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A GENERALIZED ADDITIVE REGRESSION MODEL
FOR SURVIVAL TIMES !

By THOMAS H. SCHEIKE
University of Copenhagen

We present a non-parametric survival model with two time-scales. The
time-scales are equivalent up to a constant that varies over the subjects.
Covariate effects are modelled linearly on each time scale by additive Aalen
models. Estimators of the cumulative intensities on the two time-scales are
suggested by solving approximate local maximum likelihood estimating
equations. The local estimating equations necessitate only the choice of
one bandwidth. The estimators are provided with large sample properties.
The model is applied to data on patients with myocardial infarction, and
used to describe the prognostic effect of covariates on the two time scales,
time since myocardial infarction and age.

1. Introduction. In many bio-medical applications in survival analysis
it is of interest to study the effect of covariates on various time-scales. We con-
sider the situation where multiple time-scales are involved, and focus on the
specific situation with two time-scales that are equivalent up to a constant for
each individual such as for example follow-up time and age. A class of mod-
els where it is relevant to consider multiple time-scales is the the three-state
model known as the illness-death model, or the disability model, where the
additional time-scale may be duration in the illness state of the model; see Kei-
ding (1991) for a general discussion of these models. Oakes (1995) discussed
how multiple time-scales may be combined into a single scale. Previous work
has considered semi-parametric survival models where one time-scale is mod-
elled parametrically and the other time-scale is considered non-parametric.
An example of this type of analysis with three time-scales applied to diabetes
patients can be found in Ramlau-Hansen et al. (1987).

In this paper we present a non-parametric regression approach with two
time-scales where each time-scale contribute additively to the mortality. The
effect of covariates are modelled by additive Aalen models on each time-scale
[Aalen (1980,1989,1993), McKeague (1988), Huffer and McKeague (1991)].
This allows covariates to have effects that vary on two different time-scales.
In a motivating example we consider patients that experience myocardial in-
farction, and aim at predicting the intensity considering the two time-scales
age and time since myocardial infarction. As an example, one of the covari-
ates describes the heart function and is allowed to have an effect that varies

Received April 2000; revised May 2001.

1Supported by NIH Grant NIH 5 R01 CA 54706-08.

AMS 2000 subject classifications. Primary 62N01; secondary 62N02, 62G20

Key words and phrases. Additive Aalen model, counting process, disability model, illness-death
model, generalized additive models, multiple time-scales, non-parametric estimation, survival
data, varying-coefficient models.

1344



ADDITIVE MODEL FOR SURVIVAL TIMES 1345

with both age and time since myocardial infarction. The suggested model ex-
tends the Generalized Additive Models of Hastie and Tibshirani (1986) to a
regression set-up, and we therefore term the models as Generalized Additive
Regression Models. Note, however, that the model may be considered as a
varying-coefficient model [Hastie and Tibshirani (1993)]. In the survival set-
ting many authors have dealt with generalized additive models. Recent papers
are Kooperberg, Truong and Stone (1995), Huang (1999) and Linton, Nielsen
and Van de Geer (1999).

By actively utilising that one of the time scales is an ordinary time-scale,
unlike markers as a proxy for disease progression, we present a simple non-
parametric estimator whose asymptotic properties are derived. One advantage
of the proposed methodology is that only one smoothing parameter needs to
be chosen.

Section 2 presents the model and some counting process notation. Section
3 gives some local estimating equations that are solved to give simple explicit
estimators of the non-parametric effects of the model. Based on these explicit
estimators we are able to derive asymptotic results and provide the estimators
with asymptotic standard errors. Section 4 considers the special case where
some covariates have effects on both time-scales. Two solutions to the identi-
fiability problem are suggested. Section 5 contains an application to data on
myocardial infarction. Finally, Section 6 presents some possible extensions.

2. An Aalen model for multiple time-scales. Let N;(¢), i =1,...,n,
be n independent counting processes that do not have common jumps and are
adapted to a filtration that satisfy the usual conditions [Andersen, Borgan,
Gill and Keiding (1993)]. The counting processes are observed in the time
period [0, 7]. We assume that the counting processes have intensities given by

2.1 Mi(8) = X)) a(t) + Z; ()T B(t + a;)

where X;(t) € %P, and Z,(¢) € NY are predictable cadlag covariate vectors, and
a; is areal-valued random variable observed at time ¢ = 0. A simple and impor-
tant submodel is the generalized additive model where A;(¢) = a(?)+ B(¢+a;).
For this model some constraint is needed for one of the non-parametric ef-
fects to identify the parameters of the model, we return to this in Section 4
below.

The model contains two time-scales ¢ and a where one of the time-scales
is specific to each individual. In the illness-death model, say, ¢ might be time
since diagnosis (duration) among subjects that have entered the illness stage
of the model and a; could be the age when the transition to the illness stage
occurred, such that ¢ + a; is the age of the subject.

After introducing some notation we present an estimation procedure that
leads to explicit estimators of A(t) = fé a(s)ds and B(a). We derive the asymp-
totic distribution for these estimators. Based on the cumulative intensity A(¢)
one may estimate the intensity «a(¢) by smoothing techniques. We also consider

estimation of the cumulative B(¢) = f: B(s)ds where 7, is some lower-limit
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that depends on the observed range of the second time-scale. The cumulative
effects have the advantage compared to a(s) and B(a) that they may be used
for inferential purposes since a more satisfactory simultaneous convergence
can be established for these processes.

2.1. Notation. Let A;(2) = f(f A;(s)ds such that M;(¢) = N;(t) — A (2)
are martingales. Let further N(¢) = (N(¢), ..., N,(t)) be the n-dimensional
counting process, A(f) = (A(%),...,A,(¢)) be its compensator, such that
M(t) = (M(t),..., M,(t)) is an n-dimensional martingale, and define ma-
trices X (¢) = (X1(¢),..., X,(&))T and Z(¢t) = (Z(t), ..., Z,(t))".

We further need weight matrices and define W(¢) = diag(w;(¢)) asannxn
diagonal matrix with weights w;(t)i=1,...,n.

Define predictable matrices H,(s) and H,(s) of dimension respectively, kxn
and [ x n. The optional variation process between the martingale integrals
Mi(t) = [y Hi(s)dM(s) and My(t) = [y Hy(s)dM(s) is given as the k x [
matrix

(¥, J1,1(0) = || Fy(s)diag(@dN () Ao(s)"
Define [M](t) = [M,, M,](¢).

3. Local estimating equations. We now present an estimation proce-
dure that is relatively easy to analyse and provide with asymptotic standard
errors since we obtain explicit estimators. The method may further be ex-
tended to more general time-scales.

We assume that

3.1 N =X, Ta(t) + Z,()T B(t + a;).

When (X (s), Z(s)) has full rank we can identify the effects without imposing

constraints on the parameters. If some covariates enter both X and Z we

suggest two solutions to solve the identifiability problem in Section 4. We

start, however, by assuming that (X (s), Z(s)) asymptotically has full rank.
When ¢ + a; is close to fixed but arbitrary a we have that

(3.2) A(t) = X; (1) a(t) + Zi(t)" Ba) + (¢t +a; —a) Z;(8)" B'(a) + Ri(2)

where B, B” are the first and second derivative and R;(t) = (1/2)(¢ + a; —
a)ZZi(t)T,B”(af,t) where a} , lies between ¢ +a; and a. For fixed a, estimates of
a(-) and B(a) may be obtained by fitting a kernel weighted version of the above
semiparametric model where the remainder term is omitted. McKeague and
Sasieni (1994) gave estimators for the semiparametric additive survival model
and we use their formulae with kernel weights to account for the amount of
information present. A similar idea was used by Li and Doss (1995) to esti-
mate conditional survival based on a fully non-parametric regression model
(A(¢, X)). Based on the local equation (3.2) we can estimate B(a) and part of
a(+). By fixing a we essentially condition on it and can only estimate «(-) for
times s that are observed for the given a. We therefore need some notation
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to specify what part of a(-) can be estimated based on the local equations
as well as notation for the kernel weights. Let the density of a; be denoted

f(a) and define A(t|a) = fot I(f(a—s) > 0)a(s)ds. For fixed a we can estimate
A(t|a). Note that f(a—s) is the density for individuals who have age a at time
s. Let Wy(¢,a) = diag(w () K(b,a — (a1 + 1)), ..., w,()K(b,a — (a, + 1))
where K(b, ) is a symmetric kernel function with bandwidth b, and define
A(t,e) =diag((t+a1—a),...,(t+a,—a)), Z(t,a) = (Z(t), A(t,a)Z(t)) and
combine the parameters into »(a) = (8(a)”, 8/(a)T)T. In the remainder of the
paper the weights are assumed identical to 1 and can thus be ignored. Define
further e; to be the matrix that gives B(a) when multiplied by v(a), that is,

B(a) = e;v(a).
Then by (2.3) and (2.4) in McKeague and Sasieni (1994) estimators of v(a)
and A(t|a) are given by

(3.3) a)=G(r,a)! /OT J(s,a)Z(s,a)T H(s, a)dN,

(3.4) A(tla) = fot J(s,a)X(s,a) (dN(s) — Z(s, a)v(a)ds)

where X (s,a)” = (X(s)TWy(s,a)X(s)) 1 X(8)"Wy(s,a), H(s,a) = Wy(s,a)—
Wi(s,a)X(s)X(s,a)”, J(s, a) is one when the inverse in X(s, a)~ exists and
0 otherwise, and G(¢,a) = fot J(s,a)Z(s,a)T H(s,a)Z(s,a)ds.

Using the martingale structure we find that (see the Appendix for additional
details)

(3.5) A(tla) — A(t|la) = M,(t) — Cy(t, a)My(7) + Op(l)b2 + op(n’m)
and that

(3.6) p(a) —v(a) = G(1,a) *My(1) + Op(l)b2 + op(n’1/2)
where C,(t,a) = fé X(s,a)"Z(s,a)ds, Cy(t,a) = C1(t,a)G(7,a)"! and

My(0) = [ X~ (s, )dM(s),

M, (t) = /Ot J(s,a)Z(s, a)T H(s, a)dM(s).

The asymptotic description of the estimators A(t|a) and B(a) = e;p(a) is
given in the following proposition.

PROPOSITION 1. Assume:

(i) K(-) is a compact kernel, b—0 as n—o0;
(i1) Subjects are independent and identically distributed with bounded co-
variates such that (X(s), Z(s)) has full rank with probability tending to one;
(iii) The intensities are twice continuously differentiable;
(iv) a; has distribution given by a continuously differentiable density f(-),
and there exist s € [0, 7] such that f(a —s) > 0.



1348 T. H. SCHEIKE

Then v/nb(B(a) — B(a)) converges toward a normal distribution with mean
0, and a variance that may be estimated consistently by the g x q matrix

3.7 (nb)e,G(r, a) HMy|(1)G(r, a) el

plus a bias term of order ~/nbb20(1). Further, vnb(A(t|a)— A(t|a)) is asymp-
totically equivalent to a Gaussian process with mean 0, and a covariance matrix
that is estimated consistently by

(nb)([M1](t) + Ca(t, a)[ M5](1)Ca(t, a)"

(3.8)
—[M;, My](2)Cs(t, a)" — Cy(t, a)[ My, M,](2)),

plus a bias term of order ~/nbb?0(1).

REMARKS. (i) Asymptotically equivalent estimators of the asymptotic vari-
ances (3.7) and (3.8) are obtained by replacing Z(s, a) by Z(s) in the formulae.
(i1) The achieved rate is equivalent to the optimal one dimensional rate.

To improve the performance and rate of the cumulative estimator of
fot a(s)ds it seems natural to combine the estimates for different a. We also
introduce the process of cumulative effects of B(a) on some relevant range of
values for a denoted [7,, 7,]. This process is useful for inferential purposes.
Define

~ t 7y ~
(3.9) A@) = /0 f E(s, a)A(ds|a)da,
(3.10) B(a)= [ Ble)de,

where E(s, a) is predictable and satisfies that [7* E(s, a)da = 1 for all s and
is used for weighting the increments

A(dsla) = J(s,a)(X(5)" Wo(s, @) X(5)) " X ()" Wy(s, a)(dN(s)
— Z(s,a)p(a)ds).

In the later example the weights were also used to threshold away increments
were only little information is present. An alternative to weighting together
the increments is to weight together the cumulatives, A(f|a), such that the
estimator of A(¢) becomes f:a” E(t, a)A(t|a)da. In the rest of the paper we
consider (3.9) because there is some numerical indication this procedure had
superior properties, due to its ability to threshold out extreme increments for

low information areas.
By (3.6) it follows that

B(a) - B(a) = /O " L(s, a)dM(s) + 0 ,(1)b% + 0, (n"V/2)
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where L(s, a) = [ e;G(7, ¢)"'J (s, ¢)Z(s, ¢)" H(s, ¢) dc, and by (3.5) it follows
that

A - AW = [ @us)dM(s)

(3.11) i
= [} @5, )M () + 0, (1B +0,(n72)

where Q(s) = [ X(s, a)” E(s, a)da and
Qy(s, t) = /Tb Ci(t,a)G(t,a) tJ(s,a)Z(s,a)T H(s, a)E(s, a)da.

Define further the processes Mj(¢) = f(f Qi(s)dM(s) and My(r,t) =
fOT Qy(s, t)dM(s) that are asymptotically equivalent to martingales (see the
Appendix).

The asymptotic properties are described by the following proposition.

PROPOSITION 2. Under the assumptions of Proposition 1 and if V/nb?>—0
it follows that /n(B(a) — B(a)) converges toward a Normal distribution with
mean 0 and a variance that is estimated consistently by

(3.12) n/OT L(s,a)diag(dN(s))L(s, a)T.

Further if for all s € [0, 7] there exist a such that f(a — s) > 0 it follows that
Vn(A(t) — A(¢)) is asymptotically equivalent to a Gaussian process on [0, 7]
with mean 0, and a covariance matrix that is estimated consistently by

(3.13)  n([Ms](®) + [M4(-, ))(7) = [M3, My(, )I(2) — [M4(-, 1), M5](2))

REMARKS. (i) «/n(B(a) — B(a)) converges toward a Gaussian process un-
der additional regularity conditions, stated in the proof of Proposition 2, that
ensures tightness. Therefore, one may use the cumulative process as a basis
for inferential purposes.

(ii) Asymptotically equivalent estimators of the asymptotic variance es-
timators (3.12) and (3.13) are obtained by replacing Z(s,a) by Z(s) in the
formulae.

(iii) Tests and simultaneous confidence bands may be based on this Propo-
sition. Note, however, that simulation techniques must be applied to construct
simultaneous confidence intervals and tests.

(iv) Based on A(¢) one can estimate «a(s).

4. Generalized additive regression. When some covariates enter both
the X and Z design some adaptation is needed. We denote the common covari-
ates as V(s), and let X p(s) and Zp(s) be the additional distinct covariates.
The model is

M () = Xpi(6) o () + Zpi(1)' B(t + a;)

(4.1)
+ Vi) a,(t)+ V()" B (t+a;)
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where X p;(t) € RP, Zp,(t) € N7 and V,(¢) € N are predictable cadlag covari-
ate vectors, and q; is a real-valued random variable with density. We assume
that (X p(s), Zp(s), V(s)) has full rank.

Fitting the local model

Ai(t) = Xpi(t) e () + Z (1) Bo(@) + (t + a; — a) Z pi (1) B,(a)
+Vi(0) (e (2) + Bu(@)) + (¢t + a; —a) V(1) B, (a) + Ri(?)
as above with the full rank design X (¢) = (X p(¢), V(¢)) and
Z(t) = (Zp(t), A(t, @) Z(t), A(t, ) V(2))

gives estimates of (A, (t|a), A,,(f|a)) and B,(a) where the subscripts refer to
different designs and where A, (t|a) = f(f I(f(a —s) > 0)(a,(s) + B,(a))ds.
We call the estimators f,(a), A, (t|a) and A, (¢|a), and have that A(t|a) =
(A, (tla), A,,(t|a)). These estimators are thus based on (3.3) and (3.4) and
may be cumulated over a by (3.9). Proposition 1 and Proposition 2 are valid
for these estimators. Let e, be a matrix such that e, A(f|a) = A,,(¢|a).

The identifiability problem now needs to be solved to separate the effects
a,(t) and B,(a). We present two approaches to do this. One simple approach
assumes that the pair (¢, @) is observed in a rectangle. This assumption will be
unrealistic in many applications. Another approach gives a more complicated
asymptotic analysis but only assumes that when a; is close to ay then we
observe many of the same time-points.

(4.2)

4.1. Rectangular support region. The simplest situation is when we re-
strict attention to a rectangular support region where f(a —s) > 0 for all
a € [7,,7,] and s € [0, 7]. Then assuming [; a,(s)ds = 0 gives estimators

N A 1
:Bv(a) = Avv(7|a);7

n A N t
Av(t|a) = Avv(t|a) - Avv(7|a);:

A1) = /Ot /:b E(s, a)A,(ds|a)da.

These estimators can be written as martingale integrals by the use of (3.11)
and (3.5) and
o 1) ~
A=At = [ [ E(s,a)(A,(dsla) - A, (ds|a))da
(4.3) 0% )
— [ [ Eut.a)(A,(dsla) A, (dsla))da

where E (¢,a) = (1/7) f(f E(s, a)ds. The first term on the right hand side of
(4.3) can be written as

[0 t Q1(s)dM(s) — fo ' Qa(s, )dM(s) + O(1)b® + 0, (n /%)
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where @,(s) = e,Q;(s) and Q(s) = e, Q,(s) (see (3.11)).

The second term on the right hand side of (4.3) has a similar martingale
expression with Q{(s,¢) = [" e, X(s,a)" E (¢, a)da and

QS(s, t) = / e,C1(7,a)G(1,a)  J(s,a)Z(s,a)T H(s,a)E (t, a)da

such that
o to. T L
A1) - A0 = [ Qu()dM(s) ~ [ Qi(s. )M (s)
~ | (@s(s. 1) — @s(s. )dM(s)
+0(1)b% + op(n_1/2).
The optional variation based on the martingale integrals can be used to esti-
mate the variance. Note, however, that the integrands are not all predictable.
A(7) is not equal to 0 because we weighted the increments, rather than the
cumulatives (A(t|a)). The estimator [ E(t,a)A(t|a)da is simpler to analyse
and satisfies that it is equal to 0 in 7 and results in a similar estimator when
numerical problems for low information areas do not occur [the inverse of

XT(s)W,(s, a)X(s) may become largel].
Finally, with

B,(@)= [ B(eyde
it follows that
(Bo(@) = Bu(@) = 7 [ ['(Au(@la) - Audtia)da
— /0 " Py(s, a)dM(s) — /0 " Py(s, a)dM(s) + O(1)b? + o ,(n~1/2)
where Py(s,a) = 1 [* X(s,u) du and
Py(s, a) = %/ Cy(r, w)G(r, u) LI (s, u) Z (s, u)T H(s, u)du.

Under assumptions similar to those made in Proposition 2 it may be derived
that the cumulative processes are asymptotically Gaussian with a variance
that is estimated by using the martingale structure similarly to what was
done in the previous section.

4.2. Smoothness of support region. Often the observations will not make
the simple solution presented above available when solving the identifiability
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problem because f(a —s) is not positive for all combinations of a and s in their
domains. An alternative solution is based on the observation that

oy I(s,a1)d (s, ax)h(s, ay, as)(A,,(ds|a;) — A,,(ds|ay))
Jo J(s,a1)d(s, ag)h(s, ar,az)ds

_p> Bv(al) - Bv(aQ)

if J (s, a;)J(s, ag) converges uniformly to 1 on some part of the time interval
and A(s, a1, ag) is some weight function such that [ A(s, a;, ay)ds = 1 for all
a; and a,. Note, that the difference is only estimable where J(s, a;)J(s, as) is
different from 0. Therefore, generally, it makes sense to have a; and ay close
to each other.

We assume that B,(7,) is zero to solve the identifiability problem. Now,

dBv(als a2) =

given a grid of points ¢, = 7, ..., @, = 7, we have that
év(di) = Z dBv(dbdi—l)
1<j=i

The estimator of B8,(a;) has a martingale expansion that may be derived as
in the previous section. The asymptotic variance may be estimated using this
expression.

5. Application to the TRACE study. The TRACE study group [see, e.g.,
Jensen et al. (1997)] has collected information on 6000 consecutive patients
with myocardial infarction (AMI) with the aim of studying the prognostic im-
portance of various risk factors on mortality. At the time of entry (time of AMI)
the patients had various risk factors recorded such as age, gender (male=1),
congestive heart failure (CHF) (present=1) and ventricular fibrillation (VF)
(present=1). Some risk factors were expected to have strongly time-varying
effects, in particular ventricular fibrillation. Two time-scales are relevant for
studying the mortality. We chose time since AMI as the primary time-scale
(t) and age as the secondary time-scale (a). We then avoid the difficult choice
of a smoothing parameter on the primary time-scale where it is known that
survival changes quite dramatically. Age effects are expected to vary more
smoothly and therefore it is much easier to chose a reasonable bandwidth for
the age time-scale. The total number of deaths in a 3 year period after enter-
ing the study was 2020, and of these, 649 took place within the first month.
Figure 1 shows the death times for the patients on the two time scales. A
rectangular support region can not be ruled out for these data. We estimate
the age effects for ages between [60, 90], and consider the primary time-scale
in the time-period from [0, 3].

We considered the following intensity model:

Ai(8) = a1 () + ay(t)SEX;; + a3(t)VF;; + ay(t)CHF ;4
+B1(t + a;) + Ba(t + a;)SEX;; + B3(¢ + a;)VF;1 + B4(t + a;)CHF;

where a; is the age of the ith subject at the time of entry. The primary interest
centers on estimating the effects of VF and CHF while it was necessary to
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Fic. 1. Time of death given as a function of time since AMI and age.

correct for different mortality due to gender and age. The model allows that
effects vary with time since AMI and age. To identify the model we assume
that [« (s)ds = 0 for all j.

Estimates of A(¢) and B(a) were obtained using the formulae presented in
the previous sections. A grid of ages were chosen as 20 equidistantly spaced
points between 60 and 90 (a4, ....,a,). We used the following predictable
weight function

_ I(e;j(b,aj, s) > 10)e;(b, a;, s)
B ZJ Zi I(ei(b> aj7 S) > 1O)ei(b> aj> S)

where e;(b,a;,s) =3, K(b,a; — (a; +s)) and I(e;(b,a;, s) > 10) is the indi-
cator of the event e;(b, @, s) > 10. The bandwidth was 5 years and a Tukey
kernel was used in the weight function. The indicator was introduced to ig-
nore ill-behaved estimates based on only a few observations, and improved
the performance of the estimator. Recall that the weight function is used for
weighing together the increments of A(¢|a).

Figure 2 shows the age effects with 95 % pointwise variability intervals that
were identified based on an assumption of rectangular support. The variability
intervals are based on (3.7) and thus ignore the bias term. Note that the age
effect is essentially the same for men and women and that both CHF and VF
appears to have effects that vary with age. A formal test may be based on the

E(S, d])
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Baseline Gender
E4 o x
2 2 8
] bl O |
o [ R
x x
(SRS CEEE
e B T I R——
o 8
S
65 70 75 80 85 90 65 70 75 80 85 90
age (years) age (years)
CHF VF
% o s
T & = X
g o g °
8 8
x x
] )
=4
S 3
65 70 75 80 85 90 65 70 75 80 85 90
age (years) age (years)

FiG. 2. Age-varying effects of covariates with 95% pointwise variability intervals.

joint asymptotic distribution of the cumulative effects but has not been carried
out. Figure 3 shows the cumulative time-effects with 95 % pointwise confidence
intervals. Note the strongly time-varying effect of VF on the time-scale time
since AMI. The presence of VF results in a highly increased mortality the
first couple of months and then the effect wears off. Note, that all cumulative
estimators start and end at 0 due to the chosen solution of the identifiability
problem. The effects of both VF and CHF are significantly time-varying and
level off to constant non-significant levels after the first couple of months. A
formal test may be based on the asymptotic description.

6. Extensions. Analysis of the semi-parametric submodel where some of
the covariate effects do not vary with time can be carried out along the same
lines. Note, that the second time-axis in principle could be any marker that is
thought relevant for the subject matter, whereas it is used actively in the local
estimating equations and in the martingale derivations of the proofs that we
have one ordinary time-scale. In principle the local estimating equations may
be extended to additional time-scales.

When some covariate has effects on both time-scales we suggested a simple
procedure to separate the effects. Even when effects had to be separated we
were able to obtain asymptotic results but further research is needed into this
area.
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Fi1G. 3. Time-varying cumulative effects with 95% pointwise confidence intervals.

Following the arguments of Linton, Nielsen and Van de Geer (1999) the
asymptotic description of the estimates based on the local estimating equa-
tions may be used as the starting point for a back-fitting algorithm based on
the usual Aalen estimating equations. It is possible that such an estimator is
efficient, but further research is needed to study this issue.

APPENDIX

SKETCH OF PROOFS. The semi-parametric additive intensity model was
studied by McKeague and Sasieni (1994), and the proofs for Proposition 1
resemble theirs. The proofs of McKeague and Sasieni (1994) use various tech-
niques from McKeague (1988) and Huffer and McKeague (1991).

Recall

Mi(t,a) = /O "X (s, a)dM(s),
M,(t,a) = /O " (s, a)Z(s, a)" H(s, a)d M(s),

X (s,a) = (X(8)TWy(s,a)X(s)) 1 X (s)TW,(s, a).
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PROOF OF PROPOSITION 1. For simplicity we take W as the identity matrix.
A martingale expansion yields that

?(a) —v(a) = G(1,a) 1 My(t)
+G(1,a)7! /OT J(s,a)Z(s,a)T H(s, a)A(t, a)A(t, a)Z ;(s)B"(s)ds

+o,(n"?)

Z(t) is an n x nq matrix and B"(s) = (B”(a’{,S)T, ...,,G”(aj;’s)T)T such that
the i’th element of Z (¢)B(t) is Zi(t)TB”(a’f,s) and a} , lies between s+a; and
a (note that this argument in reality is q-dimensiona{l). The bias term is seen
to be O(1)b? by using the fact that the second derivative is bounded on a com-
pact set. The martingale term can be shown to converge in distribution if the
predictable variation converges in probability, a Lindeberg condition is satis-
fied, and G(s, a)~! converges in probability. To see that G(s, a)~! converges in
probability we note that with uy(K) = [u?K(u)du,

(Ym)ZTW,Z = f(a - $)E(ZF()Zi(s)|a; = a — 5) + 0,(1),
(1/n)(AZ)" W, Z = Buy(K)D(f(VE(ZL(8)Zi(3)la; = ))(a@ — 5) + 0,(b%),
(1/n)AZ)TWy(AZ) = Bps(K)f(a — $)E(ZT()Zi(s)|a; = a — 5) + 0,(57),

uniformly in s by the law of large numbers combined with smoothness. D (g)
is the derivative of g with respect to s. Similar expressions are obtained when
X replaces Z in the above formulae. Based on these an asymptotic expression
for the inverse of G(s, a) may be computed by using that for non-singular A,

A= 14211 + Op(l) bzAlg + Op(bZ)
b2 Ay + 0,(b%) b2 Agy + 0,(b%)
the inverse can be written as
A, A
Al = < 111 ~12)
Agy Agy
_ <AI11 +0% A A DT Ay ALl +0,(1) A A DT+ Op(l))
—D 1Ay Al +0,(1) b2D" ! +0,(b72)
Where D == A22 - bZAZ]_AII]'Alz. It iS seen that All == AI% + Op(].), Alz =
ATl A1 A} +0,(1), and Agy = b72A55 +0,(b72).
It therefore follows that B(a) — B(a) is asymptotically equivalent to
-1

(/OT J(s,a)Z(s)T H(s, a)Z(s) ds) /OT J(s,a)Z(s)T H(s, a)d M(s)

The Lindeberg condition follows from the assumption of bounded covariates,
and the predictable variation multiplied by nd equals

(nb) /O ’ J(s,a)Z(s)T H(s, a)diag(A;(t))(Z(s)TH(s, a))T >3
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where the convergence follows as above.
Similarly,

A(tla) — A(tla) = /Ot(1 — J(s, a))a(s)ds + My(t)
- /0 " X(s,a)" Z(s, a)(#(a) — v(a))ds
- /0 " X(s, @) A(t, )AL @) Z 4 (s)B (s)ds

— M,(t)— /O " X(s,0) Z(s, a)(i(a)
—v(@))ds + 0,(1)b* + 0,(n"Y/2)
= M,(t) — C1(t, a)G(r, a)™" [0 " J(s,a)Z(s, )T H(s, a)d M(s)
+0,(1)b* + 0,(n" %)

where C(¢,a) = fOt X(s,a)”Z(s,a)ds. It follows that C,(¢, a)G(r,a)! con-
verges in probability toward a limit c(¢, a). The bias term is bounded by
O(1)b2. The martingale term is seen to converge as above, and combined with
the martingale expansion for (¥(a) — v(a)), Proposition 1 follows. O

PROOF OF PROPOSITION 2.

d R T d
| (B(a) - Bla))da = /0 | eG(.a) (s, a)Z(s. )"
xH(s,a)dadM(s)+ O(1)b?

_ fOTL(s, d)dM(s) + O(1)b>

where L(s,d) = de e1G(1,a) Y J(s,a)Z(s,a)T H(s,a)da. Again, an asymp-
totically equivalenta expression is given by replacing Z(s,a) by Z(s) in the
formula and omitting e;. For simplicity we consider this asymptotically equiva-
lent expression in the remainder of the proof. Let g(7, a) = lim ,(ne,G(r, a)™)
and define the predictable L(s,d) = de g(r,a)J(s,a)Z(s)TH(s,a)da. The
finite dimensional convergence follows from Martingale convergence, if the
non-predictable L process can be replaced by a predictable version. Con-
sidering the one-dimensional case. We want that n='/Zsup| [;(nL(s, d)—
L(s, d))dM(s)|->0. The difference can be written as n="/2Y"; [ §;d M; where
subscript i refers to the ith element of the vectors and 6, = (L; — L;). Now,
8; is a sum of two terms d; ; = [(e;nG(7,a)™! — g(7,a))J(s, a)K(b,a — (a; +
sNdaZ(s)¥ and d;; = [(e;nG(r,a)™t — g(1,a))J(s,a)K(b,a—
(a; +8)Z(s)TWy(s,a)X(s)(X(s)TWy(s,a)X(s))'daX,(s)T. Considering the
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first term it can be written as

S nl2 /0 ’ / (neyG(r, @)t — g(a))K (b, a — (a, + s))daZ,(s) dM,(s)

=302 [|(neyG(r.a) = g(@) [ K(b.a ~ (a; + ) Zi(s)dM(5)| da

< sup |(neyG(r,a)" — g(a)| (mp — 74)

X sup .
a

n 2y /0 "K(b,a—(a; +5))Z;(s)dM,(s)

The last martingale term is seen to be bounded in probability when multiplied
by b. The term therefore converges to 0 because of the rate of the first term.
Similarly it is seen that the second term converges to 0 in probability. There-
fore it follows that L can be replaced by a predictable approximation, L, that
can be studied by the martingale convergence theorem. A different approach
for solving this predictability problem was described in Nielsen (1999).

To prove tightness one may show the moment condition nE(/ jl 2(B(a) —

B(a))da)? < C|d; — dy|?, and consider only the one dimensional case. To avoid
difficulties with the inverse of (X7 W, X) being to large when computing the
mean we work with a bounded version of this inverse as in McKeague (1988),
and show as in McKeague that this substitution of the inverse gives the same
asymptotics. Using the martingale expression we find that

i ([ ‘fu%(a) - B(a))da>2

1 T . ~ . - -
= ;E/O (L(t,dy) — L(t, dy)) diag(\;(t) dt)(L(t, dy) — L(¢, dy))"
and since covariates and intensities are bounded it suffices to show that

1 = -
~ 2 (Li(t,dy) = Li(t, d2))* = Cildy — dyf* sup,|g(7, a)|

< Cld; - dyP?

where L;(t,d;) is the ith element of L(¢,d;) and where the last inequality
follows if g(7, @) is continuous.
Now, turning to A(¢)

At) - /0 " a(s)ds = /O t / " X(s,a) E(s, a)da dM(s)

_ /Ot fTb X(s,a) Z(s,a)(¥(a) —v(a))E(s,a)dads

+0(1)b* + 0,(n" %)
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The last term is equal to

/t / X(s,a)_Z(s,a)G(fr,a)_lfT J(u, ) Z(u, a)"
0 Jr, 0

H(u,a)dM(u) E(s,a)dads
- /;(fot /:b X(s,a)"Z(s,a)G(r,a) ‘' J(u,a)Z(u,a)”

x H(u,a) E(s,a)da ds) dM(u)

Its asymptotic properties are described by the Martingale convergence theo-
rem if the non-predictable integrands can be replaced by predictable approxi-
mations. So is suffices to show a Lindeberg condition and that the predictable
variation converges in distribution when multiplied by n. That the nonpre-
dictable process @s(s, t) can be replaced by a predictable version follows as be-
fore be replacing C,(7, a)G(7, @)~ by its limit in probability ¢, (7, a)g(r, a)~1. O
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