insur-
ance regulation. Each Insurance undertaking has to hold sufficient capital to face the 0.5%
probability worst case annual losses. This main objective leads to three sub-objectives. The
first sub-objective is setting a process of VaR determination which, according to Christoffersen
(1999), has at least the same importance as the results themselves. The second is quantifying
and identifying each risk factor, and thus introducing quantitative analysis in management.
This is an historical practice in the banking industry but a significant change for insurance
companies, especially for financial risk (see Ramosaj(2010)). The last, named Own Risk and
Solvency Assessment (ORSA) is to integrate the risk measure in the decision process. Indeed,
with the obligation of making provision for risk, thinking about capitalistic intensity for each
business and for each investment portfolio becomes a key feature for growth (see Capozza and
Li (1996)). Considering that risk has to be reserved (concept of risk margin, cost of options
and warranties) this raises the issue of uncertainty about the risk itself (see Hugonnier and
al. (2012)).

In this paper we focus on interest rate risk. We consider a Zero coupon bond portfolio and
deterministic liabilities. This framework for risk analysis is a simplification of the RiskMetrics
method designed by JPMorgan in 1989 (see RiskMetrics Technical Note 2006). This paper
shows the inconsistencies of the standard formula approach and details the reason why these
inconsistencies are incompatible with an optimized and prudent business management. Time
dependencies of stress are introduced to correct this pitfall. Time dependency is modeled
through the parameters of the Nelson Siegel (1987) curve fitting method. These parameters
are the level, the slope and the convexity, according to Bonnin and al. (2011) Ornstein
Uhlenbeck process are used. We calibrate them from historical data since the settlement of
the euro currency. Calibration is then adjusted to fit the standard stress level as defined by
the EIOPA. The average level of the 0.5 percentile VaR is not questioned considering that
debates between EIOPA and industry are now closed. The purpose of this paper is to propose
an improvement of the standard formula, compliant with the current framework as fixed in
Solvency II directive. The proposed method allows a significant reduction in the pro-cyclical
effect and of the solvency ratio volatility. The impact of this improvement is illustrated
through the examples of two fictive insurance companies, one with non-life activity and the
other with life activity.

1 The EIOPA’s standard formula approach

The solvency II requests that a part of capital is held in order to cover the annual V aR0.5%,
with no new business assumption (i.e. existing contracts or in-force contracts). The EIOPA
risk assessment approach is a parametric modular method. QIS 5 technical specifications
(CEIOPS 2010b ) and calibration paper is a simplification of the RiskMetrics method designed
by JPMorgan in 1989.

The annual V aR99.5% of each risk factor is computed from the historical distribution esti-
mated by year to year variations (overlapping). Therefore market consistent values are re-
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assessed under stress on each risk factor. The gap between the VaR and the current situation
(∆NAV ) are aggregated by risk factor through the strong assumption of normal copula, see
Mittnik(2012) for a questioning of this assumption.

1.1 The EIOPA’s standard formula approach

As previously mentioned we consider a simple insurance portfolio modeled as a series of
zero-coupon bonds both on liabilities and assets. This assumption is logical for property
and casualty, health, pension and annuities portfolios. Insurance portfolios with policyholder
options are excluded from the scope but we can expect a similar behavior to the proposed
model.

Let’s therefore consider a T maturity zero-coupon bond which is valued as follows

P (T, rT , srtg) =
1

(1 + rT + srtg)
T

(1)

rT is the risk free interest rate for the maturity T and srtg the spread for the rating rtg

Let’s assume

∆NAV rT = P (T, rT , srtg)− P (T, V aRrT , srtg) (2)

∆NAV srtg = P (T, rT , srtg)− P (T, rT , V aRsrtg) (3)

The SCR.5.77 article of EIOPA technical specifications (CEIOPS 2010b) states that
P (T, rT , V aR99.5%(srtg) is computed with order one Taylor’s development on the srtg. Con-
sidering the assumption that rT and srtg are distributed according to a Gaussian copula,
V aR99.5% of P (T, rT , srtg)) can be written as follows :

V aR99.5%(P (T, rT , srtg)) = P (T, rT , srtg) +
√

∆NAV 2
rt + ∆NAV 2

srtg + 2ρrs∆NAV rT ∆NAV srtg (4)

With ρrs is defined as Pearson correlation between rT and srtg for extreme values
(ranges : [0.0%, 5.0%] and [95.0%, 100.0%]). This refinement overcomes the normal copula
assumption.

For each risk factor the V aR99.5% has to be assessed. This estimation can be performed by
various methods, such as with time series theory, see Bollerslev and al.(2010), with market con-
sistent diffusion process, see Hull and White (1990) or heterosedastic process see Huang(2009),
the EIOPA chose an historic VaR approach. This approach considers a year to year variation
of each risk factor and estimates the 99.5% and 0.5% percentile. This historical data used
covers the period between August 1997 and May 2009 according to the EIOPA’s calibration
paper (CEIOPS 2010a). To ensure consistency we use a similar period (January 1999 - May
2009) but we demonstrate that results would be significantly different if we extend the period
to 2013. Indeed since 2009 sub primes crisis, European central bank drives the interest rate
to lower levels. The purpose of this paper is not to question the standard calibration in the
Solvency II directive as this is a result of negotiations between EIOPA and the insurance
industry. We focus on building a dampener effect on interest rates. For this exercise we use
the same period as EIOPA and we give the results in the appendix.
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We extract the zero-coupon bond price from the Euroswaps par rate and deduce the ZC
actuarial rate. Euroswaps exchange annually a fixed leg on a 30/360 basis against a floating
leg which six months Euribor, consequently the bootstrapping consists in finding dfi for each
maturity i from one to thirty years with a one year step such as shown below :

1 =

N∑
i=1

(SWAPN ·∆i · dfi) + dfN

Therefore

dfN =
(1−

∑N−1
i=1 SWAPN ·∆i · dfi)

(1 + SWAPN ·∆N )

Where SWAPN is the par rate of the n-year swap, ∆i is the length of the period [i − 1; i],
in years considering a 30/360 day count fraction and dfi is the discount factor for that time
period from zero to i. We then obtain the zero-coupon bond rate by the classical formula.

ri = e(
− ln(dfi)

T
) − 1

The missing SWAPN are computed with a cubic spline interpolation, according to Hagan
(2006). The resulting curve is for a 30/360 days count with an actuarial rate.

We have back tested our method against the EIOPA method, comparing our results and the
EIOPA risk free curve released for the 2009-01-01, 2010-01-01 and 2011-01-01 QIS exercise.
The maximum gap between the two curves never exceeds 10.08 bps.

We use the EIOPA approach to assess the VaR for each maturity. This VaR is estimated
empirically by a shifting of relative variation. As expected, on a similar calibration range,
VaR are close to EIOPA QIS5 technical specifications (see table below). However if the range
period for estimation is extended to January 2013 we can observe a significant rise on the
downward stress for the long term rate. From 2009, because of ECB policy, the interest rate
level has been maintained to lower levels. Debates on Solvency II parameterization are very
unlikely to be reopened between EIOPA and the industry and using the statistical stress would
be even more pro-cyclical and unrealistic in the current context.
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EIOPA 1997 to 2009 1999 to 2009 1999 to 2013

T Down Up Down Up Down Up

1 -75% 70% -66% 76% -78% 78%
2 -65% 70% -58% 73% -72% 77%
3 -56% 64% -49% 66% -67% 67%
4 -50% 59% -43% 60% -61% 59%
5 -46% 55% -39% 55% -57% 54%
6 -42% 52% -35% 52% -53% 50%
7 -39% 49% -33% 48% -50% 47%
8 -36% 47% -31% 47% -47% 46%
9 -33% 44% -29% 45% -45% 44%
10 -31% 42% -27% 44% -44% 43%
15 -27% 33% -24% 38% -41% 38%
20 -29% 26% -24% 34% -42% 33%
30 -30% 25% -26% 30% -42% 28%

Table 1: VaR for rT with the EIOPA approach

According to SCR.5.22 of EIOPA technical specifications (CEIOPS 2010b) the absolute change
of interest rates should at least be one percentage point. Where the unstressed rate is lower
than 1%, the shocked rate in the downward scenario should be assumed to be 0%.

The spread risk factor is computed with the EIOPA method and the Bank Of America Merrill
Lynch Index (CEIOPS 2010a) is used as spread index proxy. This Index is an average of option
adjusted spread, also called flat spread, of a market representative basket of bonds. The risk
is summarized in the following table.

Rating 1999 to 2009

AAA 90bps
AA 110bps
A 140bps
BBB 250bps
BB 450bps
B or lower 750bps
Unrated or lower 300bps

Table 2: (V aR99.5%(srtg)− srtg) with the EIOPA estimation method

Based on this approach, we are able to apply the full EIOPA risk framework on Zero Coupon
bonds and deterministic liabilities. As an example we consider 5Y AAA Zero coupon with an
upward stress and we apply the standard framework to assess the V aR99.5%.
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Figure 1: SCR Evolution of a 5Y Deterministic Liabilities (Modeled by a Zero Coupon)

The evolution shows some inconsistencies in the EIOPA risk assessment. First of all the risk
assessment is correlated positively with interest rate levels. This means that when the level of
interest rate increases, the risk of interest rate increases at the same time. This behavior leads
to a significant pro-cyclical effect without increasing the predictability of the risk measure (see
section 3.2 for a quantified analysis). This pro-cyclicality comes from a double impact. Indeed,
companies exposed to the increase of interest rates are suffering from losses after a decrease
of interest rate and they are sentenced to a non-consistent stress.

These facts shows that the EIOPA model does not integrate all the requirements of the
Solvency II directive. Firstly a lack of predictability could lead to a lack of capital in a crisis
period when the market liquidity is lower. This leads to the huge challenge of refinancing a
company in this kind of period. Secondly this is not in line with the article 28 which asks
to integrate, when it is possible and without prejudice on risk forecast accuracy, a counter
cyclical effect. In order to consider the potential impact of a pro-cyclical risk model on the
stability of the financial systems. Thirdly this is inconsistent with the integration of risk
measure in decision process. Indeed if risk measures are inconsistent, decision process cannot
be optimal and companies will therefore have to develop an internal model. These kinds of
incentives would generate a competitive advantage for large companies that can afford for
higher actuarial internal developments. Consequently, to avoid this, the standard formula has
to be a trade-off between accuracy, simplicity and a reasonable recognition of counter-cyclicity.

2 The EIOPA extended approach

2.1 Model specification

As we previously mentioned, our goal is to set up a model that is not over-sophisticated but
apprehends the main behavior of the yield curve. There are of course more realistic real world
interest rate models see (see Norman(2009)) but our choice is to give priority to simplicity and
to the possibility of giving economic justifications as well as getting an analytical expression
of the quantile and avoiding the use of Monte Carlo simulations. This model is based on the
Nelson Siegel regression in which the yield curve is expressed by the following regression (see
Nelson and Siegel (1987))
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R(t, u) = lt − stφ(
u

τ
) + ctψ(

u

τ
) (5)

Where φ(x) = 1−e−x

x , ψ(x) = φ(x)− e−x, t is the date, u is the maturity of the interest rate.
lt is the level, st the slope and ct the curvature.

The choice of these risk factors is confirmed from the principal component analysis on the
variation of the yield curve. Indeed we are able to obtain these factors by a combination
of Eigen vectors (see Figure 14 in appendix and Bonnin and al. (2011)). Note that using
lt,st and ct within Nelson Siegel framework leads to the loss of the orthogonality property
between risk factors (in comparison to the PCA). However we obtain more explicit economic
interpretation of them.

The cumulated inertia of the first three Eigen vectors is about 89% (see in appendix). This
proves that the model is able to apprehend most of the interest rate curve movements, and
that is confirmed by Diebold and al. (2008), where he demonstrates that diffusion on Nelson
Siegel variation outperformed, in terms of predictability, other models like Fama-Bliss forward
rate regression or Cocharane-Piazzesi forward curve regression.

The estimation of lt, st, ct and tau can be made by least-square regression, (see Nelson 1987)
but this method shows instability (see Gili and al. (2010)). This makes the estimation of
risk factors processes difficult. Consequently we choose the Diebold and al. (2006) method
where l(t), s(t) and c(t) are estimated by solving the following system for each date, from a
maturities triplet:


R(t, 0.25) = lt − φ(0.25

τ )st + ψ(0.25
τ )ct

R(t, 10) = lt − φ(10
τ )st + ψ(10

τ )ct

R(t, 30) = lt − φ(30
τ )st + ψ(30

τ )ct

(6)

According to Diebold and al.(2006) method we estimate the tau which minimizes the correla-
tion between risk factors. We actually minimize the sum of square coefficients of correlation.
On the studied period this optimum is reached for a value of tau equal to 2.6 (see appendix).
The maturities triplet (0.25 Year, 10 Years and 30 Years) leads to a R2 between model and
observed curve equals to 98.60% over the calibration range 1999 to 2009.

We then come to set stochastic differential equations. These equations are chosen for the
small number of parameters, for the possibility of providing with an economic interpretation,
but especially for the existence of an analytical expression of the quantile.

dlt = kl(θl − lt)dt+ σldW
l
t (7)

dst = ks(θs − st)dt+ σsdW
s
t (8)

dct = kc(θc − ct)dt+ σcdW
c
t (9)

Stochastic differential equations on lt, st and ct are integrated by applying the Ito Lemma
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and according to Brigo and Mercurio (2001) we obtain the following integrated form :

lT = l0e
−klT + θl(1− e−klT ) + σe−kl

∫ T

0
ekl dWl (10)

sT = s0e
−ksT + θs(1− e−ksT ) + σe−ks

∫ T

0
eks dWs (11)

cT = c0e
−kcT + θc(1− e−kcT ) + σe−kc

∫ T

0
ekc dWc (12)

where T is the horizon of risk and equal to one year in Solvency II context. As we aim at
estimating the risk on the interest rate distribution after a one year period, we compute the
integrated variables conditionally to the information at t0 (|Ft0)

2.2 Analytical expression of the quantile

According to (10),(11) and (12), lT , sT and cT follow the normal distribution presented below

lT |Ft0 ∼ N(l0e
−klT + θl(1− e−klT ) , σl

√
1− e−2klT

2kl
) (13)

sT |Ft0 ∼ N(s0e
−ksT + θs(1− e−ksT ) , σs

√
1− e−2ksT

2ks
) (14)

cT |Ft0 ∼ N(c0e
−kcT + θc(1− e−kcT ) , σc

√
1− e−2kcT

2kc
) (15)

We are able to obtain an analytical expression of the quantile. To clarify all the following
equations let

αl(T ) = l0e
−klT + θl(1− e−klT ) (16)

βl(T ) = σl

√
1− e−2klT

2kl
(17)

αs(T ) = s0e
−ksT + θs(1− e−ksT ) (18)

βs(T ) = σs

√
1− e−2ksT

2ks
(19)

αc(T ) = c0e
−kcT + θc(1− e−kcT ) (20)

βc(T ) = σc

√
1− e−2kcT

2kc
(21)

Therefore lT , sT and cT are expressed as follows

lT |Ft0 ∼ N(αl , βl) (22)

sT |Ft0 ∼ N(αs , βs) (23)

cT |Ft0 ∼ N(αc , βc) (24)
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Please note, as expected we have indeed αl = θl if lt = θl, αs = θs if st = θs αc = θc if ct = θc
and this ∀t ∈ R+

We deduce from (5),(22),(23) and (24) the distribution for R(T, u)|Ft0 :

R(T, u)|Ft0 ∼ N(αR , βR) (25)

With

αR = αl + φ(
u

τ
)αs + ψ(

u

τ
)αc

β2
R = + β2

l

+ φ2(
u

τ
)β2
s

+ ψ2(
u

τ
)β2
c

+ 2 φ(
u

τ
) βl βs ρdW l,dW s

+ 2 ψ(
u

τ
) βl βc ρdW l,dW c

+ 2 φ(
u

τ
) ψ(

u

τ
) βc βs ρdW c,dW s

ρdW l,dW s , ρdW l,dW c and ρdW c,dW s are the correlations between the three brownian motions.

Therefore we have an analytical expression for the Solvency II percentiles,

V aR99.5%(R(T, u)|Ft0) = βRU(99.5%) + αR (26)

V aR0.5%(R(T, u)|Ft0) = βRU(0.5%) + αR (27)

With U(99.5%) = 2.576 and by symmetry U(0.5%) = −2.576

2.3 Historical calibration with exact discretization

According to Gillespie (1995) the exact discretization of an Ornstein-Uhlenbeck process is :

Xt+∆t = e−kX∆tXt + (1− e−kX∆t)θX + σX

√
1− e−2kX∆t

2kX
dWX

t (28)

For this calibration we are looking for the linear relation which minimizes the squares of
residuals

Xt+∆t = cX0 + cX1 Xt + εXt (29)
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By identification we have:

kX = − ln(cX1 )

∆t
(30)

θX =
cX0

1− e−kX∆t
(31)

σX =

√
2kXV ar(εXt )

1− e−2kX∆t
(32)

Between January 4th 1999 (the settlement of euro currency) and May 1st 2009 we estimate
on a daily frequency basis excluding market closed days, the risk factors l(t), s(t) and c(t)
from the linear system (6). We therefore obtain the following assessment 1:

cl0 = 1.009 · 10−4 cs0 = 2.700 · 10−5 cc0 = −1.543 · 10−5

cl1 = 9.980 · 10−1 cs1 = 9.988 · 10−1 cc1 = 9.926 · 10−1

V ar(εlt) = 2.527 · 10−7 V ar(εst ) = 3.393 · 10−7 V ar(εct) = 1.515 · 10−7

So the assessment of the parameters of the stochastic differential equation is :

kl = 51.04% ks = 29.76% kc = 185.96%
θl = 4.947% θs = 2.269% θc = −0.208%
σl = 0.796% σs = 0.921% σc = 1.953%

Finally we deflate the deterministic drift from l(t), s(t) and c(t) variations and we obtain the
correlation between the three brownian motions.

ρdW l,dW s = 36.81%

ρdW l,dW c = −3.34%

ρdW c,dW s = −1.77%

Our extended approach reveals dependence between the interest rate curve and the stress
value. To compare the stress with the EIOPA standard formula we define a stationary state
where stresses are not time dependent. In this state lt, st and ct are equal to their long term
average (θl,θs,θc). A stationary curve is then defined (see in appendix) with an associated
stress. We consider it as comparable to the EIOPA standard stress scenario on interest rates.
However, in this state, the model stress does not exactly match with the EIOPA stress (see
the graphic below).

1Data and source code are available upon request
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Figure 2: Comparison of EIOPA’s funnel of doubt model (plain lines) against the proposed
model’s funnel of doubt (dotted lines) with an historical calibration

2.4 Difference of assessment: explanation and convergence

The mismatch between the two methods comes from the parameter’s assessment methodology.
Indeed, the EIOPA estimates directly the annual VaR on the series of overlapping annual
returns on a daily basis. In the model proposed in this paper, we estimate the daily volatility,
which is then annualized with consideration of one order auto-correlation. Then the annual
VaR is deduced under a normal assumption (brownian process) (see (28) (29)). The difference
of VaR assessment, for the 30 Years term rate is around 6% : with a VaR of 30% with EIOPA
method versus a VaR of 36% with the proposed Nelson-Siegel / Ornstein-Uhlenbech model.
In order to quantify the bias of each method we simulate an Ornstein Uhlenbeck process, in
which the annual VaR is perfectly known, and we apply on it the two calibration method
to evaluate the bias in the VaR assessment. Parameters of the process are those of the level
process (k = 51.04%, θ = 4.947%, σ = 0.796%) and the starting point is the 30 year rate at
January 4th 1999 (X0 = 4.87%). We simulate 104 processes over 10 years on a daily step.
The average of the EIOPA’s method VaR assessment is 35.31% with a standard deviation
of 5.52%. The average of the auto regression method is 41.37% with a standard deviation
of 0.59%. This has to be compared to the theoretical VaR of the simulated process which
is 41.29%. These results make appear that our method is less biased than EIOPA’s and
consequently the EIOPA risk framework could have a lack of prudency. This behavior can
be explained by the fact that the overlapping VaR assessment method considers only realized
path opposed to the auto regression model which allows consideration of unrealized path and
the extrapolation of the annual VaR. Nevertheless as we mentioned in introduction, we don’t
want to derive from the standard stress. As a consequence, we have chosen to estimate the
volatility for the level risk factor with overlapping VaR assessment method. This leads to an
assessment of 0.503% for the volatility and 27% for the VaR. In that way the proposed risk
assessment method is fully consistent with EIOPA standard formula and funnels of doubt are
very closed in average (see the graphic below).
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Figure 3: Convergence of EIOPA funnel of doubt model (plain lines) against model funnel of
doubt (dotted lines) with EIOPA adjusted calibration

3 Model behavior and risk assessment improvements

3.1 Time adjusted interest rate stress

Thus according to the process as described above, we have estimated the risk factors values
lt, st and ct. We then are able to get a time adjusted stress of interest rates, estimating
the annual V aR0.5% at each daily step. As expected up-stress is negatively correlated with
interest rates levels and down-stress is positively correlated with interest rates levels, as the
mean reversion property allows for a counter-cyclical stress.

As a proof of concept, we consider a simple asset modeled as a AAA 5Y Zero coupon, exposed
to the upward stress and we compute its SCR with the EIOPA method and the proposed
mean-reversion model between January 4th 1999 and May 1st 2012.

1999-01 2000-01 2001-01 2002-01 2003-01 2004-01 2005-01 2006-01 2007-01 2008-01 2009-01 2010-01 2011-01 2012-01 2013-01
0%

2%

4%

6%

8%

10%

12%

14%

5Y Yield SCR EIOPA SCR MODEL

Figure 4: SCR Evolution of a 5Y AAA Asset (Modeled by a Zero Coupon) exposed to the
increase of interest rate

As expected, the SCR with the EIOPA method increases when the interest rate increases
whereas the SCR with the proposed model decrease when the interest rate increase. The
method is consequently counter cyclical. Indeed, the model increases the assessment of SCR
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after gains (decrease in interest rate) and decreases it after losses (increase in interest rate).

We then consider a simple liability modeled as 5Y Zero coupon, exposed to the downward
stress. and we compute its SCR with the EIOPA method and the proposed mean-reversion
model between January 4th 1999 and May 1st 2012.

1999-01 2000-01 2001-01 2002-01 2003-01 2004-01 2005-01 2006-01 2007-01 2008-01 2009-01 2010-01 2011-01 2012-01 2013-01
0%
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Figure 5: SCR Evolution of a 5Y Liabilities (Modeled by a Zero Coupon) exposed to the
decrease of interest rate

We observe the same counter-cyclical behavior with a downward shock (on liability side).
Indeed when interest rates increase, the value of liabilities drops (we realize a gain), and the
proposed model IR SCR rises. On the contrary when interest rates decrease, this is an adverse
shock on liabilities and the proposed model SCR is lower than EIOPA standard shock.

3.2 Benefits on the VaR forecast accuracy

According to the directive a counter-cyclical effect could be introduce (Article 28) but without
prejudice to the accuracy of the VaR forecast which remains the main objective (Article 27).
The proposed model should consequently be back tested in order to show that no deterioration
of accuracy is introduced and it is consequently a practical alternative to the existing EIOPA
model.

There is a large number of Value at Risk back testing procedure in literature which commonly
test the unconditional proportion of violation and the independence between two successive
violations (avoidance of clustering effect), through a study of the density function of the time
between two VaR failures (see D.Campbell 2006 for a summary of back testing frameworks).
Nevertheless, all these tests share the same weakness coming from the size of the sample. This
weakness is particularly important in Solvency II because of the VaR settings (horizon of one
year with alpha equal to 0.5%). Indeed with these settings the average time between two VaR
violations is 200 years,therefore getting a significant number of VaR failures is fairly difficult.

The problem of significant number of VaR failure observations can be solved by changing
the VaR horizon. Indeed in case of no significant autocorrelation the accuracy of a model is
inherited from the short to the long term horizon.

The correlogram below of the daily variations shows erratic and very low autocorrelations and
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leads to the conclusion of the absence of significant autocorrelation between variations
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Figure 6: Correlogram of one day variations from 1 to 250 open days lag

In the absence of autocorrelation the one day horizon VaR in the standard formula is

V aR(1day, 0.5%) =
√

1
250V aR(1year, 0.5%)

The ex-ante V aR(1day, 0.5%) forecast for a 5Y Zero coupon bond with a nominal of 100EUR
is then compared to its ex-post price variation to identify past events of VaR failure.
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Figure 7: Historic of VaR and VaR failures events

VaR Forecast [0.28, 0.71] [0.28, 0.43[ [0.43, 0.57[ [0.57, 0.71]

#Observation 3498 921 1398 1178
#VaR Failures 62 34 21 7
VaR Failures frequency 1.77% 3.69% 1.50% 0.59%

Table 3: VaR failure with the EIOPA method

VaR Forecast [0.53, 0.69[ [0.53, 0.58[ [0.58, 0.64[ [0.64, 0.71]

#Observation 3498 1013 1801 681
#VaR Failures 22 7 12 3
VaR Failures frequency 0.63% 0.69% 0.67% 0.44%

Table 4: VaR failure with the model method
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The graph and data above show facts which attest the superiority of the proposed model in
term of accuracy in VaR forecast. Firstly the hit ratio in the proposed model (0.63%) is closer
to the target hit ratio (0.5%) than the standard formula approach (1.77%). Secondly, the
increase or decrease of the ex-ante risk forecast does not introduce significant bias on the hit
ratio unlike the EIOPA model (see VaR failures at the end of 2011 which come exclusively
from low risk forecast). Finally when there is a VaR failure in the proposed model, there is
also a VaR failure in the EIOPA model, whereas a VaR failure in the EIOPA model does not
implied a systematic VaR failure in the model. The proposed model is consequently more
prudent.

The clustering effect can be quantified by the construction of empirical density function of the
time between two violations failures. For an unbiased model this function is an exponential
distribution with the average equal to the VaR tolerance threshold (see Christoffersen 2004).
The graph below shows that the proposed model fits more closely the theorical distribution
than the EIOPA model.
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Figure 8: Empirical distribution of duration between two VaR failures

A slight clustering effect remains in the proposed model. It comes from the homoscedasticity
hypothesis in the diffusion process used which is not always applicable. The one month shifted
standard deviation shows rare high volatility period which coincide with each standard formula
VaR failure cluster. The proposed model has a better resilience on this hypothesis than the
EIOPA approach. In order to keep as much simplicity as possible we have chosen to neglect the
diffusion of volatility. The model remains however more accurate than the EIOPA framework.
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Figure 9: Volatility of 5Y Zero Coupon bond price variation
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3.3 Benefits on the Solvency ratio

The following of this paper considers fictive insurance undertakings, one life (long liability
duration), and one which similar to a healthcare entity (very short tail business) or short tail
non-life. The paper will demonstrate how the proposed framework enables a stabilization of
the Solvency ratio for any type of balance sheet and business. This counter-cyclical effect on
SCR is called interest rate dampener model.

Let’s consider first a short tail business undertaking, non-life of annual healthcare. This
undertaking is exposed to the upward stress: assets longer than liabilities.

Settlement Date (t0) January 4th 1999
Asset Portfolio Value No discount factor (GA) 123.8MEUR
Best estimate of Liabilities No discount factor (GL) 103.2MEUR
Asset Portfolio Value (A) 100.0MEUR
Best estimate of Liabilities (L) 100.0MEUR
Risky Asset duration (uA) 5Years
Risky Asset mean rating (rtg) A
Liabilities duration (uL) 1Year
Solvency Capital Requirement at t0 (SCR) 9.3MEUR
Solvency Ratio (SR) 3.0
Own Funds (OF ) 28.0MEUR

Table 5: Characteristics of the company

We then need to specify the main management rules. First of all we assume that the asset
portfolio is a constant maturity and constant rating zero-coupon bond through time. Conse-
quently there is no variation of risk level due to the portfolio aging, as it would be the case in
a run-off assumption. For the same reason we consider that the liabilities is also modeled by
a constant maturity zero-coupon bond. Our last assumption is that own funds are held on in
cash, so they do not generate additional risk or revenues. We suppose a steady-state business
where any technical or financial income is fully distributed at any time to equity holders, and
where the assets and liabilities structure is only affected by the changes in interest rates and
spread environment.

For this company ∀t :
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A(t) =
GA

(1 +R(t, uA) + srtg)uA
(33)

L(t) =
GL

(1 +R(t, uL))uL
(34)

V aRr(t) =

[
GA

(1 +R+(t, uA) + srtg)
uA −A(t)

]
−
[

GL

(1 +R+(t, uL))uL
− L(t)

]
(35)

R+(t, u) = R(t, u) +Max(SueupR(t, u), 100bp) (36)

V aRspr(t) = A(t)uAV aRspr(rtg) (37)

SCR(t) =
√
V aRr(t)2 + V aRspr(t)2 + 2ρrsV aRr(t)V aRspr(t) (38)

SR(t) = OF (t)/SCR(t) (39)

Where ρrs = 0.5 when we consider a down stress and ρrs = 0.0 in the up stress We consider
that Own Funds (OF ) are determined recursively as follows

OF (t0) = 2SCR(to) (40)

OF (t) = OF (t−∆t) + (A(t)−A(t−∆t))− (L(t)− L(t−∆t)) (41)

After setting the company we are able to make an historical simulation of the solvency ratio
between this date and May 1st 2012.
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Figure 10: Evolution of Solvency ratio for a non-life company
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EIOPA Method Proposed method

Average 262% 287%
Min 159% 172%
Max 369% 357%
Maximum Drawdown 211% 185%
Volatility 51% 30%

Table 6: Statistics about Solveny ratio

The historical simulation on the short tail insurance undertaking presented above shows that
the solvency ratio computed with the proposed model is higher than the ratio computed with
the EIOPA’s standard formula in high interest rates period, and lower in low interest rates
period. This means that the proposed framework smoothes the switching between bad and
good market environment conditions. This improvement (so-called interest rate dampener)
also decreases the volatility of the solvency ratio, 51% with the EIOPA method versus 30%
with the proposed framework and decreases the sensitivity of the solvency ratio to the yield
curve. As consequence it leads also to a simplification of the management by decreasing the
probability of a SCR higher than available Own funds (ratio below 100%) due to the market
environment. Notice that risk factors other than interest rates and spread are not considered in
this article. By introducing solvency ratio inertia the framework helps insurance undertakings
to survive in temporary difficult market conditions. Nevertheless the proposed framework has
no effect about the spread variation and as we can observe in the 2009 spread crisis, the
solvency ratio drops because of increase of spread whatever the used risk framework. This
leads to the necessity of proposing a spread risk dampener. This dampener is one of the
major topic addressed by EIOPA with the LTGA industry impact study, especially through
the introduction of a counter-cyclical premium and Matching Adjustment.

The same exercise with similar results can be made on a life insurance undertaking, where
liabilities are longer than assets, and with the following characteristics:

Settlement Date (t0) January 04th 1999
Asset Portfolio Value No discount(GA) 145.3MEUR
Best estimate of Liabilities No discount(GL) 251.3MEUR
Asset Portfolio Value (A) 100.0MEUR
Best estimate of Liabilities (L) 100.0MEUR
Risky Asset duration (uA) 8Years
Risky Asset mean rating (rtg) A
Liabilities duration (uL) 20Year
Solvency Capital Requirement at t0 (SCR) 25.1MEUR
Solvency Ratio (SR) 3.0
Own Funds (OF ) 75.2MEUR

Table 7: Characteristics of the company

We are keep the same management rules as previously and all formula are the same except
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for the V aRr(t) for which we have

V aRr(t) =

[
GA

(1 +R−(t, uA) + srtg)
uA −A(t)

]
−
[

GL

(1 +R−(t, uL) + srtg)
uL − L(t)

]
(42)

R−(t, u) = Max(R(t, u) +Min(Suedown
R(t, u),−100bp), 0) (43)
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Figure 11: Evolution of Solvency ratio for a life company

EIOPA Method Proposed method

Average 267% 292%
Min 6% 14%
Max 415% 397%
Maximum Drawdown 408% 384%
Volatility 80% 69%

Table 8: Statistics about Solvency ratio

The historical simulation is run on the life insurance undertaking (long tail business) as
described above. For long liability business, as a reminder, the crisis period are linked to low
interest rates environment. The results above shows that the solvency ratio computed with
the proposed model is higher than the ratio computed with the EIOPA’s standard formula
in low interest rates period, and lower in high interest rates period. This means that the
proposed framework has the same smoothing effect as the non-life insurance undertaking.
The decrease of the volatility of the solvency ratio is also effective, 80% with the EIOPA
method versus 69% with the proposed framework as well as the decreases of the sensitivity of
the solvency ratio to the yield curve. Notice that the 2009 credit crisis has less impact on the
life insurance undertakings solvency ratio than a non-life undertaking solvency ratio. Indeed
the main risk of life insurance undertaking is the decrease of interest rate rather than credit
spread on the asset side. In a very low level of interest rate environment (like at the end of
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2012), the impact on balance sheet on economic value basis is such that the solvency ratio
goes below 100% (as if 300% in 1999) even with the recommended proposed model that gives
a very low downward stress (-8%). Therefore the dampener effect is quite well obtained with
the use of our SCR model, but doesn’t equilibrate the first order shock on the NAV due to
changes in market condition, in a crisis situation. Our interest rate risk dampener smooth
the SCR shocks, but not the volatility of the Net Asset Value (NAV) itself in crisis situations,
and doesn’t address the issue of economic or fair value accounting assumption in Solvency II
versus local GAAP rules.

Conclusion

Interest rates are an important source of risk exposure for insurance undertakings. The asset
liability duration mismatch is often met in practical life of insurance undertakings. Especially
when the liabilities are very long in Life, Long Term Care, annuities, P&C TPL, investing
in long assets is made complicated by the lack of liquid or even existing markets for long
maturity bonds. It appears that the standard risk approach is biased and results in an increase
of the SCR requirement in a wrong timing. This inaccuracy in timing implies dangerous
pro-cyclical effects and misleads the meaning of a management driven by the standard risk
formula (especially investment management). This is a strong incentive to costly internal
models development to the insurance industry in order to ensure meaningful decisions. This
doesn’t match with the initial purpose of the standard formula concept, and of Solvency II
framework that should protect the market against competition distortion between small and
big players. Our proposal, which is in line with the spirit of the standard approach, introduces
simply but approved stochastic modifications, and through a modelization of the reverse to
the mean effect, corrects the bias of the standard formula. This correction is effective for
non-life and life insurance undertakings. The proposed framework can also be improved. The
dampener mechanism can be apply to other risk factors and the modelization could integrate
the state of the art of stochastic processes theory (heteroscedastic, jump, regime switching).
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Figure 12: Historic of risk factors
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Figure 13: Yield Curve in the stationary state

T EIOPA down EIOPA up Model Down Model up

1 -75% 70% 92% -92%
2 -65% 70% 78% -78%
3 -56% 64% 69% -69%
4 -50% 59% 63% -63%
5 -46% 55% 58% -58%
6 -42% 52% 54% -54%
7 -39% 49% 51% -51%
8 -36% 47% 49% -49%
9 -33% 44% 47% -47%
10 -31% 42% 45% -45%
15 -27% 33% 40% -40%
20 -29% 26% 38% -38%
25 -30% 26% 37% -37%
30 -30% 26% 36% -36%

Table 9: Comparison of Model’s VaR and EIOPA’s VaR

T EIOPA down EIOPA up Model Down Model up

1 -75% 70% 78% -78%
2 -65% 70% 66% -66%
3 -56% 64% 58% -58%
4 -50% 59% 52% -52%
5 -46% 55% 47% -47%
6 -42% 52% 43% -43%
7 -39% 49% 41% -41%
8 -36% 47% 38% -38%
9 -33% 44% 36% -36%
10 -31% 42% 35% -35%
15 -27% 33% 30% -30%
20 -29% 26% 27% -27%
25 -30% 26% 37% -37%
30 -30% 26% 25% -25%

Table 10: Comparison of Model’s VaR with EIOPA with level risk factor volatility adjustment
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T 0.004 0.25 1 2 3 4 5 6 7 8 9 10 15 20 30

0.004 100% 15% 6% 4% 2% 2% 1% 1% 1% 1% 1% 1% 0% 0% 0%
0.25 15% 100% 30% 14% 11% 8% 6% 4% 5% 5% 4% 3% 0% -1% -3%

1 6% 30% 100% 82% 76% 72% 70% 68% 65% 63% 60% 60% 54% 50% 46%
2 4% 14% 82% 100% 92% 89% 86% 85% 81% 79% 77% 76% 69% 65% 61%
3 2% 11% 76% 92% 100% 89% 87% 86% 84% 82% 80% 78% 71% 68% 64%
4 2% 8% 72% 89% 89% 100% 96% 96% 94% 92% 91% 89% 82% 79% 75%
5 1% 6% 70% 86% 87% 96% 100% 97% 94% 93% 91% 91% 85% 82% 78%
6 1% 4% 68% 85% 86% 96% 97% 100% 97% 95% 94% 93% 88% 85% 81%
7 1% 5% 65% 81% 84% 94% 94% 97% 100% 98% 98% 96% 91% 88% 85%
8 1% 5% 63% 79% 82% 92% 93% 95% 98% 100% 99% 97% 91% 91% 86%
9 1% 4% 60% 77% 80% 91% 91% 94% 98% 99% 100% 97% 92% 93% 87%
10 1% 3% 60% 76% 78% 89% 91% 93% 96% 97% 97% 100% 95% 94% 90%
15 0% 0% 54% 69% 71% 82% 85% 88% 91% 91% 92% 95% 100% 94% 94%
20 0% -1% 50% 65% 68% 79% 82% 85% 88% 91% 93% 94% 94% 100% 95%
30 0% -3% 46% 61% 64% 75% 78% 81% 85% 86% 87% 90% 94% 95% 100%

Table 11: Interest rates correlation matrix

T 0.004 0.25 1 2 3 4 5 6 7 8 9 10 15 20 30

0.004 -1% 37% 87% 32% 0% 0% 0% -1% -1% 0% 0% 0% 0% 0% 0%
0.25 -2% 65% -1% -73% 19% -7% -4% 1% -1% 0% 0% 1% 0% 0% 0%

1 -21% 42% -24% 15% -72% 39% 9% -15% 4% 2% 1% 2% 0% 0% 1%
2 -26% 25% -20% 27% -3% -38% -11% 77% 1% -6% 5% 3% 1% 2% -1%
3 -26% 19% -18% 25% 14% -60% 35% -53% -9% 1% -3% 3% 2% 0% 0%
4 -29% 8% -8% 15% 24% 14% -34% -10% 12% 28% -32% -65% -22% -5% 6%
5 -29% 4% -6% 10% 20% 14% -47% -21% 5% -53% 32% 4% 40% -4% 11%
6 -29% 0% -3% 7% 21% 16% -26% -7% 5% 17% -18% 72% -42% 2% -8%
7 -29% -4% 2% -1% 18% 21% 16% 6% -12% 40% 12% 0% 46% 48% -42%
8 -29% -6% 4% -5% 15% 19% 35% 12% 7% 7% 6% 1% 13% -81% -18%
9 -29% -9% 7% -8% 13% 18% 39% 13% 14% -2% -9% 5% 6% 23% 77%
10 -29% -11% 9% -11% 2% 9% 22% 3% -17% -31% 47% -23% -60% 18% -20%
15 -28% -18% 13% -18% -21% -7% -14% 3% -79% -8% -35% 0% 9% -8% 8%
20 -27% -21% 17% -23% -22% -16% 5% 0% 49% -37% -46% -3% 7% 14% -32%
30 -26% -24% 19% -25% -35% -34% -28% -9% 21% 45% 41% 1% 2% -9% 18%

Table 12: Interest rates Eigen Vectors

Eigen Values 11.077 1.379 0.966 0.752 0.283 0.159 0.101 0.073 0.058 0.045 0.036 0.027 0.020 0.015 0.011

Cumulated Inertia 74% 83% 89% 94% 96% 97% 98% 99% 99% 99% 100% 100% 100% 100% 100%

Table 13: Interest rates Eigen values and cumulated inertia
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Figure 14: v1,v2,v3 are the first three eigen vectors and v1′,v2′,v3′ are linear combinations of
them to fit (in the least square sense) Nelson-Siegel Functionals

τ Corr(l, s) Corr(l, c) Corr(c, s) Sum of squares

2.0 36.55% -11.12% -19.42% 18.36%
2.1 36.60% -9.82% -16.04% 16.93%
2.2 36.64% -8.51% -12.55% 15.72%
2.3 36.68% -7.20% -8.98% 14.78%
2.4 36.71% -5.91% -5.37% 14.11%
2.5 36.73% -4.64% -1.76% 13.74%
2.6 36.75% -3.40% 1.83% 13.65%
2.7 36.75% -2.19% 5.37% 13.84%
2.8 36.75% -1.03% 8.84% 14.30%
2.9 36.73% 0.07% 12.21% 14.98%
3.0 36.71% 1.12% 15.47% 15.88%

Table 14: Correlation between risk factors in function of τ
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