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1 Introduction

Life and pension insurance companies typically use deterministic mortality intensities when
determining premiums and reserves. These mortality intensities are often assessed via his-
torical data from the portfolios in the company. Given the estimated mortality intensities
the companies have traditionally been explicitly concerned with the unsystematic mor-
tality risk, which is the risk associated with the randomness of deaths in an insurance
portfolio with known mortality. According to the law of large numbers, the unsystematic
mortality risk is diversifiable, which means that it is eliminated if the portfolio is suffi-
ciently large. However, the mortality is not deterministic, so the companies are exposed
to systematic mortality risk as well. The systematic mortality risk, which refers to risk
associated with changes in the underlying mortality intensity (or the mortality table), is
fundamentally different than the unsystematic mortality risk. It is not diversifiable, and
thus it is not eliminated when the size of the portfolio is increased. In practice, the life
and pension insurance companies deal with the systematic mortality risk according to the
so-called prudent man principle, i.e. they set the mortality intensities to the safe side.
This will, hopefully, create a surplus which is then redistributed to the insured using the
so-called contribution principle.

During the last years, the average lifetime has increased dramatically. This fact has to
some extent been neglected, since focus has been on the financial risk, which is much
easier to observe and handle. It is now clear that the mortality tables used 20 years
ago for the pricing of life annuities were in some cases not sufficiently conservative, since
whole life annuities are being paid out for several years longer than expected. The current
challenge for the life insurance companies is therefore to control the combined financial
and insurance risk inherent in life insurance contracts.

There are essentially two ways of addressing mortality risk: One can link or adapt benefits
to the current mortality, or one can invest in financial assets, which are correlated with
the mortality or number of survivors. Linking benefits to the mortality has been called
mortality-linked contracts, see e.g. Dahl (2004). In the present paper, we focus on the
possibility of hedging mortality risk by investing in mortality-linked derivatives. The key
difference between financial risk and mortality risk, is that the financial market provides
a vast number of financial assets which the companies can use to hedge the financial
risk, whereas this is not the case with mortality risk. There is, however, much focus on
the subject, and some financial assets linked to the mortality have been issued. In this
paper, we consider the so-called survivor swap, see e.g. Dowd, Blake, Cairns and Dawson
(2006). With this contract, we swap (exchange) a fixed rate of survivors for the actual
number of survivors. Hedging with survivor swaps has also been considered by Lin and
Cox (2005). Other types of mortality-linked derivatives, such as longevity bonds, mortality
swaps and mortality swaptions, have been studied by Blake, Cairns and Dowd (2006). For
a discussion on securitisation of life insurance risk in genereal, see Cowley and Cummins
(2005).

In the literature, various models for the stochastic mortality have been proposed, see
e.g. Marocco and Pitacco (1998), Milevsky and Promislow (2001), Dahl (2004), Biffis
(2005), Cairns, Blake and Dowd (2006), Biffis and Millossovich (2006), Schrager (2006),
Miltersen and Persson (2006) and references therein. In this paper, we consider a model
with stochastic interest rates and stochastic mortality intensities. The model is inspired by
the one proposed in Dahl (2004) and Dahl and Møller (2006) and uses the so-called CIR-
processes known from the financial literature for the modeling of mortality intensities. We
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study a model with two mortality intensities and two underlying Brownian motions. Both
mortality intensities may be driven by both underlying processes. The first mortality
intensity represents the mortality of the insurance portfolio, and the second intensity
represents the mortality of a population.

We consider different financial markets, which contain a zero coupon bond and possibly
one or more survivor swaps, and study the possibilities of hedging in these markets. In all
the markets we have more sources of risk (financial risk and mortality risks) than financial
assets, so we apply theory from incomplete markets. More precisely, we use the criterion of
risk-minimization introduced by Föllmer and Sondermann (1986) for contingent claims and
extended to payment processes by Møller (2001) to determine risk-minimizing strategies.
The strategies illustrate how the combined insurance and financial risk can be hedged
partly with bonds and survivor swaps. This extends the work of Dahl and Møller (2006).

The paper is organized as follows: Section 2.1 introduces the basic financial market, and
Sections 2.2 and 2.3 review the mortality theory of Dahl and Møller (2006) within a two-
dimensional model with two portfolios, where the underlying mortalities are correlated.
Section 2.4 considers the combined model. In Section 3, we introduce survivor swaps in
the financial market and define their price processes. Section 4 introduces a portfolio of
general life insurance contracts and the market value. In Section 5, we give a brief review
of the theory of risk-minimization and apply these results for determining risk-minimizing
strategies in the various financial markets. Finally, the strategies are compared numerically
in Section 6. Proofs of some technical results are presented in the Appendix.

2 The model

In this section we introduce the combined model for the financial risk and the insurance
risk. The model is inspired by the one of Dahl and Møller (2006). Let T be a fixed finite
time horizon and (Ω,F , P ) a probability space equipped with a filtration IF = (F(t))0≤t≤T ,
which contains all available information. We define IF as the natural filtration generated
by three independent standard Brownian motions Wµ = (Wµ

1 ,Wµ
2 ) and W r and a 2-

dimensional counting process N(x) = (N1(x), N2(x)). The process N(x) is used to keep
track of the number of deaths in two portfolios, whereas Wµ drives the mortality intensities
and W r determines the interest rate. In addition we consider sub-filtrations IG, II and IH
generated by W r, Wµ and N(x), respectively. We assume that W r and (Wµ, N(x))
are stochastically independent. For an extension with dependence between the financial
market and the mortality intensities, see Miltersen and Persson (2006).

2.1 The financial market

In this section, we introduce the financial market, which exists of two traded assets: A
savings account and a zero coupon bond with maturity T with price processes B and
P (·, T ), respectively. The short rate is determined by a so-called Vasiček model, i.e. the
short rate dynamics under P are

dr(t) = (γr − δrr(t))dt + σrdW r(t),

with r(0) = r0. Here, γr, δr and σr are constants, and W r is a standard Brownian motion.
As in Dahl and Møller (2006), we assume that

P (t, T ) = EQr
[
e−

∫ T
t r(u)du

∣∣∣F(t)
]
,
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where the measure Qr is defined via dQr

dP = Λ̂(T ), with dΛ̂(t) = Λ̂(t)hr(t)dW r(t), Λ̂(0) = 1,
and where

hr(t) = −
(

c̃

σr
+

cr(t)
σr

)
. (2.1)

Here, c and c̃ are constants. It follows by Girsanov’s theorem that the dynamics of r under
Qr are given by

dr(t) =
(
γr,Q − δr,Qr(t)

)
dt + σrdW r,Q(t), (2.2)

with r(0) = r0, where W r,Q is a standard Brownian motion under Qr, and where

γr,Q = γr − c̃,

δr,Q = δr + c.

The model is affine under Qr, and it is well-known that

P (t, T ) = eAr(t,T )−Br(t,T )r(t),

where Ar(t, T ) and Br(t, T ) are given by

Br(t, T ) =
1

δr,Q

(
1− e−δr,Q(T−t)

)
,

Ar(t, T ) =
(Br(t, T )− T + t)(γr,Qδr,Q − 1

2(σr)2)
(δr,Q)2

− (σr)2(Br(t, T ))2

4δr,Q
.

The dynamics under P of the zero coupon bond price process are

dP (t, T ) = (r(t)− hr(t, r(t))σp(t, r(t)))P (t, T )dt + σp(t, r(t))P (t, T )dW r(t),

where

σp(t, r(t)) = −σrBr(t, T ).

The dynamics under Qr of the price processes are

dB(t) = r(t)B(t)dt, B(0) = 1,

dP (t, T ) = r(t)P (t, T )dt + σp(t, r(t))P (t, T )dW r,Q(t). (2.3)

We note that Qr is the unique equivalent martingale measure for the financial model.

2.2 The mortality intensities

We consider two portfolios and introduce two different mortalities, which may be corre-
lated. Inspired by the model of Dahl and Møller (2006), we define for each portfolio the
processes

dζj(x, t) = (γj(x, t)− δj(x, t)ζj(x, t))dt +
√

ζj(x, t)σj(x, t)dWµ(t), (2.4)

ζj(x, 0) = 1, j = 1, 2. The process ζ1 is related to an insurance portfolio, whereas ζ2 is
related to a larger population. Each of the two groups are assumed to exist of individuals
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of equal age x. Here, σj is a two-dimensional row vector and Wµ is a two-dimensional
standard Brownian motion.

The mortality intensity processes are given by µj(x, t) = µ◦j (x + t)ζj(x, t), where µ◦j are
the initial mortality intensities at time 0, and the survival probabilities are defined by

Sj(x, t, T ) = EP
[
e−

∫ T
t µj(x,τ)dτ

∣∣∣F(t)
]

= EP
[
e−

∫ T
t µ◦j (x+τ) ζj(x,τ)dτ

∣∣∣F(t)
]
. (2.5)

For more details, see Dahl (2004) and Dahl and Møller (2006). In the case where σµ
1 (x, t) =(

σ1,1, 0
)

and σµ
2 (x, t) =

(
0, σ2,2

)
, the two mortality intensities are independent. If instead

we take σµ
1 (x, t) =

(
σ1,1, σ1,2

)
, the two mortalities are no longer independent.

It follows by Itô’s formula that, for j = 1, 2, the dynamics of the mortality intensities are

dµj(x, t) = (γµ
j (x, t)− δµ

j (x, t)µj(x, t))dt +
√

µj(x, t)σµ
j (x, t)dWµ(t), (2.6)

where

γµ
j (x, t) = µ◦j (x + t)γj(x, t), (2.7)

δµ
j (x, t) = δj(x, t)−

d
dtµ

◦
j (x + t)

µ◦j (x + t)
, (2.8)

σµ
j (x, t) =

√
µ◦j (x + t)σj(x, t). (2.9)

In order to ensure that the mortality intensities are strictly positive, we assume that

2γµ
j (x, t) ≥ (

σj(x, t)
)(

σj(x, t)
)tr

,

where atr denotes the vector a transposed.

2.3 The lifetimes in the portfolios

This section describes the lifetimes in each of the two portfolios. For simplicity, we assume
that the portfolios consist of nj , j = 1, 2, lives, all aged x years at time 0. Furthermore, we
assume, that the lives in portfolio 1 are different from the lives in portfolio 2, i.e. the two
portfolios consist of disjoint lives. We adopt the natural assumption that the lifetimes in a
portfolio are mutually independent and identically distributed conditional on the mortality
intensities. The remaining lifetimes at time 0 are described by a sequence of non-negative
random variables Tj,1, . . . , Tj,nj , j = 1, 2. The probability of a single individual surviving
to time t, given the information on the mortality intensity until time t, is given by

P (Tj,1 > t|I(t)) = e−
∫ t
0 µj(x,s)ds, j = 1, 2.

All considered insurance contracts have expiration time T , so the mortality processes are
only modeled on the interval [0, T ]. We therefore introduce censored lifetimes given by
T ∗j,i = Tj,i ∧ T , j = 1, 2, i = 1, . . . , nj . In each portfolio the censored lifetimes are now
i.i.d. given I(T ). We emphasize, that even though the mortality intensities for the two
portfolios may be correlated we have conditional independence between the lives in the
two portfolios.

The number of deaths at time t ∈ [0, T ] in portfolio j is described by the counting process
Nj(x) = (Nj(x, t))t∈[0,T ], where

Nj(x, t) =
nj∑

i=1

1{Tj,i≤t}, (2.10)
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for j = 1, 2. The stochastic intensity process λj(x) = (λj(x, t))t∈[0,T ] related to Nj(x) is
given informally by

λj(x, t)dt = EP [dNj(x, t)|H(t−) ∨ I(t)] = (nj −Nj(x, t−))µj(x, t)dt, (2.11)

j = 1, 2. Hence the transition rates are simply the mortality intensity multiplied by the
number of survivors just before time t.

2.4 Change of measure

Inspired by Dahl and Møller (2006), we consider martingale measures, with a likelihood
process Λ on the form

dΛ(t) = Λ(t−)
(
hr(t)dW r(t) + hµ(t)dWµ(t) + g(t)dM(x, t)

)
, (2.12)

with Λ(0) = 1. We assume that EP [Λ(T )] = 1 and define an equivalent martingale
measure Q by dQ

dP = Λ(T ). Here, hµ and g are two-dimensional processes. For simplicity,
we require that g is deterministic, continuously differentiable and gj > −1, j = 1, 2. The
process hr is defined in (2.1). The other terms in (2.12) are related to the mortality. We
take the Girsanov kernels on the special form

hµ
1 (t, µ1, µ2) = σµ

1,2(x, t)
(

βµ
2 (x, t)

√
µ2(x, t)

σ̄µ(x, t)
− β̃µ

2 (x, t)
σ̄µ(x, t)

√
µ2(x, t)

)

− σµ
2,2(x, t)

(
βµ

1 (x, t)
√

µ1(x, t)
σ̄µ(x, t)

− β̃µ
1 (x, t)

σ̄µ(x, t)
√

µ1(x, t)

)
, (2.13)

hµ
2 (t, µ1, µ2) = σµ

2,1(x, t)
(

βµ
1 (x, t)

√
µ1(x, t)

σ̄µ(x, t)
− β̃µ

1 (x, t)
σ̄µ(x, t)

√
µ1(x, t)

)

− σµ
1,1(x, t)

(
βµ

2 (x, t)
√

µ2(x, t)
σ̄µ(x, t)

− β̃µ
2 (x, t)

σ̄µ(x, t)
√

µ2(x, t)

)
, (2.14)

where σ̄µ(x, t) = σµ
1,2(x, t)σµ

2,1(x, t)−σµ
1,1(x, t)σµ

2,2(x, t) and βµ
j and β̃µ

j are continuous func-
tions. This ensures that the mortality intensities follow CIR models under Q. Moreover,
the restrictions on g and hµ ensure that the stochastic independence between the finan-
cial market and the insurance elements is preserved under Q. Indeed, straight-forward
calculations show that

dµj(x, t) =
(
γµ,Q

j (x, t)− δµ,Q
j (x, t)µj(x, t)

)
dt +

√
µj(x, t)σµ

j (x, t)dWµ,Q(t),

where Wµ,Q is a 2-dimensional standard Brownian motion under Q, and where

γµ,Q
j (x, t) = γµ

j (x, t)− β̃µ
j (x, t),

δµ,Q
j (x, t) = δµ

j (x, t)− βµ
j (x, t).

As noted in Dahl and Møller (2006), β̃µ
j must fulfill the condition

2(γµ
j (x, t)− β̃µ

j (x, t)) ≥ (
σj(x, t)

)(
σj(x, t)

)tr
,

j = 1, 2, in order to prevent zero-valued mortality intensities.

Finally, we define the Q-martingales MQ
j by dMQ

j (x, t) = dNj(x, t) − λQ
j (x, t)dt, where

λQ
j (x, t) = (nj − Nj(x, t−))(1 + gj(t))µj(x, t), j = 1, 2. We can interpret the quantities

µQ
j (x, t) = (1 + gj(t))µj(x, t) as the mortality intensities under Q.
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2.4.1 Survival probabilities under Q

We define the survival probabilities under Q by

SQ
j (x, t, T ) = EQ

[
e−

∫ T
t µQ

j (x,τ)dτ
∣∣∣F(t)

]
,

and the associated Q-martingales by

SQ,M
j (x, t, T ) = EQ

[
e−

∫ T
0 µQ

j (x,τ)dτ
∣∣∣F(t)

]
= e−

∫ t
0 µQ

j (x,τ)dτSQ
j (x, t, T ).

A closer inspection of the Q-mortality intensities µQ
j reveals that the dynamics are on the

form

dµQ
j (x, t) =

(
γµ,Q,g

j (x, t)− δµ,Q,g
j (x, t)µQ

j (x, t)
)

dt +
√

µQ
j (x, t)σµ,Q,g

j (x, t)dWµ,Q(t),

where

γµ,Q,g
j (x, t) = (1 + gj(t))γ

µ,Q
j (x, t),

δµ,Q,g
j (x, t) = δµ,Q

j (x, t)−
d
dtgj(t)

1 + gj(t)
,

σµ,Q,g
j (x, t) =

√
1 + gj(t)σ

µ
j (x, t).

In this case, the diffusion term is two-dimensional, so in order to use the affine theory
from Section 2.1, we first rewrite µQ

j (x, t). It is well-known that

σµ,Q,g
j,1 (x, t)dWµ,Q

1 (t) + σµ,Q,g
j,2 (x, t)dWµ,Q

2 (t) = σ̃µ,Q,g
j (x, t)dW̃µ,Q

j (t),

where W̃µ,Q
j are standard Brownian motions, and

σ̃µ,Q,g
j (x, t) =

√
(σµ,Q,g

j,1 (x, t))2 + (σµ,Q,g
j,2 (x, t))2.

The mortality intensities can now be written on a form, where the diffusion term is one-
dimensional, i.e.

dµQ
j (x, t) =

(
γµ,Q,g

j (x, t)− δµ,Q,g
j (x, t)µQ

j (x, t)
)

dt +
√

µQ
j (x, t)σ̃µ,Q,g

j (x, t)dW̃µ,Q
j (t),

such that the drift and squared diffusion terms for µQ
j (x, t) are affine in µQ

j (x, t). This
is similar to the situation in Dahl and Møller (2006), and the results obtained there now
show that the Q-survival probabilities SQ

j (x, t, T ), j = 1, 2, are given by

SQ
j (x, t, T ) = eAµ,Q

j (x,t,T )−Bµ,Q
j (x,t,T )µQ

j (x,t),

where Aµ,Q
j and Bµ,Q

j are determined from

∂

∂t
Bµ,Q

j (x, t, T ) = δµ,Q,g
j (x, t)Bµ,Q

j (x, t, T ) +
1
2
(σ̃µ,Q,g

j (x, t))2(Bµ,Q
j (x, t, T ))2 − 1,

Bµ,Q
j (x, T, T ) = 0,

∂

∂t
Aµ,Q

j (x, t, T ) = γµ,Q,g
j (x, t)Bµ,Q

j (x, t, T ),

Aµ,Q
j (x, T, T ) = 0.

The forward mortality intensities under Q is for j = 1, 2 given by

fµj ,Q(x, t, T ) = − ∂

∂T
logSQ

j (x, t, T ) = µQ
j (x, t)

∂

∂T
Bµ,Q

j (x, t, T )− ∂

∂T
Aµ,Q

j (x, t, T ),

see Dahl and Møller (2006).
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3 Survivor swaps

Inspired by interest rate swaps, so-called survivor swaps have been introduced, where
one can exchange a fixed number of survivors with the actual number of survivors in a
portfolio. The portfolio could for example be the insured lives in an insurance portfolio or
the lives of a certain age in some population.

3.1 The payment process associated with a survivor swap

When a buyer and a seller agree to enter a survivor swap, they essentially agree on some
fixed survival probability, which is here determined at time 0 and given by

tp̃x = e−
∫ t
0 µ̃0(x,τ)dτ .

The intensity µ̃0 determines the fixed payments during the period of the contract.

A survivor swap on each of the two portfolios can now be described by payment processes
Aswap

j , j = 1, 2, with dynamics

dAswap
j (x, t) = (nj −Nj(x, t))dt− nj tp̃x dt, (3.1)

and Aswap
j (x, 0) = 0. The payment rate in (3.1) is the difference between the actual number

(nj −Nj(x, t)) of survivors in portfolio j at time t and the expected number nj tp̃x, which
is calculated at time 0 by using the survival probability tp̃x. Thus, the swap leads to a
continuous payment if the actual number of survivors exceeds the predetermined level of
survivors. If on the other hand the predetermined level of survivors exceeds the actual
number of survivors, the payment rate (3.1) is negative, and the buyer has to pay the
difference to the seller of the contract.

3.2 Market values

In the remaining of the paper we consider a fixed but arbitrary measure Q from the class
of equivalent martingale measures introduced in section 2.4.

Let the discounted payments A∗, swap from the survivor swap be defined by

dA∗, swap
j (x, t) = e−

∫ t
0 r(u)dudAswap

j (x, t),

and A∗, swap(x, 0) = 0. For j = 1, 2 we now introduce the process Z∗,Qj given by

Z∗,Qj (x, t) = EQ

[∫ T

0
e−

∫ τ
0 r(u)dudAswap

j (x, τ)
∣∣∣∣F(t)

]
. (3.2)

Hence Z∗,Qj (x, t) is the conditional expected value at time t of discounted payments from
the survivor swap on portfolio j. In this paper we adopt the terminology of Föllmer
and Sondermann (1986) and refer to a process on a form similar to (3.2) as an intrinsic
value process. The asterisk * in Z∗,Qj (x, t) and A∗, swap indicates that we are working with
discounted values. We will use this notation in the rest of the paper. It follows that

Z∗,Qj (x, t) = A∗, swap
j (x, t) + e−

∫ t
0 r(u)duEQ

[∫ T

t
e−

∫ τ
t r(u)dudAswap

j (x, τ)
∣∣∣∣F(t)

]

= A∗, swap
j (x, t) + Z̃∗,Qj (x, t), (3.3)
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where we have introduced the notation

Z̃∗,Qj (x, t) = e−
∫ t
0 r(u)duEQ

[∫ T

t
e−

∫ τ
t r(u)dudAswap

j (x, τ)
∣∣∣∣F(t)

]
.

Here, Z̃∗,Qj (t) is the discounted market value of the future payments and represents the
discounted expected value of future payments given the current information. Using (3.1)
and the independence between the financial market and the insured lives, we get that

Z̃∗,Qj (x, t) = (nj −Nj(x, t))
∫ T

t
P ∗(t, τ)SQ(x, t, τ)dτ − nj tp̃x

∫ T

t
P ∗(t, τ)τ−tp̃x+tdτ,

where P ∗(t, τ) is the discounted price of a zero coupon bond. The first term is the dis-
counted market value of the variable payments, and the second term is the discounted
market value of the fixed payments.

We assume below that assets with discounted price processes (3.2) can be traded dynam-
ically in the financial market. These assets may now be used for hedging the combined
insurance and financial risk inherent in the insurance portfolio. We note that the dis-
counted price processes are martingales under the chosen measure Q, such that Q is also
a martingale measure in the extended markets, where the survivor swaps can be traded
dynamically.

3.3 A stochastic representation of survivor swaps

In this section, we derive a stochastic representation of (3.3), which provides insight re-
garding the different types of risks associated with a survivor swap. Furthermore, it is
useful for determining risk-minimizing strategies in the situation where the survivor swaps
can be traded dynamically.

In the remaining of the paper we work under the following assumption.

Assumption 3.1 Z̃∗,Qj ∈ C1,2,2, i.e. Z̃∗,Qj is continuously differentiable with respect to t
and twice continuously differentiable with respect to r and µ.

Lemma 3.2 A survivor swap on portfolio j with fixed survival probability tp̃x admits the
representation

Z∗,Qj (x, t) = Z∗,Qj (x, 0) +
∫ t

0
νZ,Q

j (τ)dMQ
j (x, τ) +

∫ t

0
ηZ,Q

j (τ)dW r,Q(τ) +
∫ t

0
ρZ,Q

j (τ)dWµ,Q(τ),

where ρZ,Q
j = (ρZ,Q

j,1 , ρZ,Q
j,2 ), and

νZ,Q
j (t) = −

∫ T

t
P ∗(t, τ)SQ

j (x, t, τ)dτ, (3.4)

ηZ,Q
j (t) = −(nj −Nj(x, t−))σr

∫ T

t
Br(t, τ)P ∗(t, τ)SQ

j (x, t, τ)dτ

+ nj tp̃x σr

∫ T

t
Br(t, τ)P ∗(t, τ)τ−tp̃x+tdτ, (3.5)

ρZ,Q
j,i (t) = −σµ

j,i(x, t)
√

µj(x, t)(nj −Nj(x, t−))(1 + gj(t))

×
∫ T

t
Bµ,Q

j (t, τ)P ∗(t, τ)SQ
j (x, t, τ)dτ, i = 1, 2. (3.6)
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Before proving the lemma, we comment briefly on the result above. There are essentially
three types of risk associated with the value of the survivor swap. First we have the
unsystematic mortality risk driven by the martingale MQ

j , which is the risk associated
with a death in the portfolio underlying the swap. Second, we have the interest rate
risk related to changes in the underlying process W r,Q driving the interest rate. Finally
we have the systematic mortality risk driven by the underlying processes Wµ,Q. Since
Wµ,Q is two-dimensional, we have both systematic mortality risk generated by Wµ,Q

1 and
systematic mortality risk generated by Wµ,Q

2 .

Proof of Lemma 3.2: Using Itô’s formula on the martingale Z∗,Qj defined in (3.3) and the
dynamics for Aswap

j (x, t) from (3.1), we get that

dZ∗,Qj (x, t) = dA∗, swap
j (x, t) + dZ̃∗,Qj (x, t)

= ψ(t)dt + dZ̃∗,Qj (x, t). (3.7)

Here, ψ is some process, whose exact form we do not need to know, since the drift of a
martingale is zero. We use the processes ψ and ψ1 as some buffers for all quantities that
concerns the drift. Using (3.7) and Itô’s formula on Z̃∗,Qj , we get that

dZ∗,Qj (x, t) = ψ1(t)dt + σr ∂

∂r
Z̃∗,Qj (x, t−)dW r,Q(t)

+
√

µj(x, t)
∂

∂µj
Z̃∗,Qj (x, t−)σµ

j (x, t)dWµ,Q(t)

− dNj(x, t)
∫ T

t
P ∗(t, τ)SQ

j (x, t, τ)dτ

= σr ∂

∂r
Z̃∗,Qj (x, t−)dW r,Q(t) +

√
µj(x, t)

∂

∂µj
Z̃∗,Qj (x, t−)σµ

j (x, t)dWµ,Q(t)

− dMQ
j (x, t)

∫ T

t
P ∗(t, τ)SQ

j (x, t, τ)dτ.

In the second equality, we have rewritten dZ∗,Qj such that we get a term with respect to
the dynamics of the martingale MQ

j . We notice, that the drift term disappears in the last
equation since Z∗,Qj is a martingale. Now, recalling that

P (t, T ) = eAr(t,T )−Br(t,T )r(t),

we see that

∂

∂r
Z̃∗,Qj (x, t−) = −(nj −Nj(x, t−))

∫ T

t
Br(t, τ)P ∗(t, τ)SQ

j (x, t, τ)dτ

+ nj tp̃x

∫ T

t
Br(t, τ)P ∗(t, τ)τ−tp̃x+tdτ. (3.8)

Furthermore, we recall that

SQ
j (x, t, T ) = eAµ,Q

j (t,T )−Bµ,Q
j (x,t,T )µQ

j (x,t) = eAµ,Q
j (t,T )−Bµ,Q

j (x,t,T )µj(x,t)(1+gj(t)),

and that τ p̃x is deterministic at time t. Hence, we get

∂

∂µj
Z̃∗,Qj (x, t−) = −(nj −Nj(x, t−))(1 + gj(t))

∫ T

t
Bµ,Q

j (t, τ)P ∗(t, τ)SQ
j (x, t, τ)dτ. (3.9)
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Collecting (3.7)-(3.9) and remembering that Z∗,Qj is a martingale, we get

dZ∗,Qj (x, t) = νZ,Q
j (t)dMQ

j (x, t) + ηZ,Q
j (t)dW r,Q(t) + ρZ,Q

j (t)dWµ,Q(t),

where νZ,Q
j , ηZ,Q

j and ρZ,Q
j are given in (3.4), (3.5) and (3.6), respectively. This proves the

lemma.
¤

4 Insurance contracts

An insurance contract specifies a payment process with premiums paid by the policy-
holders and benefits paid by the insurance company. We consider a portfolio of fairly
general life insurance contracts. Each contract allows for a single premium paid at time 0,
continuous premiums, a lump sum payment upon retirement, a single payment upon death
and life annuity payments. The payment process generated by the portfolio of insurance
contracts is formally the net payments to the policy-holders, which means that premiums
are negative and benefits are positive.

4.1 The payment process

The payment process is described by

dA(t) = −n1π
s(0)d1{t≥0} − πc(t)(n1 −N1(x, t))1{0≤t<T}dt + ad(t)dN1(x, t)

+ (n1 −N1(x, T ))ar(T )d1{t≥T} + ap(t)(n1 −N1(x, t))1{T≤t≤T}dt. (4.1)

Here, n1 is the number of people in the insurance portfolio, and N1(x, t) is the number of
deaths in the insurance portfolio during (0, t]. The term of the contract is T and the time
of retirement is T ≤ T . The first term in (4.1) is the single premium πs paid by all n1

policy-holders upon signing the contracts, and the second term is continuous premiums πc

paid by the current (n1−N1(x, t)) survivors until retirement. The third term is payments
ad in case of death, and the fourth term is the lump sum payment ar paid to the remaining
policy-holders alive at time T . The last term is life annuity payments ap to the remaining
policy-holders alive in the period from retirement until the end of the insurance period.
We assume that πc, ad and ap are piecewise continuous functions.

4.2 Market reserves

The intrinsic value process associated with payment process A is defined by

V ∗,Q(t) = EQ

[∫ T

0−
dA∗(τ)

∣∣∣∣F(t)
]

= EQ

[∫ T

0−
e−

∫ τ
0 r(u)dudA(τ)

∣∣∣∣F(t)
]

, (4.2)

for 0 ≤ t ≤ T . Using that A and r are adapted processes, we see that

V ∗,Q(t) =
∫ t

0−
e−

∫ τ
0 r(u)dudA(τ) + EQ

[∫ T

t
e−

∫ τ
0 r(u)dudA(τ)

∣∣∣∣F(t)
]

= A∗(t) + Ṽ ∗,Q(t). (4.3)

The process Ṽ ∗,Q(t) is referred to as the discounted market reserve. It represents the
discounted conditional expected value of future payments calculated at time t. As in Dahl
and Møller (2006), we formulate the following proposition.
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Proposition 4.1 The discounted market reserve Ṽ ∗,Q(t) is given by

Ṽ ∗,Q(t) = (n1 −N1(x, t))Ṽ ∗,Q
p (t),

where Ṽ ∗,Q
p is the discounted market reserve for one policy-holder and is determined by

Ṽ ∗,Q
p (t) =

∫ T

t
P ∗(t, τ)SQ

1 (x, t, τ)
(

ad(τ)fµ1,Q(x, t, τ)− πc(τ)1{0≤τ<T}+ ap(τ)1{T≤τ≤T}

)
dτ

+ P ∗(t, T )SQ
1 (x, t, T )ar(T )1{t<T}.

As in Dahl and Møller (2006), we give a short comment on the result above: The market
reserve (for one policy-holder alive at time t) is a function of the current level for the short
rate r(t) and the insurance portfolio’s mortality intensity µ1(x, t). The market reserve is
on the same form as usual reserves, but it now involves the price P (t, τ) of a zero coupon
bond instead of the usual discount factor and the stochastic survival probability SQ

1 (x, t, τ)
for the portfolio instead of the usual deterministic mortality intensity. Furthermore we
note that the deterministic mortality intensity is replaced by the Q-forward mortality
intensity fµ1,Q(x, t, τ) in the term involving the payment ad upon a death. Finally, we
emphasize that the market reserve depends on the choice of measure Q. For a proof of
Proposition 4.1, we refer to Dahl and Møller (2006).

In addition to Assumption 3.1 we assume the following holds for the remaining of the
paper.

Assumption 4.2 Ṽ ∗,Q
p ∈ C1,2,2, i.e. Ṽ ∗,Q

p is continuously differentiable with respect to t
and twice continuously differentiable with respect to r and µ.

4.3 A stochastic representation of the insurance contract

Similarly to Lemma 3.2 we have the following stochastic representation for the intrinsic
value process of the insurance payment process.

Lemma 4.3 The intrinsic value process (4.2) associated with the payment process (4.1)
admits the representation

V ∗,Q(t) = V ∗,Q(0) +
∫ t

0
νV,Q(τ)dMQ

1 (x, τ) +
∫ t

0
ηV,Q(τ)dW r,Q(τ) +

∫ t

0
ρV,Q(τ)dWµ,Q(τ),

(4.4)

where

νV,Q(t) = B(t)−1ad(t)− Ṽ ∗,Q
p (t), (4.5)

ηV,Q(t) = −σr(n1 −N1(x, t−))

(∫ T

t
Br(t, τ)P ∗(t, τ)SQ

1 (x, t, τ)

×
(

ad(τ)fµ1,Q(x, t, τ)− πc(τ)1{0≤τ≤T} + ap(τ)1{T≤τ≤T}

)
dτ

+ Br(t, T )P ∗(t, T )SQ
1 (x, t, T )ar(T )1{t<T}

)
, (4.6)
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and where

ρV,Q
j (t) = −σµ

1,j(x, t)
√

µ1(x, t)(n1 −N1(x, t−))(1 + g1(t))

(∫ T

t
P ∗(t, τ)Bµ,Q

1 (x, t, τ)SQ
1 (x, t, τ)

×
(

ad(τ)
(

fµ1,Q(x, t, τ)−
∂
∂τ Bµ,Q

1 (x, t, τ)

Bµ,Q
1 (x, t, τ)

)
− πc(τ)1{0≤τ≤T} + ap(τ)1{T≤τ≤T}

)
dτ

+ P ∗(t, T )Bµ,Q
1 (x, t, T )SQ

1 (x, t, T )ar(T )1{t<T}

)
, j = 1, 2. (4.7)

Before proving the lemma, we briefly explain the result. We note that the representation
of the intrinsic value process for the insurance payment process has the same form as the
representation of the intrinsic value process for a survivor swap in Lemma 3.2. Thus,
the value process for the insurance payment process A consists of three terms relating to
the unsystematic mortality risk, the interest rate risk and the systematic mortality risk,
respectively.

Proof of Lemma 4.3: The proof is similar to the one for Lemma 3.2. Recall from (4.3)
that the Q-martingale V ∗,Q can be written as

V ∗,Q(t) = A∗(t) + Ṽ ∗,Q(t),

where Ṽ ∗,Q is the discounted market value of the payment process given by

Ṽ ∗,Q(t) = (n1 −N1(x, t))
∫ T

t
P ∗(t, τ)SQ

1 (x, t, τ)

×
(

ad(τ)fµ1,Q(x, t, τ)− πc(τ)1{0≤τ≤T} + ap(τ)1{T≤τ≤T}

)
dτ

+ (n1 −N1(x, t))P ∗(t, T )SQ
1 (x, t, T )ar(T )1{t<T},

see Proposition 4.1. The dynamics of V ∗,Q are given by

dV ∗,Q(t) = dA∗(t) + dṼ ∗,Q(t)

= ψV (t)dt + B(t)−1ad(t)dMQ
1 (x, t) + dṼ ∗,Q(t), (4.8)

where ψV is some process. The exact form of this process is not important since the
value process is a Q-martingale and therefore has no drift. In (4.8), we have added and
subtracted the quantity B(t)−1ad(t)λQ

1 (x, t)dt in order to obtain a term involving dMQ(t).
In order to determine dV ∗,Q, we now need to find the dynamics of the discounted

market value dṼ ∗,Q(t). This is again obtained via Itô’s formula:

dṼ ∗,Q(t) = ψV
1 (t)dt + σr ∂

∂r
Ṽ ∗,Q(t−)dW r,Q(t) +

√
µ1(x, t)

∂

∂µ1
Ṽ ∗,Q(t−)σµ

1 (x, t)dWµ,Q(t)

− Ṽ ∗,Q
p (t)dN1(x, t)

= ψV
2 (t)dt + σr ∂

∂r
Ṽ ∗,Q(t−)dW r,Q(t) +

√
µ1(x, t)

∂

∂µ1
Ṽ ∗,Q(t−)σµ

1 (x, t)dWµ,Q(t)

− Ṽ ∗,Q
p (t)dMQ

1 (x, t). (4.9)

Again ψV
1 and ψV

2 are some processes, whose exact form we do not need to know. In (4.9)
we used the same idea as in (4.8) in order to get an expression that involves MQ

1 . We can
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now use (4.9) in (4.8) to obtain

dV ∗,Q(t) =
(
ψV (t) + ψV

2 (t)
)
dt +

(
B(t)−1ad(t)− Ṽ ∗,Q

p (t)
)
dMQ

1 (x, t)

+ σr ∂

∂r
Ṽ ∗,Q(t−)dW r,Q(t) + (σµ

1 (x, t))tr
√

µ1(x, t)
∂

∂µ1
Ṽ ∗,Q(t−)dWµ,Q(t).

Using the techniques from Dahl and Møller (2006), it now follows that

dV ∗,Q(t) = νV,Q(t)dMQ
1 (x, t) + ηV,Q(t)dW r,Q(t) + ρV,Q(t)dWµ,Q(t), (4.10)

where νV,Q and ηV,Q are given by (4.5) and (4.6) and ρV,Q = (ρV,Q
1 , ρV,Q

2 ) are given in
(4.7). Hence we have proved the lemma.

¤

5 Risk-minimizing strategies

5.1 Motivation

When an insurance company signs a life insurance contract with a policy-holder, the
company is exposed to both financial and mortality risk. Typically this combined risk
cannot be hedged perfectly. A way to handle the risk is to use the criterion of risk-
minimization suggested by Föllmer and Sondermann (1986); see also Schweizer (2001)
for a survey. In the following, we first give a brief introduction to the criterion of risk-
minimization. We then determine risk-minimizing strategies in different financial markets.
The first market is the one studied in Dahl and Møller (2006), which consists of a savings
account and a zero coupon bond. The other markets in addition contain survivor swaps.

5.2 Introduction to risk-minimization

Consider a financial market with a savings account B and a risky asset with discounted
price process X. Here, the Q-martingale X may be a vector process. A strategy is a
process ϕ = (ξ, η) satisfying certain integrability conditions, where ξ is the number of
risky assets held, and η is the discounted deposit in the savings account. The discounted
value at time t associated with the strategy is V ∗(t, ϕ) = ξ(t)X(t) + η(t). An investment
strategy with V ∗(T, ϕ) = 0 is called 0-admissible. The cost process at time t is given by

C(t, ϕ) = V ∗(t, ϕ)−
∫ t

0
ξ(u)dX(u) + A∗(t).

Thus, the accumulated costs until time t are the discounted value of the investment port-
folio, V ∗(t, ϕ), reduced by discounted trading gains and added discounted net payments
to the policy-holders.

If a strategy ϕ minimizes the so-called risk process R(·, ϕ) defined by

R(t, ϕ) = EQ

[(
C(T, ϕ)− C(t, ϕ)

)2
∣∣∣∣F(t)

]
,

it is called risk-minimizing. The strategy can be determined from the Galtchouk-Kunita-
Watanabe decomposition given by

V ∗,Q(t) = EQ [A∗(T )|F(t)] = V ∗,Q(0) +
∫ t

0
ξQ(u)dX(u) + LQ(t),
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where ξQ is a predictable process, and LQ is a zero-mean Q-martingale which is orthogonal
to X. There exists a unique 0-admissible risk-minimizing strategy ϕ∗ = (ξ∗, η∗), given by

ϕ∗(t) = (ξ∗(t), η∗(t)) = (ξQ(t), V ∗,Q(t)− ξQ(t)X(t)−A∗(t)),

see Møller (2001, Theorem 2.1). The intrinsic risk process, which measures the minimum
obtainable risk, is given by

R(t, ϕ∗) = EQ
[
(LQ(T )− LQ(t))2

∣∣F(t)
]
. (5.1)

Typically, this quantity has to be evaluated numerically by simulation.

5.3 Risk-minimization in a bond market

Consider the market introduced in Section 2.1 with a savings account and a zero coupon
bond. This market was also studied in Dahl and Møller (2006). They showed that the
risk-minimizing strategy is given by

ϕ∗B(t) = (ξ∗B(t), η∗B(t)) = (ξQ
B(t), Ṽ ∗,Q(t)− ξQ

B(t)P ∗(t, T )),

where

ξQ
B(t) =

ηV,Q(t)
−σrBr(t, T )P ∗(t, T )

. (5.2)

The unhedgeable risk is determined by the process LQ with

dLQ(t) = νV,Q(τ)dMQ
1 (x, τ) + ρV,Q

1 (τ)dWµ,Q
1 (τ) + ρV,Q

2 (τ)dWµ,Q
2 (τ). (5.3)

By inserting (5.3) in (5.1), we see that the intrinsic risk process is given by

R(t, ϕ∗B) = EQ




∫ T

t


(

νV,Q(τ)
)2

λQ
1 (x, τ) +

2∑

j=1

(
ρV,Q

j (τ)
)2


 dτ

∣∣∣∣∣∣
F(t)


 .

We evaluate the initial intrinsic risk R(0, ϕ∗B) numerically in Section 6.

5.4 Risk-minimization with an insurance portfolio survivor swap

Now consider the market (B, P, Z1), which in addition to the savings account B and the
zero coupon bond P , includes a survivor swap on the insurance portfolio. From Lemma 3.2
we have the following stochastic representation for intrinsic value process of the survivor
swap

dZ∗,Q1 (x, t) = νZ,Q
1 (t)dMQ

1 (x, t) + ηZ,Q
1 (t)dW r,Q(t) + ρZ,Q

1 (t)dWµ,Q(t).

Thus, we assume that we can trade a survivor swap on the insurance portfolio dynamically.
It would indeed be more more realistic to work with less frequent trading of the survivor
swap. However, the current model with continuous time trading of the survivor swap still
gives an idea of how the insurance company could reduce risk in the extended markets.
The case with discrete time trading of the survivor swap is postponed to future research.

In order to determine the risk-minimizing strategy, it is useful to introduce certain pro-
cesses Y ∗,Q

1,1 and Y ∗,Q
1,2 which are orthogonal to the traded assets. These processes will
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help us construct a zero-mean Q-martingale, which is orthogonal with the zero coupon
bond and the survivor swap. To simplify notation, we define χZ,Q

i,j (t) = 1{ρZ,Q
i,j (t)6=0} for

i, j ∈ {1, 2}.
Let the zero-mean martingales Y ∗,Q

1,j , j = 1, 2, be given by

dY ∗,Q
1,j (t) = χZ,Q

1,j (t)
(
dMQ

1 (x, t)− κQ
1,j(t)dWµ,Q

j (t)
)

, (5.4)

with Y ∗,Q
1,j (0) = 0. For ρZ,Q

1,j (t) 6= 0, we furthermore define κQ
1,j(t) by

κQ
1,j(t) =

νZ,Q
1 (t)λQ

1 (x, t)

ρZ,Q
1,j (t)

. (5.5)

This construction ensures that Y ∗,Q
1,1 and Y ∗,Q

1,2 are indeed orthogonal to the discounted
zero coupon price process P ∗(·, T ) and the discounted price process Z∗,Q1 associated with
the survivor swap. In the situation where ρZ,Q

1,j (t) = 0, we see that dY ∗,Q
1,j (t) = 0. In the

special case without systematic mortality risk, we have that ρZ,Q
1,1 (t) = ρZ,Q

1,2 (t) = 0 for all t,
such that Y ∗

1,1 and Y ∗
1,2 are constant and equal to 0. In fact, this implies that the insurance

payment process A is attainable and thus it can be hedged perfectly. The risk-minimizing
strategy in this case was essentially obtained in Møller (1998, Section 5).

Proposition 5.1 The Galtchouk-Kunita-Watanabe decomposition of V ∗,Q in the market
(B,P, Z1) is given by

V ∗,Q(t) = V ∗,Q(0) +
∫ t

0
ξQ
1 (τ)dP ∗(τ, T ) +

∫ t

0
ϑQ

1 (τ)dZ∗,Q1 (x, τ) + LQ
1 (t), (5.6)

where V ∗,Q(0) = −n1π
s(0) + n1Ṽ

Q
p (0) and

LQ
1 (t) =

∫ t

0

(
νV,Q(τ)− ϑQ

1 (τ)νZ,Q
1 (τ)

)
dMQ

1 (x, τ)

+
2∑

j=1

∫ t

0

(
ρV,Q

j (τ)− ϑQ
1 (τ)ρZ,Q

1,j (τ)
)
dWµ,Q

j (τ),

with

ξQ
1 (t) =

ηV,Q(t)− ϑQ
1 (t)ηZ,Q

1 (t)
−σrBr(t, T )P ∗(t, T )

, (5.7)

ϑQ
1 (t) =

νV,Q(t) + ρV,Q
1 (t)(κQ

1,1(t))
−1χZ,Q

1,1 (t) + ρV,Q
2 (t)(κQ

1,2(t))
−1χZ,Q

1,2 (t)

νZ,Q
1 (t) + ρZ,Q

1,1 (t)(κQ
1,1(t))−1χZ,Q

1,1 (t) + ρZ,Q
1,2 (t)(κQ

1,2(t))−1χZ,Q
1,2 (t)

. (5.8)

The proof is postponed to the Appendix. The optimal number of zero-coupon bonds
determined by ξQ

1 is the optimal number ξQ
B from the bond market adjusted by a term

originating from the interest rate risk inherent in the survivor swap. The optimal number
of survivor swaps can be interpreted as a ratio between risk-weighted averages of the
mortality risk associated with the intrinsic value process of the insurance payment process
and the price process of the survivor swap, respectively. The unhedged risk LQ

1 consists
of both unsystematic and systematic mortality risk. The unsystematic mortality risk is
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driven by the compensated counting process MQ
1 , and the systematic mortality risk is

driven by the 2-dimensional Brownian motion Wµ,Q. The unsystematic mortality risk is
the standard discounted sum at risk νV,Q reduced by the discounted sum at risk related
to the investment in survivor swaps. Similarly, the unhedged systematic mortality risk is
the original systematic risk, reduced by the risk from the survivor swaps.

From the general theory of risk-minimization in Section 5.2, we get the unique 0-admissible
risk-minimizing strategy for the payment process (4.1)

ϕ∗1(t) = (ξ∗1(t), ϑ
∗
1(t), η

∗
1(t)) = (ξQ

1 (t), ϑQ
1 (t), Ṽ ∗,Q(t)− ξQ

1 (t)P ∗(t, T )− ϑQ
1 Z∗,Q1 (t)),

where ξQ
1 and ϑQ

1 are given in Proposition 5.1. From (5.1) we get the intrinsic risk process

R(t, ϕ∗1) = EQ

[(∫ T

t

(
νV,Q(τ)− ϑQ

1 (τ)νZ,Q
1 (τ)

)
dMQ

1 (x, τ)

+
2∑

j=1

(
ρV,Q

j (τ)− ϑQ
1 (τ)ρZ,Q

1,j (τ)
)
dWµ,Q

j (τ)

)2∣∣∣∣∣F(t)

]

= EQ

[(∫ T

t

(
νV,Q(τ)− ϑQ

1 (τ)νZ,Q
1 (τ)

)2
λQ

1 (x, τ)

+
2∑

j=1

(
ρV,Q

j (τ)− ϑQ
1 (τ)ρZ,Q

1,j (τ)
)2

)
dτ

∣∣∣∣F(t)
]

.

Here we have used, that MQ
1 , Wµ,Q

1 and Wµ,Q
2 are mutually independent and the fact that

d〈MQ
1 (x, t)〉 = λQ

1 (t)dt and d〈Wµ,Q
j (t)〉 = dt.

5.5 Risk-minimization with a population survivor swap

As an alternative to the market (B, P, Z1) considered in the previous section, we now
study the market (B, P, Z2). Hence, we allow for investments in a survivor swap on the
population instead of the insurance portfolio.

From Lemma 3.2, we have the following representation for the intrinsic value process of
the population survivor swap

dZ∗,Q2 (t) = νZ,Q
2 (t)dMQ

2 (x, t) + ηZ,Q
2 (t)dW r,Q(t) + ρZ,Q

2 (t)dWµ,Q(t).

Here, we note that the unsystematic mortality risk is driven by the random source MQ
2 ,

which means that we introduce a new random source compared to the market (B, P, Z1)
from Section 5.4 above. Consequently, we now need three zero-mean martingales Y ∗,Q

2,j , j =
1, 2, 3, in order to span all risk, since we have five random sources in the market, and only
two risky assets to hedge the risk.

Let the zero-mean martingales Y ∗,Q
2,j , j = 1, 2, 3, be given by

dY ∗,Q
2,j (t) = χZ,Q

2,j (t)
(
dMQ

2 (x, t)− κQ
2,j(t)dWµ,Q

j (t)
)

, j = 1, 2,

dY ∗,Q
2,3 (t) = dMQ

1 (x, t),

where Y ∗,Q
2,j (0) = 0, j = 1, 2, 3, and for ρZ,Q

2,j (t) 6= 0, j = 1, 2, we define κQ
2,j(t) by

κQ
2,j(t) =

νZ,Q
2 (t)λQ

2 (x, t)

ρZ,Q
2,j (t)

.
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Then Y ∗,Q
2,j are orthogonal to P ∗(·, T ) and Z∗,Q2 . We note that even in the case without

systematic mortality risk, the insurance payment process A is not attainable in the market
(B,P, Z2), since the unsystematic mortality risk cannot be eliminated. This is in contrast
to the situation in the previous market (B, P,Z1).

Proposition 5.2 The Galtchouk-Kunita-Watanabe decomposition of V ∗,Q in the market
(B,P, Z2) is given by

V ∗,Q(t) = V ∗,Q(0) +
∫ t

0
ξQ
2 (τ)dP ∗(τ, T ) +

∫ t

0
ϑQ

2 (τ)dZ∗,Q2 (x, τ) + LQ
2 (t),

where

V ∗,Q(0) = −n1π
s(0) + n1Ṽ

∗,Q
p (0),

LQ
2 (t) =

∫ t

0
νV,Q(τ)dMQ

1 (x, τ)−
∫ t

0
ϑQ

2 (τ)νZ,Q
2 (τ)dMQ

2 (x, τ)

+
2∑

j=1

∫ t

0

(
ρV,Q

j (τ)− ϑQ
2 (τ)ρZ,Q

2,j

)
dWµ,Q

j (τ), (5.9)

and

ξQ
2 (t) =

ηV,Q(t)− ϑQ
2 (t)ηZ,Q

2 (t)
−σrBr(t, T )P ∗(t, T )

, (5.10)

ϑQ
2 (t) =

ρV,Q
1 (t)(κQ

2,1(t))
−1χZ,Q

2,1 (t) + ρV,Q
2 (t)(κQ

2,2(t))
−1χZ,Q

2,2 (t)

νZ,Q
2 (t) + ρZ,Q

2,1 (t)(κQ
2,1(t))−1χZ,Q

2,1 (t) + ρZ,Q
2,2 (t)(κQ

2,2(t))−1χZ,Q
2,2 (t)

. (5.11)

The interpretation of the Galtchouk-Kunita-Watanabe decomposition obtained in Propo-
sition 5.2 is essentially identical to that of Proposition 5.1. However in this case the
unhedgeable unsystematic mortality risk consists of two terms. A term which stems from
the insurance portfolio driven by MQ

1 and a term driven by MQ
2 originating from invest-

ments in survivor swaps.

The unique 0-admissible risk-minimizing strategy for the payment process (4.1) is given
by

ϕ∗2(t) = (ξ∗2(t), ϑ
∗
2(t), η

∗
2(t)) = (ξQ

2 (t), ϑQ
2 (t), Ṽ ∗,Q(t)− ξQ

2 (t)P ∗(t, T )− ϑQ
2 Z∗,Q2 (t)),

where ξQ
2 and ϑQ

2 are given in (5.10) and (5.11). The intrinsic risk process R(·, ϕ∗2) can be
determined as in the previous section. This leads to

R(t, ϕ∗2) = EQ

[( ∫ T

t

(
νV,Q(τ)

)2
λQ

1 (x, τ) +
(
ϑQ

2 (τ)νZ,Q
2 (τ)

)2
λQ

2 (x, τ)

+
2∑

j=1

(
ρV,Q

j (τ)− ϑQ
2 (τ)ρZ,Q

2,j (τ)
)2

)
dτ

∣∣∣∣∣F(t)

]
.
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5.6 Risk-minimization with survivor swaps on both portfolios

Now consider the situation where the market includes both survivor swaps. In this case the
considered market (B, P, Z1, Z2) includes three risky assets, whereas we have five random
sources in the market: Two random sources driving the unsystematic mortality risks, two
random sources driving the systematic mortality risks and one random source driving the
interest rate risk. Thus, the market is still incomplete.

Proposition 5.3 The Galtchouk-Kunita-Watanabe decomposition of V ∗,Q in the market
(B,P, Z1, Z2) is given by

V ∗,Q(t) = V ∗,Q(0) +
∫ t

0
ξQ
3 (τ)dP ∗(τ, T ) +

2∑

j=1

∫ t

0
ϑQ

3,j(τ)dZ∗,Qj (x, τ) + LQ
3 (t),

where

ϑQ
3,1(t) =

νV,Q(t) + ρV,Q
1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) + ρV,Q

2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)−

(
ρZ,Q
2,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
2,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)
ϑQ

2 (t)

νZ,Q
1 (t) +

ρZ,Q
1,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
1,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)−

(
ρZ,Q
2,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
2,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)
ϑ̃Q

2 (t)
,

ϑQ
3,2(t) =

ρV,Q
1 (t)

κQ
2,1(t)

χZ,Q
2,1 (t) + ρV,Q

2 (t)

κQ
2,2(t)

χZ,Q
2,2 (t)− ϑQ

3,1(t)
(

ρZ,Q
1,1 (t)

κQ
2,1(t)

χZ,Q
2,1 (t) +

ρZ,Q
1,2 (t)

κQ
2,2(t)

χZ,Q
2,2 (t)

)

νZ,Q
2 (t) +

ρZ,Q
2,1 (t)

κQ
2,1(t)

χZ,Q
2,1 (t) +

ρZ,Q
2,2 (t)

κQ
2,2(t)

χZ,Q
2,2 (t)

,

ξQ
3 (t) =

ηV,Q(t)− ϑQ
3,1(t)η

Z
1 (t)− ϑQ

3,2(t)η
Z
2 (t)

−σrBr(t, T )P ∗(t, T ))
,

and where

ϑQ
2 (t) =

ρV,Q
1 (t)(κQ

2,1(t))
−1χZ,Q

2,1 (t) + ρV,Q
2 (t)(κQ

2,2(t))
−1χZ,Q

2,2 (t)

νZ,Q
2 (t) + ρZ,Q

2,1 (t)(κQ
2,1(t))−1χZ,Q

2,1 (t) + ρZ,Q
2,2 (t)(κQ

2,2(t))−1χZ,Q
2,2 (t)

,

ϑ̃Q
2 (t) =

ρZ,Q
1,1 (t)(κQ

2,1(t))
−1χZ,Q

2,1 (t) + ρZ,Q
1,2 (t)(κQ

2,2(t))
−1χZ,Q

2,2 (t)

νZ,Q
2 (t) + ρZ,Q

2,1 (t)(κQ
2,1(t))−1χZ,Q

2,1 (t) + ρZ,Q
2,2 (t)(κQ

2,2(t))−1χZ,Q
2,2 (t)

.

Furthermore

V ∗,Q(0) = −n1π
s(0) + n1Ṽ

∗,Q
p (0),

L3(t) =
2∑

j=1

∫ t

0

(
ρV,Q

j (τ)− ϑQ
3,1(τ)ρZ,Q

1,j (τ)− ϑQ
3,2(τ)ρZ,Q

2,j (τ)
)
dWµ,Q

j (τ)

+
∫ t

0

(
νV,Q(τ)− ϑQ

3,1(τ)νZ,Q
1 (τ)

)
dMQ

1 (x, τ)−
∫ t

0
ϑQ

3,2(τ)νZ,Q
2 (τ)dMQ

2 (x, τ).

¤

The proof of the proposition, which is postponed to the Appendix, is carried out using
the same techniques as in the proof of Proposition 5.1.

We observe that the Galtchouk-Kunita-Watanabe decomposition essentially is of the same
form as in the cases with only one survivor swap. However the coefficients are far more
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complex here than in the previous markets.

Here the unique 0-admissible risk-minimizing strategy for the payment process (4.1) is
given by

ϕ∗3(t) = (ξ∗3(t), ϑ
∗
3,1(t), ϑ

∗
3,2(t), η

∗
3(t))

= (ξQ
3 (t), ϑQ

3,1(t), ϑQ
3,2(t), Ṽ ∗,Q(t)− ξQ

3 (t)P ∗(t, T )− ϑQ
3,1Z

∗,Q
1 (t)− ϑQ

3,2Z
∗,Q
2 (t)),

where ξQ
3 , ϑQ

3,1 and ϑQ
3,2 are given in the above proposition. From (5.1) we get the intrinsic

risk process

R(t, ϕ∗3) = EQ

[∫ T

t

((
νV,Q(τ)− ϑQ

3,1(τ)νZ,Q
1 (τ)

)2
λQ

1 (x, τ) +
(
ϑQ

3,2(τ)νZ,Q
2 (τ)

)2
λQ

2 (τ)

+
2∑

j=1

(
ρV,Q

j (τ)− ϑQ
3,1(τ)ρZ,Q

1,j (τ)− ϑQ
3,2(τ)ρZ,Q

2,j (τ)
)2

)
dτ

∣∣∣∣∣F(t)

]
.

Remark 5.4 In the literature, it has been proposed to allow for jumps in the underlying
mortality intensities, see Biffis (2005) who works with affine jump-diffusions. These jumps,
which may be interpreted as mortality shocks, seem particularly relevant for the modeling
of short term catastrophe mortality derivatives, such as the Swiss Re mortality index bonds
described in Blake et al. (2006). It would be possible to extend the present results to the
case of jump-diffusion driven mortality intensities. However, this extension would lead to
more involved formulas, which would be more difficult to interpret and in our opinion not
really lead to considerable new insights.

6 Numerical examples

In this section, the main focus is on the risk-minimizing strategies and their efficiency.
First, we explain the basic setup and illustrate relevant quantities by considering two
scenarios generated by the underlying stochastic model. We refer to these scenarios as the
red and blue scenario, respectively. Second, we study investments in the survivor swaps
and zero-coupon bonds. Finally, we compare the efficiency of the various investment
strategies by determining the intrinsic risk. This is the main objective of the example.
Since the intrinsic risk process R(ϕ) involves an expected value under the martingale
measure Q, we focus on the Q-dynamics for all processes involved. Hence all scenarios
displayed are Q-scenarios.

6.1 Setup

Unless stated otherwise we consider an insurance portfolio with 100 policy-holders aged
30, who pay a continuous premium of πc(t) = 0.2 during [0, T ], where T = 30. In case of a
death at time t the insurance company pays a lump sum of ad(t) = 5 ·1{0≤t<T}. Hence the
death benefit is paid out upon a death before retirement only. At the age of retirement,
which is 60 years, a lump sum of ar(T ) = 3 is paid to all survivors. Finally, the contract
contains a 30 year life annuity starting at age 60 with a rate of ap(t) = 1, which implies
that T = 60. The population portfolio exists of 1000 lives aged 30.

The initial mortality intensities µ◦j are taken on the Gompertz-Makeham form

µ◦j (x + t) = aj + bj(cj)x+t,
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with parameters given in Table 1. The parameters for portfolio 1 are taken from Dahl
and Møller (2006). For portfolio 2, we have modified the parameters slightly, such that
there is a minor difference between the two initial mortalities. The parameters for the

Portfolio (j) a b c

1 0.0001340 0.0000353 1.1020000
2 0.0001360 0.0000350 1.1030000

Table 1: Gompertz-Makeham parameters.

dynamics for the mortality intensities are also inspired by Dahl and Møller (2006) and can
be found in Table 2. Here, however, the mortality intensities are driven by two underlying
Brownian motions. For simplicity, we study the case where βj = β̃j = gj = 0, j = 1, 2.
This means that no change of measure for the mortality is applied in the example, such
that the mortality dynamics under the measure P and the martingale measure Q coincide.
Alternatively, one could attempt to estimate these parameters from the prices observed
in mortality security markets. By comparing these with parameters estimated from the
actual behaviour of the underlying mortality processes, one could get an idea of the market
price of mortality risk. However, this is beyond the scope of the current paper. With our
pragmatic choices of parameters, we are able to illustrate the main techniques and to
compare the different strategies. For reasonable choices of prices of mortality risk, the
conclusions regarding the relative efficiency of the various strategies remain valid. In a
study of the absolute levels of risk, it would be of importance to determine the market
price of risk from empirical data and to change measure accordingly.

Portfolio (j) µj(x, 0) γj(x, t) δj(x, t) σj,1(x, t) σj,2(x, t)

1 µ0
1(x) 0.0001800 0.0080 0.006 0.018

2 µ0
2(x) 0.0001805 0.0081 0.000 0.019

Table 2: Parameters for mortality intensities.

The parameters for the financial market are listed in Table 3. Using these parameters in the
Vasiček model, we get a short rate model with Q-mean reversion level γr,Q/δr,Q = 0.055.
The speed of mean reversion is determined by δr,Q. Figure 1 shows the development of

r(0) γr,Q δr,Q σr

0.03 0.011 0.2 0.01

Table 3: Parameters for the financial market.

the short rate in two stochastic scenarios (red and blue lines). We observe that the level of
the short rate is similar in the two scenarios until time 20. In the time interval from 20 to
40, the short rate in the blue (red) scenario is relatively low (high), whereas the situation is
reversed from time 40 to 55. In the last 5 years the short rates again lie at the same level.
The corresponding intrinsic value processes for the insurance payment process in these

20



0 10 20 30 40 50 60

0.
00

0.
04

0.
08

t
0 10 20 30 40 50 60

0.
00

0.
04

0.
08

t

Figure 1: The short rate in two different stochastic scenarios (red and blue lines).

two scenarios are plotted in Figure 2. We see a big difference between the development of
the intrinsic value process in the two scenarios. In the blue scenario, the process attains
its minimum value around time 15. From here, it has a positive trend until time 30,
where it levels out at approximately 4,000. In the red scenario, the process decreases
until time 30 and levels out around -10,000. In particular, we see that the scenarios differ
fundamentally from time 20. The main reason for this difference is the magnitude of the
short rate between time 20 and 40 in the two scenarios. From time 20, the main part of
the remaining payments inherent in the payment process are benefits. Hence the market
value of future payments increases (decreases) as the short rate decreases (increases). This
behavior is most profound until time 40, where the combination of few remaining benefits
and discounting makes the impact negligible.
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Figure 2: Intrinsic value processes for the insurance contract the red and blue scenario.
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6.2 Risk sensitivity of the insurance contract

Figure 3 shows the outcomes of the so-called risk sensitivities νV,Q, ηV,Q and ρV,Q in the
red and blue scenario. We observe that due the relatively large number of insured lives
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Figure 3: Risk sensitivities for the insurance contract in the red and blue scenario.

in the insurance portfolio, the magnitude of the sensitivity νV,Q to unsystematic mortality
risk is insignificant compared to the other sensitivities. Initially νV,Q is positive reflecting
that the discounted death benefit is larger than the discounted individual market reserve.
From time 0 to the time of retirement, νV,Q decreases due to the premiums paid. After
approximately 15 years νV,Q becomes negative. At the time of retirement we observe
a negative jump in νV,Q since the death benefit is larger than the sum at retirement.
At the age of retirement, only payments from the life annuity remains, and here νV,Q

attains its minimal value. Hereafter it increases steadily towards the value 0 at the expiry
of the contract. We see that νV,Q attain lower values in the blue scenario than in the
red scenario. This difference is most prominent between times 20 and 40, where we also
observe considerable differences for the short rates.

The sensitivity to interest rate risk ηV,Q is the most significant risk due to the large interest
rate volatility. As noted already this fact is especially evident if we focus on the value
process in Figure 2 in the period from 20 to 35 years. The differences in the sensitivities
to interest rate risk in the two scenarios can be explained by the development in the value
processes.

Finally, we recall from Table 2 that the dependence of µ1 on Wµ,Q
2 is three times that of the

dependence on Wµ,Q
1 . This relationship essentially carries through to the risk sensitivities

ρV,Q
1 and ρV,Q

2 . Once again the differences in the sensitivities to systematic mortality risk
in the two scenarios can be explained by the development of the value processes.

6.3 Investment strategies

The risk-minimizing strategy minimizes the total risk, which consists of unsystematic and
systematic mortality risk and interest rate risk. Here we first focus on investments in
survivor swaps and then we turn to investments in bonds. In this section we diverge
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Figure 4: Number of survivor swaps on the insurance portfolio held at time t in the
(B,P, Z1) market (in the red scenario).

from the standard setup and consider an insurance portfolio of 10,000 individuals and a
population of 100,000 individuals.

In the (B,P, Z1) market, the survivor swap can be used to hedge both unsystematic
mortality risk and systematic mortality risk generated by Wµ,Q

1 and Wµ,Q
2 . The large

number of insured implies that the unsystematic mortality risk is insignificant compared to
the systematic mortality risks. Until the age of retirement the investments in the survivor
swap is therefore essentially the ratio between a weighted average of the sensitivities to
systematic mortality risk from the insurance contract and the sensitivities to systematic
mortality risk from the survivor swap. At the age of retirement, the only remaining
payments from the insurance contract is a life annuity, which has the exact same sensitivity
to mortality risk as a survivor swap on the insurance portfolio. Hence, from the time of
retirement the mortality risk can be hedged perfectly by holding exactly one survivor
swap. The investment strategy is seen in Figure 4.

In the (B, P, Z2) market, the survivor swap can be used to hedge systematic mortality risk
generated by Wµ,Q

2 only. Furthermore, the survivor swap introduces an additional source
of unsystematic mortality risk, MQ

2 . Since the unsystematic mortality risk is insignificant
compared to the Wµ,Q

2 -systematic mortality risk, the investments in the survivor swap
is essentially the ratio between a weighted average of the sensitivity to Wµ,Q

2 -systematic
mortality risk from the insurance portfolio and the sensitivity to Wµ,Q

2 -systematic mortal-
ity risk from the survivor swap. The investment strategy is seen in Figure 5. Comparing
Figures 4 and 5 we observe a large similarity between the shapes of ϑ1 and ϑ2. However,
we notice, that the investment in the (B, P, Z2) market tends to zero at the end of the
insurance period. This can be explained by the fact that the sensitivity to systematic
mortality risk from the insurance contract converges to 0, whereas the swap’s sensitivity
to unsystematic mortality risk does not converge to 0. Since the number of individuals in
the population is 10 times the number in the insurance portfolio the magnitude of ϑ1 is
essentially 10 times the magnitude of ϑ2.

In the (B,P, Z1, Z2) market, the survivor swaps are used to hedge both unsystematic
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Figure 5: Number of survivor swaps on population held at time t in the (B, P, Z2) market.

mortality risk related to the insurance portfolio and the systematic mortality risk. Fur-
thermore, the survivor swap on the population introduces the additional unsystematic
mortality risk. First we recall that, from the time of retirement, a survivor swap on the
portfolio eliminates all mortality risk, which in turn means that no investments in the
survivor swap on the population is needed after the time of retirement. Prior to the time
of retirement we use both survivor swaps to hedge the mortality risks. From the strategies
in Figure 6, we observe that, upon correcting for the larger number of individuals in the
population, the total number of swaps is slightly higher than the number of swaps held in
the (B, P, Z1) market.

In the four markets considered in Sections 5.3-5.6 all interest rate risk can be hedged.
When we invest in survivor swap(s), we introduce additional interest rate risk, and the
investments in the bond eliminate the interest rate risk from the insurance payment process
corrected for the interest sensitivity from the survivor swap(s). Thus, the investment
strategies for the zero-coupon bond will differ slightly, depending on the investments in
survivor swap(s). The investment strategies are plotted in Figure 7.

6.4 Efficiency of the strategies

The efficiency of the strategies is assessed by calculating the initial intrinsic risks R(0, ·).
We use Monte Carlo simulation with 1,000 simulations to calculate R(0, ·) in different
markets with portfolios of different sizes. In order to quantify the total risk inherent in
the insurance contract we consider the initial intrinsic risk in the market including only
the risk free asset B. In this case the intrinsic risk process for the insurance contract is
given by

R(t, ϕ∗V ) = EQ




∫ T

t

((
νV,Q(τ)

)2
λQ

1 (x, τ) +
(
ηV,Q(τ)

)2
+

2∑

j=1

(
ρV,Q

j (τ)
)2

)
dτ

∣∣∣∣∣∣
F(t)


 .

The results of the Monte Carlo simulations are collected Table 4. First of all, we observe
that introducing a zero coupon bond eliminates approximately 80% of the risk, so the
interest rate is without doubt the most significant source of risk. Investigating the mar-
kets without survivor swaps we observe how the unsystematic mortality risk is diversified
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Figure 6: The left plot shows the number of survivor swaps on the insurance portfolio held
at time t in the (B,P, Z1, Z2) market (black line). The red line is the number of survivor
swaps on the insurance portfolio held at time t in the (B,P, Z1) market. The right plot
shows the number of survivor swaps on the population held at time t in the (B,P, Z1, Z2)
market (black line). The grey line is the difference between the investments in the survivor
swap on the insurance portfolio from the (B,P, Z1) market and the (B, P,Z1, Z2) market
scaled by a factor 10.
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Figure 7: Number of zero coupon bonds held at time t.
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n1 n2

√
R(0,ϕ∗V )

n1

√
R(0,ϕ∗B)

n1

√
R(0,ϕ∗1)

n1

√
R(0,ϕ∗2)

n1

√
R(0,ϕ∗3)

n1

100 1,000 0.630 0.110 0.048 0.103 0.033

100 10,000 0.630 0.110 0.048 0.098 0.020

1,000 10,000 0.623 0.062 0.032 0.037 0.018

1,000 100,000 0.623 0.062 0.032 0.035 0.015

10,000 100,000 0.622 0.055 0.013 0.020 0.010

Table 4: Intrinsic risks calculated at time 0.

when the size of the insurance portfolio is increased. The initial intrinsic risk in the mar-
kets without survivor swaps is obviously unaffected by the size of the population, since
the insurance payment process is independent of the unsystematic mortality risk of the
population. Introducing survivor swaps allow us to hedge some of the mortality risk in
addition to the interest rate risk. We observe that more mortality risk can be eliminated
in the case with a survivor swap on the portfolio than with the survivor swap on the pop-
ulation. This is due to the fact that the systematic mortality risk more closely resembles
the one associated with the insurance payment process and that it allows for hedging the
unsystematic mortality risk. In contrast, the survivor swap on the population introduces
a new source of unsystematic mortality risk. If we allow for investments in both survivor
swaps we obviously obtain an even smaller initial intrinsic risk. Furthermore, we see that
the difference between the two strategies with only one survivor swap is largest when
the number of individuals underlying the survivor swaps are low, since the unsystematic
mortality risks become more important in these cases.

When we have a very large number of lives in both portfolios, we observe that the markets
with survivor swaps hedge almost the same amount of risk. It might therefore be better to
invest in only one survivor swap instead of both survivor swaps, since one might introduce
too much credit risk and administration costs compared to the small advantage of the
(B,P, Z1, Z2) market.

A Appendix

A.1 Proof of Proposition 5.1

From Lemma 4.3 we have the following dynamics of V ∗,Q:

dV ∗,Q(t) = νV,Q(t)dMQ
1 (x, t) + ηV,Q(t)dW r,Q(t) + ρV,Q(t)dWµ,Q(t). (A.1)

Furthermore we know from Section 5.2 that the Galtchouk-Kunita-Watanabe decomposi-
tion has the form

dV ∗,Q(t) = ξQ
1 (t)dP ∗(t, T ) + ϑQ

1 (t)dZ∗,Q1 (x, t) + dLQ
1 (t), (A.2)

where ξQ
1 and ϑQ

1 are predictable processes, and LQ
1 is a zero-mean Q-martingale orthogonal

to P ∗ and Z∗,Q. Since Y ∗,Q
1,1 and Y ∗,Q

1,2 are orthogonal to P ∗(·, T ) and Z∗,Q1 , and the four
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processes together span the relevant space of Q-martingales driven by the underlying
stochastic processes W r,Q, Wµ,Q and MQ

1 , we may take LQ
1 of the form

dLQ
1 (t) = φQ

1 (t)dY ∗,Q
1 (t), (A.3)

where φQ
1 is a two-dimensional predictable process, and where

dY ∗,Q
1,j (t) = χZ,Q

1,j (t)
(
dMQ

1 (x, t)− κQ
1,j(t)dWµ,Q

j (t)
)
,

j = 1, 2, are the zero-mean Q-martingales introduced in (5.4). Hence LQ
1 is indeed a

zero-mean martingale and orthogonal to P ∗ and Z∗,Q1 as required.

Now, recall that the discounted zero coupon bond price dynamics under Q are given by

dP ∗(t, T ) = −σrBr(t, T )P ∗(t, T )dW r,Q(t). (A.4)

Inserting the representation of the survivor swap in Lemma 3.2 together with (A.3) and
(A.4) in (A.2), we rewrite the Galtchouk-Kunita-Watanabe decomposition in terms of the
underlying stochastic processes. This leads to the representation

dV ∗,Q(t) =
(
ϑQ

1 (t)νZ,Q
1 (t) + φQ

1,1(t)χ
Z,Q
1,1 (t) + φQ

1,2(t)χ
Z,Q
1,2 (t)

)
dMQ

1 (x, t)

+
(
ϑQ

1 (t)ηZ,Q
1 (t)− ξQ

1 (t)σrBr(t, T )P ∗(t, T )
)
dW r,Q(t)

+
2∑

j=1

(
ϑQ

1 (t)ρZ,Q
1,j (t)− φQ

1,j(t)χ
Z,Q
1,j (t)κQ

1,j(t)
)
dWµ,Q

j (t), (A.5)

which involves the unknown processes (ξQ
1 , ϑQ

1 , φQ
1 ). We now determine these processes

by simply equating the terms in the two decompositions (A.1) and (A.5). Hence, we
need to solve the following linear system with four equations and the four unknowns
(ξQ

1 , ϑQ
1 , φQ

1,1, φ
Q
1,2):

νV,Q(t) = ϑQ
1 (t)νZ,Q

1 (t) + φQ
1,1(t)χ

Z,Q
1,1 (t) + φQ

1,2(t)χ
Z,Q
1,2 (t),

ηV,Q(t) = ϑQ
1 (t)ηZ,Q

1 (t)− ξQ
1 (t)σrBr(t, T )P ∗(t, T ),

ρV,Q
1 (t) = ϑQ

1 (t)ρZ,Q
1,1 (t)− φQ

1,1χ
Z,Q
1,1 (t)κQ

1,1(t),

ρV,Q
2 (t) = ϑQ

1 (t)ρZ,Q
1,2 (t)− φQ

1,2χ
Z,Q
1,2 (t)κQ

1,2(t).

Here, the second equation determines ξQ
1 (t) in terms of ϑQ

1 (t), and this gives (5.7). From
the last two equations, we determine φQ

1,1 and φQ
1,2 in terms of ϑQ

1 provided that ρZ,Q
1,1 and

ρZ,Q
1,2 are not equal to 0, such that we can devide by κQ

1,1 and κQ
1,2. In this case, we get

φQ
1,j(t)χ

Z,Q
1,j (t) =

ϑQ
1 (t)ρZ,Q

1,j (t)− ρV,Q
j (t)

κQ
1,j(t)

χZ,Q
1,j (t),

j = 1, 2. By inserting thse expressions in the first line, we get the equation

νV,Q(t) = ϑQ
1 (t)

(
νV,Q
1 (t) +

ρZ,Q
1,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
1,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)

− ρV,Q
1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t)− ρV,Q

2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t).
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This now gives (5.8). The expression expression for LQ
1 follows e.g. by inserting ϕQ

1 in
(A.3) and writing Y ∗,Q

1 in terms of the underlying Q-martingales.
¤

A.2 Proof of Proposition 5.3

Define processes Y ∗
3,1 and Y ∗

3,2 by

dY ∗
3,1(t) = χZ,Q

1,1 (t)
(
dMQ

1 (x, t) + α1(t)dMQ
2 (x, t)− κQ

1,1(t)dWµ,Q
1 (t)

)
,

dY ∗
3,2(t) = χZ,Q

1,2 (t)
(
dMQ

1 (x, t) + α2(t)dMQ
2 (x, t)− κQ

1,2(t)dWµ,Q
2 (t)

)
,

and Y ∗
3,j(0) = 0, j = 1, 2. Clearly, these processes are orthogonal to P ∗(·, T ) and Z∗1 . Now

we determine α1 and α2 such that Y ∗
3,j and Z∗2 are orthogonal. Since

d〈Y ∗
3,j , Z

∗
2 〉(t) = χZ,Q

1,j (t)
(
αj(t)ν

Z,Q
2 (t)λQ

2 (t)− κQ
1,j(t)ρ

Z,Q
2,j (t)

)
dt, (A.6)

we get that

αj(t) =
κQ

1,j(t)ρ
Z,Q
2,j (t)

νZ,Q
2 (t)λQ

2 (t)
=

νZ,Q
1 (t)λQ

1 (t)ρZ,Q
2,j (t)

νZ,Q
2 (t)λQ

2 (t)ρZ,Q
1,j (t)

, (A.7)

j = 1, 2, which are well-defined for ρZ,Q
1,j (t) 6= 0. We need to rewrite the decomposition

dV ∗,Q(t) = νV,Q(t)dMQ
1 (x, t) + ηV,Q(t)dW r,Q(t) + ρV,Q(t)dWµ,Q(t) (A.8)

on the form

dV ∗,Q(t) = ξQ
3 (t)dP ∗(t, T ) + ϑQ

3,1(t)dZ
∗,Q
1 (x, t) + ϑQ

3,2(t)dZ
∗,Q
2 (x, t) + dLQ

3 (t), (A.9)

where LQ
3 is a Q-martingale, which is orthogonal to the traded processes P ∗(·, T ), Z∗1 and

Z∗2 . Here, we take LQ
3 on the form:

dLQ
3 (t) = φQ

3,1(t)dY ∗
3,1(t) + φQ

3,2(t)dY ∗
3,2(t).

We need to determine the processes (ξQ
3 , ϑQ

3,1, ϑ
Q
3,2, φ

Q
3,1, φ

Q
3,2). We insert the dynamics for

the traded processes in (A.9) and collect terms to obtain that

dV ∗(t) = ξQ
3 (t)

(
− σrBr(t, T )P ∗(t, T )

)
dW r,Q(t)

+
2∑

j=1

ϑQ
3,j(t)

(
νZ,Q

j (t)dMQ
j (x, t) + ηZ,Q

j (t)dW r,Q(t) +
2∑

i=1

ρZ,Q
j,i (t)dWµ,Q

i (t)
)

+
2∑

j=1

φQ
3,j(t)χ

Z,Q
1,j (t)

(
dMQ

1 (x, t) + αj(t)dMQ
2 (x, t)− κQ

1,jdWµ,Q
j (t)

)
.

We now collect the terms from the driving process and rewrite dV ∗ on the form

dV ∗(t) =
(
ξQ
3 (t)(−σrBr(t, T )P ∗(t, T )) + ϑQ

3,1(t)η
Z
1 (t) + ϑQ

3,2(t)η
Z
2 (t)

)
dW r(t)

+
(
ϑQ

3,1(t)ν
Z,Q
1 (t) + φQ

3,1(t)χ
Z,Q
1,1 (t) + φQ

3,2(t)χ
Z,Q
1,2 (t)

)
dMQ

1 (x, t)

+
(
ϑQ

3,2(t)ν
Z,Q
2 (t) + φQ

3,1(t)α1(t)χ
Z,Q
1,1 (t) + φQ

3,2(t)α2(t)χ
Z,Q
1,2 (t)

)
dMQ

2 (x, t)

+
2∑

j=1

(
ϑQ

3,1(t)ρ
Z,Q
1,j (t) + ϑQ

3,2(t)ρ
Z,Q
2,j (t)− φQ

3,1(t)χ
Z,Q
1,j (t)κQ

1,j(t)
)
dWµ,Q

j (t).
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We now identify the processes with the ones appearing in the original decomposition (A.8)
to obtain the system

ηV,Q(t) = ξQ
3 (t)(−σrBr(t, T )P ∗(t, T )) + ϑQ

3,1(t)η
Z
1 (t) + ϑQ

3,2(t)η
Z
2 (t), (A.10)

νV,Q(t) = ϑQ
3,1(t)ν

Z,Q
1 (t) + φQ

3,1(t)χ
Z,Q
1,1 (t) + φQ

3,2(t)χ
Z,Q
1,2 (t), (A.11)

0 = ϑQ
3,2(t)ν

Z,Q
2 (t) + φQ

3,1(t)α1(t)χ
Z,Q
1,1 (t) + φQ

3,2(t)α2(t)χ
Z,Q
1,2 (t), (A.12)

ρV,Q
1 (t) = ϑQ

3,1(t)ρ
Z,Q
1,1 (t) + ϑQ

3,2(t)ρ
Z,Q
2,1 (t)− φQ

3,1(t)χ
Z,Q
1,1 (t)κQ

1,1(t), (A.13)

ρV,Q
2 (t) = ϑQ

3,1(t)ρ
Z,Q
1,2 (t) + ϑQ

3,2(t)ρ
Z,Q
2,2 (t)− φQ

3,2(t)χ
Z,Q
1,2 (t)κQ

1,2(t). (A.14)

Using (A.10), we first see that

ξQ
3 (t) =

ηV,Q(t)− ϑQ
3,1(t)η

Z
1 (t)− ϑQ

3,2(t)η
Z
2 (t)

−σrBr(t, T )P ∗(t, T ))
. (A.15)

Next, we determine the parameters φ3,1 and φ3,2 in terms of ϑQ
3,1(t) and ϑQ

3,2(t) from (A.13)
and (A.14). This leads to

φQ
3,1(t) =

1

κQ
1,1(t)

(
ϑQ

3,1(t)ρ
Z,Q
1,1 (t) + ϑQ

3,2(t)ρ
Z,Q
2,1 (t)− ρV,Q

1 (t)
)

= ϑQ
3,1(t)

ρZ,Q
1,1 (t)

κQ
1,1(t)

+ ϑQ
3,2(t)

ρZ,Q
2,1 (t)

κQ
1,1(t)

− ρV,Q
1 (t)

κQ
1,1(t)

,

for ρZ,Q
1,1 (t) 6= 0, and

φQ
3,2(t) = ϑQ

3,1(t)
ρZ,Q
1,2 (t)

κQ
1,2(t)

+ ϑQ
3,2(t)

ρZ,Q
2,2 (t)

κQ
1,2(t)

− ρV,Q
2 (t)

κQ
1,2(t)

,

for ρZ,Q
1,2 (t) 6= 0. Now, these terms may be inserted in equations (A.11) and (A.12). In this

way, we get the two equations

νV,Q(t) +
ρV,Q
1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρV,Q
2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

= ϑQ
3,1(t)

(
νZ,Q
1 (t) +

ρZ,Q
1,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
1,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)

+ ϑQ
3,2(t)

(ρZ,Q
2,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
2,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)
,

and

α1(t)ρ
V,Q
1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

α2(t)ρ
V,Q
2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

= ϑQ
3,1(t)

(α1(t)ρ
Z,Q
1,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

α2(t)ρ
Z,Q
1,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)

+ ϑQ
3,2(t)

(
νZ,Q
2 (t) +

α1(t)ρ
Z,Q
2,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

α2(t)ρ
Z,Q
2,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)
.
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Here, we furthermore note that α1(t)/κQ
1,1(t) = 1/κQ

2,1(t) and α2(t)/κQ
1,2(t) = 1/κQ

2,2(t). By
solving these equations, we get

ϑQ
3,1(t) =

νV,Q(t) + ρV,Q
1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) + ρV,Q

2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)−

(
ρZ,Q
2,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
2,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)
ϑQ

2 (t)

νZ,Q
1 (t) +

ρZ,Q
1,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
1,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)−

(
ρZ,Q
2,1 (t)

κQ
1,1(t)

χZ,Q
1,1 (t) +

ρZ,Q
2,2 (t)

κQ
1,2(t)

χZ,Q
1,2 (t)

)
ϑ̃Q

2 (t)
,

ϑQ
3,2(t) =

ρV,Q
1 (t)

κQ
2,1(t)

χZ,Q
2,1 (t) + ρV,Q

2 (t)

κQ
2,2(t)

χZ,Q
2,2 (t)− ϑQ

3,1(t)
(

ρZ,Q
1,1 (t)

κQ
2,1(t)

χZ,Q
2,1 (t) +

ρZ,Q
1,2 (t)

κQ
2,2(t)

χZ,Q
2,2 (t)

)

νZ,Q
2 (t) +

ρZ,Q
2,1 (t)

κQ
2,1(t)

χZ,Q
2,1 (t) +

ρZ,Q
2,2 (t)

κQ
2,2(t)

χZ,Q
2,2 (t)

,

where

ϑQ
2 (t) =

ρV,Q
1 (t)(κQ

2,1(t))
−1χZ,Q

2,1 (t) + ρV,Q
2 (t)(κQ

2,2(t))
−1χZ,Q

2,2 (t)

νZ,Q
2 (t) + ρZ,Q

2,1 (t)(κQ
2,1(t))−1χZ,Q

2,1 (t) + ρZ,Q
2,2 (t)(κQ

2,2(t))−1χZ,Q
2,2 (t)

,

ϑ̃Q
2 (t) =

ρZ,Q
1,1 (t)(κQ

2,1(t))
−1χZ,Q

2,1 (t) + ρZ,Q
1,2 (t)(κQ

2,2(t))
−1χZ,Q

2,2 (t)

νZ,Q
2 (t) + ρZ,Q

2,1 (t)(κQ
2,1(t))−1χZ,Q

2,1 (t) + ρZ,Q
2,2 (t)(κQ

2,2(t))−1χZ,Q
2,2 (t)

.

We complete the proof by rewriting the orthogonal term. First, using the definition of
Y ∗

3,j , we see that

dL3(t) = φQ
3,1(t)dY ∗

3,1(t) + φQ
3,2(t)dY ∗

3,2(t)

= −
2∑

j=1

φQ
3,j(t)χ

Z,Q
1,j (t)κQ

1,j(t)dWµ,Q
j (t) +

( 2∑

j=1

φQ
3,j(t)χ

Z,Q
1,j (t)

)
dMQ

1 (x, t)

+
( 2∑

j=1

φQ
3,j(t)χ

Z,Q
1,j (t)αj(t)

)
dMQ

2 (x, t).

Using (A.10)–(A.14), we finally see that

dL3(t) =
2∑

j=1

(ρV,Q
j (t)− ϑQ

3,1(t)ρ
Z
1,j(t)− ϑQ

3,2(t)ρ
Z
2,j(t))dWµ,Q

j (t)

+ (νV,Q(t)− ϑQ
3,1(t)ν

Z,Q
1 (t))dMQ

1 (x, t)− ϑQ
3,2(t)ν

Z,Q
2 (t)dMQ

2 (x, t).

This completes the proof.

¤

References

Biffis, E. (2005). Affine Processes for Dynamic Mortality and Actuarial Valuations, Insurance:
Mathematics and Economics, 443–468.

Biffis, E. and Millossovich, P. (2006). The Fair Value of Guaranteed Annuity Options, Scandinavian
Actuarial Journal, 23–41.

Blake, D., Cairns, A. and Dowd, K. (2006). Living with Mortality: Longevity Bonds and other
Mortality-Linked Securities. Discussed at the Faculty of Actuaries on 16 January, 2006 and
at the Institute of Actuaries on 27 February, 2006.

30



Cairns, A., Blake, D. and Dowd, K. (2006). Pricing Death: Frameworks for the Valuation and
Securitization of Mortality Risk, ASTIN Bulletin 36, 79–120.

Cowley, A. and Cummins, J. D. (2005). Securitization of Life Insurance Assets and Liabilities,
Journal of Risk and Insurance 72(2), 193–226.

Dahl, M. (2004). Stochastic Mortality in Life Insurance: Market Reserves and Mortality-Linked
Insurance Contracts, Insurance: Mathematics and Economics 35, 113–136.

Dahl, M. and Møller, T. (2006). Valuation and Hedging of Life Insurance Liabilities with Systematic
Mortality Risk, Insurance: Mathematics and Economics 39, 193–217.

Dowd, K., Blake, D., Cairns, A. and Dawson, P. (2006). Survivor Swaps, Journal of Risk and
Insurance 73, 1–17.
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