OPTIMIZATION OF THE NON-LIFE INSURANCE RISK

DIVERSIFICATION IN SOLVENCY Il

Werner Hirlimann
FRSGIlobal Switzerland
Bederstrasse 1, CH-8027 Zirich
E-mail : werner.huerlimann@frsglobal.com

Abstract

According to the current Solvency Il standard apptg non-life risk capital charges take into
account geographical diversification by adjustingilume measures using a Herfindahl-
Hirschman concentration index for premiums and rieseat a line of business level. The
lower the Herfindahl index the less concentratedaigortfolio and the greater is its
diversification extentThe diversification factor of a portfolio of riskgith respect to some
risk measure is defined to be the quotient of tbefplio risk measure to the sum of the
stand-alone risk measures over all risks in thé&f@or. Maximum diversification is obtained
by minimizing the diversification factor. According the QIS4 proposal the minimum
diversification factor is equal to 0.75. This valieenot optimal. If the risk measure is
proportional to the standard deviation of the rikien the absolute minimum value of 0.707
allows for an additional diversification reductioh maximum magnitude 4.3%. The latter is
true in the case of the value-at-risk and the dail value-at-risk measures for the class of
multivariate elliptical risk distributions. Howevethe current Solvency Il standard approach
to non-life risk relies on log-normal distributiongn this framework, the minimum
diversification factor, which depends on the vdilgtiof the portfolio, is in the average equal
to 0.667, which results in an absolute diversifamateduction of magnitude 8.3% compared
to QIS4. Extending the analysis to the class oftivariate log-elliptical risk distributions,
further results on the minimum diversification factcan be obtained. For the class of
multivariate log-Laplace distributions, which af@eato model fat tails similarly to the class
of generalized Pareto distributions in Extreme altheory, this minimum value is in the
average 0.68 resulting in an absolute reductidoveér magnitude 7%.
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1. Introduction

Though an old idea, the measurement and allocafiaversification in portfolios of asset
and/or liability risks is a difficult problem, whichas found so far many answers. The
diversification effectof a portfolio of risks is the difference betwettie sum of the risk
measures of stand-alone risks in the portfolio thedrisk measure of all risks in the portfolio
taken together, which is typically non-negativeleaist for positive dependent risks. Trigk
allocation problenconsists to apportion the diversification effexthe risks of a portfolio in

a fair manner, to obtain new risk measures of islesrof a portfolio. The first mathematical
approach to diversification is due to Markowitz(2869/87/94), whose classical portfolio
selection model applies to the efficient diversifion of investments. The present paper
considers only the diversification effect of a palfo of non-life risks. According to the
current Solvency Il standard approach, which icHiee in QIS4(2008), non-life risk capital
charges take into account geographical diversifiodby adjusting volume measures using a
Herfindahl-Hirschman concentration index for premsuand reserves at a line of business
level. The lower the Herfindahl index the less @mntcated is a portfolio and the greater is its
diversification extent. While from a theoreticaliptoof view the link between diversification
and concentration has been somewhat studied inv&gi(2006), the present contribution
focuses on the practical relevance of diversifaatn the Solvency Il project.

The diversification factorof a portfolio of risks with respect to some rigleasure is
defined to be the quotient of the portfolio riskasere to the sum of the stand-alone risk
measures over all risks in the portfolio. Maximuiwedsification is obtained by minimizing
the diversification factor. Observe that the gredte diversification reduction is, the less risk
capital is needed and the more new business camitben. Therefore optimal diversification
has an important practical relevance. Accordingthe QIS4 proposal the minimum
diversification factor is equal to 0.75. This valieenot optimal. If the risk measure is
proportional to the standard deviation of the rikign the absolute minimum value of 0.707
allows for an additional diversification reductioh maximum magnitude 4.3%. The latter is
true in the case of the value-at-risk and the damdl value-at-risk measures for the class of
multivariate elliptical risk distributions. Howevehe current Solvency |l standard approach
to non-life risk relies on log-normal distributioneinder this assumption, the minimum
diversification factor, which depends on the vdilgtiof the portfolio, is in the average equal
to 0.667, which results in an absolute diversifamateduction of magnitude 8.3% compared
to QIS4. Extending the analysis to the class oftivariate log-elliptical risk distributions,
further results on the minimum diversification facctcan be obtained. For the class of
multivariate log-Laplace distributions, which af@deato model fat tails similarly to the class
of generalized Pareto distributions in Extreme altheory, this minimum value is in the
average 0.68 resulting in an absolute reductidoveér magnitude 7%.

A more detailed account of the content follows. tec 2 reviews the Solvency I
standard approach to non-life risks and presenssmgple explanation for the proposed
diversification factor, which is missing in QIS4(8). It is based on thatra-portfolio
correlation coefficient. Section 3 derives the minimum valdiehe diversification factor for
risk measures proportional to the standard deviatib the risks. Typically, the obtained
result applies to the class of multivariate elGptidistributions. A rigorous approach to the
current standard Solvency Il approach is foundent®n 4, where minimum diversification
factors are derived for the class of multivariaig-hormal distributions. Section 5 extends
the results of Section 4 to multivariate log-eltpt distributions, and exemplifies the results
for the class of multivariate log-Laplace distrioas. Finally, Section 6 illustrates the
numerical impact of our findings on the current@alcy 1l standard approach.
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2. Solvency |l non-liferisk diversification according to QI $4

Recall the simple actuarial rationale for the niéem-€conomic capital formula proposed for
Solvency Il in QIS3(2007), which has been presemtddiirlimann(2008a).

Suppose an insurance risk portfolio over a fixedetiperiod, say over a one-year time
period [0,1] between the times=0 and t = 1 is described by the following quantities:

P : the (netyisk premiumof the portfolio for the time period
S : the randonaggregate claimsf the portfolio over the time period

While the risk premium is supposed to be knowrhatlieginning of the period, the random
aggregate claims are not. Tremdom lossof the portfolio at the beginning of the time joeki
is described by the difference between aggregatmsland risk premium and defined by

L=S-P. 2.1)

In non-life insurance the aggregate claims overtime period are taken exclusive of the
“run-off” and include the claimsy paid out during the time period and the changdams

reservesAR=R, - R,, where R denotes thelaims reservest time t, which consists of
the total reserves for outstanding claims and BR claims. Therefore one has the equality
S=Y +AR. Attime t=0 the claims reserveR, is known while R is unknown. The
volumeV =P+ R, of the portfolio, which is defined as the suntlod risk premium and the

claims reserves at the beginning of the perionmwvn at time t =0. Consider the ratio of
the random loss to the volume, which can be wriggen

£:Y+R1_(P+RO):x_l’ X:Y+R’l (22)
Y P+R, P+R, '

where X represents aombined ratioof the portfolio (ratio of incurred claims inclusi
“run-off” to the premium and reserve volume). Thetuarial equivalence principle or fair
value principle E[L] =0 implies that E[X] =1. The Solvency Il model assumes thAt is

log-normally distributed, say with parameters, and o, . With o = 1/Var|x| one has

oy, 0% =In(l+0?). (2.3)

N~

Hy =~

The economic capitabf the insurance risk portfolio to the confideneeel a is supposed
to depend only on the random loss and is denotedElﬁy,[L]. In the standard Solvency Il

approach, the economic capital is defined to bevdiee-at-risk (VaR) of the random loss
taken at the confidence levelr = 99.5% . Using (2.2), the log-normal assumption oX
and (2.3) one derives the non-life economic capaahula

EC,[L]=VaR/[L]=p,(0)1V (2.4)
with

exr{d) In 1+ o? }
\/1+a

1, (2.5)

a
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where CD'l(a') denotes the a -quantile of the standard normal distributior(x).
Alternatively, and as first suggested in the CEIGR8sultation paper CP20(2006), 5.309,
p.137, one can instead define the economic caoithe the tail value-at-risk (TailvVaR) or
conditional value-at-risk (CVaR) of the random ltsken at the confidence levet = 99%%.
With this choice of risk measure, one obtains tiwing economic capital formula

EC,[L]=cvaR[L]=p,(0)1V (2.6)
with
p.(0)= 70" (i')__a”'n[lw ) @.7)

As a novel feature QIS4(2008) takes into accouwngmaphical diversification by adjusting
volume measures using a Herfindahl-Hirschman irffdexremiums and reserves at a line of
business level. However, one misses there a thealredxplanation for the proposed

n
diversification factor. For simplicity, le¢¥ = ZV]. be the geographical decomposition of the
j=1
volume measure of a line of business into geographical regions. Let us assume that
diversification can be measured by thiza-portfolio correlationcoefficient

Q:iipijvviwj D[_ 1v1]! W :\é’ (2.8)

where p, represent the correlation coefficients ang the portfolio weights of the non-life
risks in the geographical regions. Adjusting foredsification the QIS4 non-life risk capital
can be represented as

%(1+ Q)LEC,[L], (2.9)

where ECQ[L] is the original non-life risk capital charge, wihi does not take
diversification into account. IfQ = 1(perfect positive dependence between the regioms)
reduction for diversification occurs while i) = - 1(perfect negative dependence) the non-

life risk capital charge vanishes. If one assumethér a linear dependence structure between
perfect dependence and independence such thatrtedation coefficients are given by

1 1 1, i=]
==+ =) ), = 2.1
P =548, 9 {0, e (2.10)
then one obtains
Q=%(1+H), H=>w, (2.11)
=

where H denotes thélerfindahl-Hirschman indexsee Hurlimann(2008b) for motivating
this choice). In this simple model the non-life krisapital charge reads (QIS4(2008),
TS.XI.B33, p.222)

(075+ 025[H)LEC,[L]. (2.12)
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3. Diversification in a multivariate elliptical model

In general, an adjustment for diversification viaé based on the theory of risk measures. Let
X be the overall non-life risk per volume unit ded X 1=4...n, be the non-life risks

per volume unit in the geographical regions. Thea bas the equalityX [V = ZX]. v .

=1
Using a positively homogeneous risk measp( , the non-life risk capital, which has been
adjusted for diversification, has the representatio

EC,(X,V)=p(X)V = DF Dip(xj) v, (3.1)
where :
pF = PRIV (3.2)
2 PX)W,

is the diversification factorof the non-life portfolio with respect to the riskeasure p([)
and Zp(xj) [V; is the non-life risk capital before diversificati (sum of the stand-alone
j=1

non-life risk capitals over the geographical reglrConsider first a class of multivariate
distributions of the risk vecto(X,,...,X, Yor which the risk measurep(l) is proportional

to the standard deviation of the risk. For examibies, is the case for the value-at-risk and the
conditional value-at-risk measures for the classnoitivariate elliptical distributions (e.g.
Landsman and Valdez(2003), Dhaene et al.(2008))ictwicontains the ubiquitous
multivariate normal distributions. In this situatione has

pDF=—2"% (3.3)

with g, g, j =1....,n the standard deviations oX, X j =1,....n. Clearly one has

o :\/iipij (a-ivi)(a-jvj)1 (3.4)

i=1 j=1

with o, the correlation coefficients of the non-life sk the geographical regions. For
illustration and comparison purposes assume (2T18n one obtains

DF =DF(H(0)) =3 @+ H(0)), (3.5)

> w0’
H(o :—(ijaj)2 (3.6)

with
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a volatility weighted Herfindahl-Hirschman indeXA maximum diversification effect is
obtained for a minimum diversification factor orudeplently a minimum value ofH(o )

subject to the constrainﬁwj =1. Applying the Lagrange multiplier method one sted a
=1
solution of this optimization problem solves theiations

W, 0,
Voi k~k

K ijaj
]

~H(0) =%, k=L..n, Yw =1 3.7)

j=1
for some constantd . The obvious solution withd =0 is
W =0 D o) k=1..n. (3.8)
=1

In this situation the minimum diversification facfor n regions equals
DF ., =DF(H(0) =) =3 1+1). (3.9)

Asymptotically one obtains the limiting minimum value

min 2

DF,_. =limDF" =2 (3.10)

Compared to the QIS4 limiting minimum value of 0.75 in 22, the multivariate elliptical
model allows for an additional diversification reduction of maxn magnitude 4.29%.

4. Diversification in a multivariate log-nor mal model

Unfortunately, the simple results of Section 3 do not appBcty to the current Solvency Il
approach to non-life risk because it relies on log-normaitiloigions of the risks as seen in

n
Section 2. The portfolio non-life risk per unit of volapgiven by X = Zijj , is a sum of
=1
correlated log-normal random variables, whose distributioesdnot have an analytical
closed-form expression, but can be approximated by snefaseveral methods. In the context

of Solvency Il we assume that the random vec(ot;,...,X, is)f the form (e*,....e*),
where  (Z,,...,Z,) has a multivariate normal distribution with mean vector
(E[Zl],...,E[Zn]) =(-1&7,...~3¢2), variance vector(\/ar[Zl],...,Var[Zn]) =(&7,....2), and
covariance matrix (Cm{Zi,ZjJ) =(;¢¢;). This assumption is consistent with the
requirement (E[Xl],...,E[Xn]) = (..., that is the expected targets of the combined ratios
are one as explained in Section 2. Furthermore, with Wagiance notation

o? =Var[X,],i =1...,n, one has the relationshif,&¢, = In{L+ p,0,0,}. For illustration we
assume thatp; is again specified by (2.10). We discuss two approxanatiethods.
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4.1. Simple log-nor mal appr oximation

n

Firstly and most simply the portfolio combined rati¥ = ijxj is approximated by a
j=1

single log-normal random variable with mean and variance

E[x]=iij[xj]=iwj =1 (4.1)

o’ :Var[X]=Zn:(WiJj)2 +2 Ww,0,0, :%(1+H(U)) Zn:WiJiJ - (42)

i<j

where H(o) is the volatility weighted Herfindahl-Hirschmandiex defined in (3.6). It is

important to mention that this is only a rough logrmal approximation, which can be
replaced by a more sophisticated single log-nompakoximation if necessary (e.g. Fenton-
Wilkinson(1960), Schwartz and Yeh(1982), Beaulied Xie(2004), Mehta et al.(2007)). A
theoretical justification for the use of such apqimmations is found in Dufresne(2002). Now,
for a minimum capital charge (2.5) or (2.7) undgs tapproximation, one has to minimize

(4.2) subject to the constrainij =1. Applying the Lagrange multiplier method one sees
=1
that a solution of this optimization problem soltles equations

0 A
JkEQZWij):E, k=1...n, ij:l (4.3)
i=1

for some constant A. This is only possible providedo, =¢ ,k=1..,n that is the

volatilities are constant in each geographicalaegin this situation H(g) =H coincides
with the Herfindahl index (2.11) and a calculatiging the relationship (4.2) yields

g =—-2 _ k=1..n (4.4)

The corresponding diversification factor (3.2)dga

DE = DE(H) = Pa(0) , 4.5
() p. (013 (1+H)) (45)

where ,oa([) is either (2.5) or (2.7). Its absolute minimumaitained whenH - Oand
given by
i __ P,(0)
DF . =limDF(H) =——2~—". 4.6
min H-0 ( ) pa( (2 w_) ( )

In the current standard Solvency Il approach ote ge= 0.995 for the VaR measure (2.5)
and a =0.98675 for the CVaR measure (2.7) to get approximat@ly(a) =3[o (see also
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Table 2.1 in Hurlimann(2008a)). Under this approaiion (4.5) readsDF =,/ (1+H) as
in Section 3. An exact evaluation of (4.6) yields following results.

Table4.1: minimum diversification factor for the simple logrmal approximation

CVaR DF min

confidence level
stdev
12.0%
12.5%
13.0%
13.5%
14.0%
14.5%
15.0%
15.5%
16.0%
16.5%
17.0%

In this table the VaR and the CVaR columns repregenquotients o, (a)/a. Compared to

the QIS4 limiting minimum value of 0.75 in (2.12he simple approximation of the
multivariate log-normal model allows for an addit@ diversification reduction of average
magnitude 8.3%. In case the volatilities in the graphical regions are not available or
difficult to estimate, the assumption of constaoifatilities is appropriate and justified by the
above minimum property. Alternatively, by given atlity structure o,,k =1,...,n ,one can

minimize H(o) in (4.2) subject to the constraintZWj = 1o get again the optimal
=1
weights (3.8). In this situation the diversificatitactor reads

L ol m) 1 121
DF" = , === —. 4.7
n 3 o

In the special case of equal volatilities one rece4.6) whenn — o,

4.2. Comonotonic maximum variance appr oximation

Our second approximation of the sum of correlatgdriormal random variables relies on the
comonotonic approximation method considered orityina Kaas et al.(2000) and Dhaene et
al.(2002). The developments by Vanduffel et al.Q008) suits exactly our needs. Recall

that X =ijeZ" , Where (Z,,...,Z, ) satisfies the assumptions at the beginning & thi
=1
Section. Consider the conditioning random variablewhich is defined by

A=Y 1z, (4.8)

i=1
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for some constantg, . Following Kaas et al.(2000) one defines a randanmble

X" =E[X|A]= iwi eXF{'%(rJfJ fere, A;JEAM} (4.9)

where rjfja,\=C0\,{Zj,/\]=2kaov{Zj,Zk],j=L...,n. One finds the equality in
k=1
distribution

X" = in exp{-%(f;f; frEotiu )}, (4.10)
j=1

with ®(x) the standard normal distribution andl a uniform random variable of01). If
all the correlation coefficientsr; defined in (4.9) are non-negative, thexX’ is a

comonotonic sum. In this situation it is well-knottrat the VaR and CVaR risk measures are
determined by (e.g. Vanduffel et al.(2005), Secfidh)

VaR,[Xf] = Zn:wj exd—%(r]{j 2+ rJ.EJ.CD‘l(a)},
= ) (4.12)
cvaR [x']= ﬁ D w (¢, -0 (@)

From the definitions in (4.9) one sees that a sigffit condition forr, 20 is thatall y; 20
and all Cov{Z].,ijz 0. Using Jensen’s inequality it can be proved thét is a convex
lower bound of X, a fact written X' <

v(x) one has E[v(Xf)Js E[v(X)]. In Dhaene et al.(2002) a comonotonic convex upper
bound, denoted byX" and such thatX <, X", has also been proposed. In the lognormal
context this random variable can be defined by smmp r, =1 in (4.9). For this upper

bound one has

X', which means that for any convex function

X0z, Yw exf- 182+ E0 (L)) (4.12)

It is easy to see that the VaR and CVaR measusexiated to (4.12) correspond to the sum
of the stand-alone measures in each geographigadrnehence to the valuation before

diversification. SinceX’ <_ X <_ X" the following relationships hold:

E[x*]:E[x]:E[XU]:iwj =1 (4.13)

Var|[x']= Zn:Win (er,r,s.é, —1)svar[x] = Zn:V\’in (ee.gisj _1)

i,j=1 =1

<Var[x*]= Zn:vviwj (e‘(i‘(j - 1)

ij=1

(4.14)
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For more details on these results we refer to Kdam.(2000) and Dhaene et al.(2002). In
view of the inequality (4.14), it is clear that theest comonotonic lower bound

approximations of X are the ones for Which/ar[XfJ is as close tovar[X] as possible.
Vanduffel et al.(2005) maximize the first order eppmation of Var[X”J obtained by
letting €"% —1=rr,&¢, to get the following coefficients in (4.8)

y;=w;, j=L...n (4.15)

This simple choice is retained here and definesthealledcomonotonic maximum variance
approximationof X . For approximation purposes we will assume tigat= o, , where the

latter is again specified by (2.10). Then the dogfhts r; in (4.11) are obtained from

Z(Wf) +Z(Wf)(W<‘)‘ L@+ HE)

i<j

Z(Wifi)z n
HEO=Eo—, s=Ywe, (4.16)
=1
) _wf "'lk;wkfk Q 1+ WJSEJ
j g, 2 J1+H(&)'

It is wuseful to derive lower and upper bounds to. 11;1 For this set
$min =MINé;, &, =maxs; , and let &, =&, (lower bound) or &, = ¢, (upper bound) in
I<jsn <j<n

the following. Lower and upper bounds are theniokthfrom the formula

V2 _1+w, oo
£ = j= H=Yw. 417
4= B 1 LY @10

In the special case of equal weightg =1 the corresponding diversification factors read

opn = P WEAD )

4.18
0. (&) (4.16)

where ,oa([) is either (2.5) or (2.7). The absolute minimum (4f18) is attained when
n — o and is given by

im DE" = P (2 o) (4.19)
e pa(go)

With & =0 =J2 one recovers (4.6) and the numerical results aifld 4.1. We

conclude that in the limiting case of minimum dsiéication the simple log-normal
approximation and the comonotonic maximum variaageroximation lead up to parameter
transformation to the same results.
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5. Diversification in a multivariate log-elliptical model

A natural generalization of the multivariate logamal distribution is the class of multivariate
log-elliptical distributions, which has been dissed recently in Dhaene et al.(2008) and
Valdez et al.(2009).

In generalization to Section 4, we assume tatrandom vector(X,,...,X, )is of the
form (e*,...e*), where (Z,,...,Z, ) has a multivariate elliptical distribution wittewsity
generator g(x ) mean vector (E[Zl],...,E[Zn]) =(-Ing(=¢}),...—-Ing(=¢?)), variance
vector Var[z]...Var[z,]) = (-29' (0)&?,...~29' (0)é?), and covariance matrix
(CO\:{Zi,ZjJ) =(-29'(0)g;<;¢;) - This assumption is again consistent with the irequent
(E[X,]....E[X.]) = (e52g(=¢?)....,e5%)g(=£2)) = (1,...]) of Section 2. Furthermore, with
the variance notationri2 :Var[xi],i =1...,n, one has the relationship

o~ (& +&2+26,6¢))
9(=&Ha(=&7)

1+ pj00; = (5.1)

In the log-normal special case one hagx) =exp(-4x) and (5.1) is equivalent with the
relationship 6,§¢; = In{1+ p”.aiaj} of Section 4. In our illustrative examples wesame
that g'(0) =-3%, andthatp; is again specified by (2.10).

5.1. Simple log-elliptical appr oximation

In parallel to Section 4.1 the portfolio combinedio X = ijxj is approximated by a
j=1
single log-elliptical random variable with meaﬁ[x] =1 and variance

o’ :Var[x]:%(1+ H (o)) Zn:wja]) , (5.1)

where H(og) is defined in (3.6). As in Section 4.1 a minimaapital charge under this
approximation is only possible provided, =o',k =1,...,n. In this situation H (o) =H
coincides with (2.11). The corresponding diversifion factor reads

DF = DF(H) = Pe(9) , 5.2
() p.(015(1+H)) 52

where p,() is either p,(0)=VaR,[X]-1 or p,(0)=CVaR[X]-1. Its absolute
minimum is attained wherH - @nd given by

_y __ P,(0)
DF,,, = lim DF(H) = P LR (5.3)
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To illustrate consider a multivariate log-Laplaceodal with density generator
g(x)=@+1x)™". Set a=09877 for the VaR measure andr = 0.96471 for the CVaR

measure to get approximatel)oa(a)=3[a (choice consistent with QIS4 calibration). An
exact evaluation of (5.3) is found in the Table &t is based on the formulas

var[X]= -2 ¢)revar[x] cvar[x]=(+Z¢)oa-a) ¥,

(5.4)
4‘:\/2\/1+502 +40* - 2(1+20%) <42,
where the latter expression follows from the gellegelliptical relationship
_A£2
1402 =90%) 5402 =valin X] (5.5)

g(-¢%)*’
by noting that g(x) = 1+ x)™ and solving (5.5) foré.

Table 5.1: minimum diversification factor for the simple kh@place approximation

CVaR DF min

confidence level
stdev
12.0%
12.5%
13.0%
13.5%
14.0%
14.5%
15.0%

15.5%

16.0%

16.5%
17.0%

Compared to the log-normal results of Table 4.1 #imple approximation of the
multivariate log-Laplace model leads to similar it@lpcharges for significantly lower
confidence levels, which are due to the fat tdilhis model. The diversification reduction of
approximate magnitude 7% compared to QIS4 is &bd than for the log-normal model. A
formula similar to (4.7) can also be derived.

5.2. A Taylor based mean-pr eserving appr oximation

Our second approximation of the sum of correlategdlliptical random variables is based

on Valdez et al.(2008). Recall thatX =2Wjez", where (Z,,...,Z, ) satisfies the
j=1

assumptions at the beginning of this Section. Glargihe conditioning random variable,

which is defined by
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A =Zn:ini (5.6)

for some constantsy,. Following Valdez et al.(2008), Section 6, oneimies a random
variable

XM = in Eg(‘ ("ij )2)_1 GaxF{rifi LJEAM} (5.7)

where rjfja,\=C0\,{Zj,/\]:ZyKC0\,{Z].,Zk],j=L...,n. One finds the equality in
k=1
distribution

XM = iwj Eg(_ (rjfj )2)_1 Gaxp(rjfj F ' )), (5.8)

with F,(x) the spherical distribution with density generatg(x) and U a uniform
random variable on (O,l). Since E[X ""P]: E[X] the approximation (5.7) is a mean-

preserving approximation. Moreover, ig(x):e'%x, then (5.8) coincides with the

comonotonic log-normal approximation (4.9) (simitarValdez et al.(2008), Theorem 6.1).
The VaR and CVaR risk measures of (5.8) are demmthiby (e.g. Valdez and
Dhaene(2004))

VaR, [X MP] = anwi [g(‘ (rjf j )2)_1 &xp(rjf iF (@ )),
= i (5.9)
CVaFg[X MP] = ﬁ DZWi [g(_ (3 )2)_1 F, (F @)

where Z; is the Escher transform af  with parameterr;¢;, whose density is defined by

f (0= al- (& F)* rexelr & x) 0, (x). (5.10)

Valdez et al.(2008) have suggested to choose thiidents in (5.6) such thatA and X
are “as alike as” possible, which results in thecalted Taylor based mean-preserving
approximation(see also Vanduffel et al.(2008)) with coeffice(f.6) given by

Y, :g(—sz)ﬂlvj, j=1...n. (5.11)

For approximation purposes we will as in Sectidhassume thatg, = p, , where the latter
is specified by (2.10). Then the coefficients in (5.9) are obtained from
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=S wol-£2)6)2 + T wol- &) wol-£)) =S arHie) s
Zn:(wig(_giz)gi)z .
HEO = —F% ,S=ijg(—ff)<‘,-, (5.12)

GV +1S wglo e wo-&7 ),
ng( EJ )5J+zZWk9( Ek)g \/— 1+T

k#i

o, J1I+H($)

It is wuseful to derive lower and upper bounds to 9)(5 For this set

Eomin = anlné Ermax = r]paxéj ,and let &, = (lower bound) oré, = (upper bound) in
<j<n <j<n

the following. Lower and upper bounds are theniokthfrom the formula

mm max

V2 _1+w,
ré =— 5 mg( )ZO,J— 1..n H-= ZW (5.13)

In the special case of equal weightg =} the corresponding diversification factors read

e = LeGE @+ ) &)

) 5.14
p.(9l- &2)&,) (514

where p, () is either p,(0)=VaR[X]-1 or p,(0)=CVaR[X]-1. The absolute
minimum of (5.14) is attained when — o and is given by

. . _ P2 (- E))
DF =|im DF a . 5.15
- o226, (5.15)

With g(— 502)50 =0 one recovers (5.3) and the numerical results afld 5.1 for the

multivariate log-Laplace model. We conclude that thre limiting case of minimum
diversification the simple log-elliptical approxiti@n and the Taylor based mean-preserving
approximation lead up to parameter transformatiotihé same results.

6. Application to the current Solvency |l standard approach

It appears instructive to consider the impact of findings on the current Solvency Il
standard approach. We give a numerical examplechwitiompares the current QIS4
specification with the new approach based on themngon assumption of log-normally
distributed non-life risks. For illustration purgssit suffices to restrict the analysis to the
simple log-normal approximation of Section 4.1. \8l@pose that the volatilities in the
geographical regions of a line of business are awkn and assume therefore that they are
constant in each line of business (as motivateSeiation 4.1). For the determination of the
solvency capital requirement (SCR) for the combipezinium and reserve risk the following
data is required:
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m : number of lines of business

v, . volume measure of the line of business{1,...,m}

g, . volatility measure (standard deviation) of lime of business/
H, . Herfindahl index of the line of businegs

C=(py) . correlation matrix between the lines of busiés/ D{l...,m}

Let V = va be the overall volume measure and consider then@weightsw, =V, /V,
/=1

fD{L...,m}, and the vector of weighted volatilities,, = (w,0,,...,.w,0,,). Then, the overall

standard deviationo is obtained from the equatioo” = g, [T [, . Without geographical

diversification the capital requirement for premiamnd reserve risk at the confidence level
a =995% is given by (2.4), that is

SCRy = 0, (0)1V . (6.1)

To take geographical diversification into accoustading to QIS4, one considers the
geographically diversified volume measures

VP =(075+ 025(H,)v,, ¢O{1...m}. (6.2)

Let V° :ZV/D be the overall diversified volume measure andsiar the diversified
(=1

volume weights wP =VP°/Vv®, ¢Of1...m}, and the vector of diversified weighted
volatilities oy = (Wfal,...,wnfam). Then, the overall diversified standard deviatia? is
obtained from the equation(c®)® = (o2)" [C o> . With geographical diversification the
capital requirement for premium and reserve riskhatconfidence levelr =995 %s now

SCR, = p, (0°)v®. (6.3)
Alternatively, according to the simple log-normappaoximation of Section 4.1, one

considers the geographically diversified volume suees, which are consistent with (4.5)
and defined by

7D _ pa(aﬂ)
P CAN e Ot o0

_—~ m _—~
Let V° = ZVKD be the corresponding overall diversified volumeasure and consider the
=1

diversified volume weights W° =V,°/V®, ¢0O{1,...m}, and the vector of diversified
weighted volatilities 7, = (vT/fal,...,vT/n[jam). The corresponding overall diversified standard
deviation &° is obtained from the equatiofg®)® = (&2)" [C [&° . With geographical
diversification the alternative simple log-normapdtal requirement for premium and reserve
risk at the confidence levelr = 99.5% is given by



OPTIMIZATION OF NON-LIFE RISK DIVERSIFICATION IN SQVENCY II 16

SCR, = p,(7°)v° . (6.3)

The next table illustrates at two single examphesriumerical impact of the new approach
under varying levels of geographical diversificatias measured by the Herfindahl indices.
We suppose that there are =5 lines of business with the following correlatimatrix

1 05 05 025 025
05 1 025 025 05

C=(p,)=| 05 025 1 05 025 (6.4)
025 025 05 1 05
025 05 025 05 1

Table6.1: QIS4 geographical diversification versus simplg-hormal approximation

overall lines of business

volumes 1000 400 250 200 100 50
standard deviations (std) 14.5% 12% 20% |  25% 30% | 50%
SCR (without Diversification) 435.6

Example 1

Herfindahl indice 0.25 0.5 0.6 0.75 1
QIS4 diversified volumes 867.5 325 | 218.75 180 | 93.75 50
QIS4 diversified overall std 14.9%

QIS4 SCR (with Diversification) 387.8

alternative diversified volumes 832.7 | 306.26 | 210.29 | 174.21 | 91.90 50
alternative diversified overall std 14.9%

alternative SCR (with iversificatior) 375.1

Example 2

Herfindahl indice 0.1 0.2 0.3 0.4 0.5
QIS4 diversified volumes 803.75 310 200 165 85 | 43.75
QIS4 diversified overall std 14.7%

QIS4 SCR (with Diversification) 355.6

alternative diversified volumes 741.75 | 284.45 | 183.45 | 152.92 | 79.67 | 41.26
alternative diversifie overall st 14.8%

alternative SCR (with iversificatior) 329.3

In example 1 the diversification effect equals 14P4he SCR without diversification under
the QIS4 approach. Under the alternative apprdaistetfect increases to 13.9%. In the more
diversified example 2 the diversification effectieases from 18.4% to 24.4%. Since the line

of business diversification factors satisfy the ragpnations DF, =,/3(1+H,) and in
virtue of the inequalities

J3[+H) < 075+ 025[H , (6.4)

we expect that the diversification effect alwaysr@ases from the QIS4 approach to the
alternative approach, which implies a release gfired risk capital.
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