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Abstract

With randomly generated weights between input and hidden layers, a random vector functional link network is a
universal approximator for continuous functions on compact sets with fast learning property. Though it was proposed
two decades ago, the classification ability of this family of networks has not been fully investigated yet. Through a
very comprehensive evaluation by using 121 UCI datasets, the effect of bias in the output layer, direct links from the
input layer to the output layer and type of activation functions in the hidden layer, scaling of parameter randomization
as well as the solution procedure for the output weights are investigated in this work. Surprisingly, we found that
the direct link plays an important performance enhancing role in RVFL, while the bias term in the output neuron
had no significant effect. The ridge regression based closed-form solution was better than those with Moore-Penrose
pseudoinverse. Instead of using a uniform randomization in [-1,+1] for all datasets, tuning the scaling of the uniform
randomization range for each dataset enhances the overall performance. Six commonly used activation functions were
investigated in this work and we found that hardlim and sign activation functions degenerate the overall performance.
These basic conclusions can serve as general guidelines for designing RVFL networks based classifiers.

Keywords: Random vector functional link networks, ridge regression, Moore-Penrose pseudoinverse, data
classification.

1. Introduction

Single layer feedforward neural networks (SLFN) have been widely applied to solve problems such as classifica-
tion and regression because of their universal approximation capability [14, 20, 31, 17]. Conventional methods for
training SLFN are back-propagation based learning algorithms [10, 7]. These iterative methods suffer from slow con-
vergence, getting trapped in a local minimum and being sensitivity to learning rate setting. Random Vector Functional
Link Networks (RVFL), shown in Fig. 1, which is a randomized version of the functional link neural network net-
work [25, 8], shows that actual values of the weights from the input layer to hidden layer can be randomly generated
in a suitable domain and kept fixed in the learning stage. Independently developed method in [35] also belongs to
the family of randomized methods for training artificial neural networks with randomized input layer weights. This
method [35] does not have direct links between the inputs and the outputs whereas RVFL has highly beneficial direct
links.

RVFL was proposed in [28]. Learning and generalization characteristics of RVFL were discussed in [26]. In [17],
Igelnik and Pao proved that the RVFL network is a universal approximator for a continuous function on a bounded
finite dimensional set with a closed-form solution. From then on, RVFL has been employed to solve problems in
diverse domains. A dynamic step-wise updating algorithm was proposed to update the output weights of the RVFL
on-the-fly in [5] for both a new added pattern and a new added enhancement node. The RVFL network was investigated
in [37] in the context of modeling and control. They [37] suggested to combine unsupervised placement of network
nodes to the input data density with subsequent supervised or reinforcement learning of the linear parameters of the
approximator. Modelling conditional probabilities with RVFL was reported in [15].

RVFL can also be combined with other learning methods. In [6], RVFL was combined with statistical hypothesis
testing and self-organization of a number of enhancement nodes to generate a new learning system called a statistical
self-organizing learning system (SSOLS) for remote sensing applications. In [16], expectation maximization was
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combined with RVFL to improve its performance. RVFL has also been investigated in ensemble learning framework.
In [1], decorrelated RVFL ensemble was introduced based on the negative correlation learning. RVFL based multi-
source data ensemble for clinker free lime content estimation in rotary kiln sintering processes can be found [21].
RVFL has also been widely applied to solve real-life problems. In [30], the authors reported the performance of a
holistic-styled word-based approach to off-line recognition of English language script. Radial basis function neural net
and RVFL were combined. Their approach, named as density-based random-vector functional-link net (DBRVFLN),
was helpful in improving the performance of the word recognition. In [29], RVFL was used in MPEG-4 coder.
In [38] RVFL was applied for pedestrian detection based on combination of multi-feature. In [39], RVFL was
combined with Adaboost in the pedestrian detection system. In [23], the authors investigated the performance of
hardware implementation methods for RVFL. In [34], distributed learning of RVFL was proposed where training data
is distributed under a decentralized information structure.

Consider an RVFL as demonstrated in Fig. 1. As mentioned before, the weights ai j from the input to the enhance-

Figure 1: The structure of RVFL. The input features are firstly transformed into the enhanced features by the enhance-
ment nodes. Input weights and biases of the enhancement nodes are randomly generated. At the output layer, all the
enhanced and original features are concatenated and fed into output neurons.

ment nodes are randomly generated such that the activation functions g(aT
j x + b j) are not all saturated. Following the

approach in [1], all the weights are generated with the a uniform distribution within [−S ,+S ] in this work, where S is
a scale factor to be determined during the parameter tuning stage for each dataset. For RVFL, only the output weights
β need to the determined by solving the following problem:

ti = dT
i β, i = 1, 2, ..., P (1)

where P is the number of data samples, t is the target and d is the vector version of the concatenation of the
original features as well as the random features.1 Directly solving the problem in Eq. (1) may lead to over-fitting. In
practice, a regularization on the solution such as regularized least square or preference of the solution with smaller
norm [3] can be adopted to obtain the solution. RVFL can be roughly divided into 2 classes based on the algorithm
to obtain the output weights. One is iterative RVFL, which obtains the output weights in an iterative manner based
on the gradient of the error function. The other one is closed-form based RVFL, which obtains the output weights in
a single-step. The present work focuses on the closed-form based RVFL because of its efficiency. A straightforward
solution within a single learning step can be achieved by the pseudo-inverse [17, 27], among which Moore-Penrose
pseudoinverse, β = D+T , where D and T are the matrix versions of the features and targets by stacking the features
and targets of all data samples, is most commonly used. Another alternative is the L2 norm regularized least square
(or ridge regression), which solves the following problem:∑

i

(ti − dT
i β)2 + λ ‖β‖2 ; i = 1, 2, ...P (2)

1For notational simplicity, we use the same formulation for all cases no matter whether there are biases in the output neurons since representing
the features for the output neurons with d = [d, 1] is equivalent to having a bias term in the output neurons.
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The solution is given by β = D(DT D + λI)−1T , where λ is the regularization parameter to be tuned.
Though there are many RVFL variants in the literature, some core features of RVFL remain unchanged. In this

work, We choose the closed-from based RVFL and the following issues are investigated by using 121 UCI datasets as
done in [11]

1. Effect of direct links from the input layer to the output layer.
2. Effect of the bias in the output neuron.
3. Performance of 6 commonly used activation functions as summarized in Table 1.
4. Performance of Moore-Penrose pseudoinverse and ridge regression (or regularized least square solutions) for

the computation of the output weights.
5. Effect of range for randomly generated parameters in hidden neurons.

Issues 1 − 4 in the above list are discussed in Subsection 2.3 while issue 5 is discussed in Subsection 2.5.

Table 1: Activation functions used in this work. s and y are the inputs and outputs, respectively.

activation function formulation
sigmoid y = 1

1+e−s

sine y = sine(s)
hardlim y = (sign(s) + 1)/2)
tribas y = max(1 − |s|, 0)
radbas y = exp(−s2)
sign y = sign(s)

2. Evaluation Protocol

2.1. Datasets

All 121 datasets are from the UCI repository [22]. The details of the datasets are summarized in Table 2.
We follow the same procedure as in [11]. Randomized stratified sampling is employed to make sure one training

and one test set are generated (each with 50% of the available patterns), where each class has the same number of
training and test patterns. Parameter tuning is performed on this couple of sets to identify parameters with the best
performance on the test set. There are two parameters in the present work. One is the number of hidden neurons, which
is tuned over 3: 203 with a step-size of 20 [11]. The other one is λ in ridge regression in Eq. (2), which is set
to be 2C and C is −5 : 1 : 14 [11]. Then, with the selected values for the tunable parameters, a 4-fold cross
validation is developed using the whole data. However, for some datasets where the training-testing partition is
already available (such as annealing and audiology-std, among others), the classifier is trained on the predefined
training set and evaluated on the test set. In this case, the test result is calculated on the test set [11]. Each input
feature is normalized by removing the mean value and dividing by its l2 norm.

2.2. Different RVFL Configurations

We evaluate 48 different closed-form based RVFL configurations listed as follows:

1. RVFL with and without bias in the output neuron.
2. RVFL with and without direct link from input layer to output layer.
3. The performance of 6 commonly used activation functions as summarized in Table 1.
4. RVFL with Moore-Penrose pseudoinverse and RVFL with ridge regression.

3



Table 2: Datasets used in this work
Datasets Patterns Features Classes
abalone 4177 8 3

ac-inflam 120 6 2
acute-nephritis 120 6 2

adult 48842 14 2
annealing 798 38 6
arrhythmia 452 262 13

audiology-std 226 59 18
balance-scale 625 4 3

balloons 16 4 2
bank 45211 17 2
blood 748 4 2

breast-cancer 286 9 2
bc-wisc 699 9 2

bc-wisc-diag 569 30 2
bc-wisc-prog 198 33 2
breast-tissue 106 9 6

car 1728 6 4
ctg-10classes 2126 21 10
ctg-3classes 2126 21 3
chess-krvk 28056 6 18
chess-krvkp 3196 36 2

congress-voting 435 16 2
conn-bench-sonar 208 60 2
conn-bench-vowel 528 11 11

connect-4 67557 42 2
contrac 1473 9 3

credit-approval 690 15 2
cylinder-bands 512 35 2
dermatology 366 34 6

echocardiogram 131 10 2
ecoli 336 7 8

energy-y1 768 8 3
energy-y2 768 8 3

fertility 100 9 2
flags 194 28 8
glass 214 9 6

haberman-survival 306 3 2
hayes-roth 132 3 3

heart-cleveland 303 13 5
heart-hungarian 294 12 2

heart-switzerland 123 12 2
heart-va 200 12 5
hepatitis 155 19 2

hill-valley 606 100 2
horse-colic 300 25 2

ilpd-indian-liver 583 9 2
image-segmentation 210 19 7

ionosphere 351 33 2
iris 150 4 3

led-display 1000 7 10
lenses 24 4 3
letter 20000 16 26
libras 360 90 15

low-res-spect 531 100 9
lung-cancer 32 56 3

lymphography 148 18 4
magic 19020 10 2

mammographic 961 5 2
miniboone 130064 50 2

molec-biol-promoter 106 57 2
molec-biol-splice 3190 60 3

Datasets Patterns Features Classes
monks-1 124 6 2
monks-2 169 6 2
monks-3 3190 6 2

mushroom 8124 21 2
musk-1 476 166 2
musk-2 6598 166 2
nursery 12960 8 5

oocMerl2F 1022 25 3
oocMerl4D 1022 41 2
oocTris2F 912 25 2
oocTris5B 912 32 3

optical 3823 62 10
ozone 2536 72 2

page-blocks 5473 10 5
parkinsons 195 22 2
pendigits 7494 16 10

pima 768 8 2
pb-MATERIAL 106 4 3

pb-REL-L 103 4 3
pb-SPAN 92 4 3

pb-T-OR-D 102 4 2
pb-TYPE 105 4 6
planning 182 12 2

plant-margin 1600 64 100
plant-shape 1600 64 100
plant-texture 1600 64 100

post-operative 90 8 3
primary-tumor 330 17 15

ringnorm 7400 20 2
seeds 210 7 3

semeion 1593 256 10
soybean 307 35 18

spambase 4601 57 2
spect 80 22 2
spectf 80 44 2

st-aus-credit 690 14 2
st-german-credit 1000 24 2

st-heart 270 13 2
st-image 2310 18 7
st-landsat 4435 36 6
st-shuttle 43500 9 7
st-vehicle 846 18 4

steel-plates 1941 27 7
synthetic-control 600 60 6

teaching 151 5 3
thyroid 3772 21 3

tic-tac-toe 958 9 2
titanic 2201 3 2
rains 10 28 2

twonorm 7400 20 2
vc-2classes 310 6 2
vc-3classes 310 6 3

wall-following 5456 24 4
waveform 5000 21 3

waveform-noise 5000 40 3
wine 179 13 3

w-qua-red 1599 11 6
w-qua-white 4898 11 7

yeast 1484 8 10
zoo 101 16 7

Details of the datasets. Some keys are: ac-inam=acute-inammation, bc=breastcancer, congress-vot= congressional-voting,
ctg=cardiotocography, conn-benchsonar/ vowel= connectionist-benchmark-sonar-mines-rocks/vowel-deterding,

pb=pittsburg-bridges, st=statlog, aus=australian, vc=vertebral-column, w-qua=wine-quality.
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2.3. Results and Discussion
Due to page limits, the detailed accuracy for each method is omitted in this paper and it can be downloaded from

the authors’ homepage2. In the following, we summarize the overall performance of the variants based on their rank
on each dataset. The most straightforward way to compare classifiers is to compute the average accuracies over all
datasets. However, their averages are meaningless if the results on different datasets are not comparable. Moreover,
averaging of accuracies is also susceptible to outliers. They allow a classifier’s excellent performance on one dataset to
compensate for poor performance. Further, a total failure on one problem can submerge fair results on most others [9].
Hence, in this study, we follow the method in [9], and use the rank of each classifier to reflect its performance [11].
This approach ranks the algorithms for each data set separately, the best performing algorithm getting the rank of 1,
the second best rank 2..., average ranks are assigned in case of ties. Based on the 121 rankings, we summarize the
overall ranking of each method in Table 3.

In order to give a detailed analysis of the results, we follow the method in [9] to test the significance of their
differences. The statistical test is based on Friedman test. The Friedman test [12, 13] is a non-parametric equivalent
of the repeated-measures ANOVA. It ranks the algorithms for each dataset separately, (the best performing algorithm
getting the rank of 1, the second best rank 2 and so on), as shown in Table 3. In case of ties, average ranks are assigned.
Let r j

i be the rank of the jth of k algorithms on the ith of N datasets. The Friedman test compares the average ranks of
algorithms, R j =

∑
i r j

i . The null-hypothesis states that all the algorithms are equivalent and so their ranks R j should
be equal. Let N and k denotes the number of algorithms and datasets respectively, when N and k are large enough, the
Friedman statistic.

χF
2 =

12N
k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 , (3)

is distributed according to χF
2 with k − 1 degrees of freedom under the null-hypothesis. In that case, Friedman’s χF

2

is undesirably conservative. A better statistic is:

FF =
(N − 1)χF

2

N(k − 1) − χF
2 , (4)

which is distributed according to the F-distribution with k − 1 and (k − 1)(N − 1) degrees of freedom.
If the null-hypothesis is rejected, which means the differences among the algorithms are statistically significant, the

Nemenyi post-hoc test [24] can be used to check whether the performance of two among k classifiers is significantly
different. If the corresponding average ranks of two different algorithms differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
, (5)

the performances of them are considered as significantly different. In Eq. (5), critical values qα are based on the
Studentized range statistic divided by

√
2. α is the significance level and is set to be 0.05 in this work.

2.3.1. Effect of Direct Link and Bias
We report in this section the effect of the direct link and bias in various RVFL configurations. In order to have

reasonable comparisons, we keep other issues (the activation functions and the solution for the output weights) fixed.
In Table 3, each column stands for an RVFL variant based on direct link and bias. Interestingly, we find that the
superiority of the bias cannot be observed. However, the direct link is much more important than the bias term. It can
be easily demonstrated that the 5th − 6th columns have lower ranks than those in 3rd − 4th columns. The direct link
from the input layer to the output layer can serve as a regularization for the randomization thereby making the RVFL
to achieve overall better performance than the RVFL variants without the direct link.

In our case (k = 4,N = 121), the critical values for the F distribution with 3 and 360 degrees of freedom
is 2.6 and CD for the Nemenyi test is 0.4264. So, for those rows with F value larger than 2.6, their difference
is statistically significant. Further in those rows, the pair of columns whose ranks differ by more than 0.4264 are
statistically significantly different. In Table 4, we summarize the statistical significance of the rank differences for
those rows where the F value is larger than 2.6.

2http://www.ntu.edu.sg/home/EPNSugan/
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Table 3: Average rank values 1 based on classification accuracies of RVFL
variants.

solution & -bias, +bias, -bias, +bias, F value 6

activation function -link 2 -link 3 +link 4 +link 5
R

id
ge

R
eg

re
ss

io
n sigmoid 2.7975 2.7025 2.3306 2.1694 6.7829

sine 2.5868 2.6033 2.4174 2.3926 0.8843
hardlim 3.0785 3.0702 1.9091 1.9421 43.0537
tribas 2.6901 2.6736 2.2810 2.3554 3.3333
radbas 2.6612 2.6405 2.3182 2.3802 2.2775
sign 3.0455 3.0372 1.9545 1.9628 36.7475

M
oo

re
-P

en
ro

se
ps

eu
do

in
ve

rs
e

sigmoid 2.5868 2.5620 2.3926 2.4587 0.5639
sine 2.5702 2.6612 2.2769 2.4917 1.9702
hardlim 3.0785 3.0785 1.9732 1.9298 43.8826
tribas 2.5620 2.6116 2.4008 2.4256 0.7646
radbas 2.5000 2.7066 2.4008 2.3926 1.5576
sign 3.0950 3.0289 1.9404 1.9256 40.6768

1 Each row represents a distinct comparison. Lower value indicates
higher accuracy.
2 RVFL without bias and without direct link.
3 RVFL with bias and without direct link.
4 RVFL without bias and with direct link.
5 RVFL with bias and with direct link.
6 Statistic value derived from Eq. (4).

2.3.2. Activation Function
In this section, we give a detailed analysis of different activation functions. Following the similar procedure

introduced in section 2.3 to test the significance of difference of classifier’s performance, it is easy to get the critical
value for F distribution with 5 and 600 degrees of freedom as 2.21 and the CD for the following Nemenyi test as
0.6196.

From Table 5, we can see that the radbas activation function always achieves better performance in all cases.
hardlim and sign activation functions lead to the penultimate worst and the worst performances, respectively. For
Ridge Regression based methods, there is a clear pattern

radbas > sine > tribas > sig > hardlim > sign (6)

where “>” means that the method on the left performs better than the method on the right. However, for the Moore-
Penrose pseudoinverse based methods, tribas always achieves the 4th rank. We also find that there is no clear superi-
ority between sigmoid and sine activation functions.

2.3.3. Closed-form Solution
Both the Ridge Regression and Moore-Penrose pseudoinverse lead to closed-form solution for RVFL. In order

to investigate the effect of these two methods on different RVFL variants, we keep the activation functions and the
network structure (bias, direct link) to be the same and compare the performances. Hence, it leads to 24 pairs of
comparisons in total. Sign test [36] is employed to test the statistical significance since each comparison only involves
two classifiers.

If the two algorithms compared are equivalent as assumed under the null-hypothesis, each should win on ap-
proximately N/2 out of N datasets. The number of wins is distributed according to the binomial distribution. For a
greater number of datasets, the number of wins is under the null-hypothesis distributed according to N(N/2,

√
N/2),
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Table 4: Result of statistical test1 . Statistically significant differences are marked with −−2 or ++3.
(a) Ridge regression with “sigmoid”

-b,-d +b,-d -b,+d +b,+d
-b,-d −− −−

+b,-d −−

-b,+d ++

+b,+d ++ ++

(b) Ridge regression with “hardlim”

-b,-d +b,-d -b,+d +b,+d
-b,-d −− −−

+b,-d −− −−

-b,+d ++ ++

+b,+d ++ ++

(c) Ridge regression with “sign”

-b,-d +b,-d -b,+d +b,+d
-b,-d −− −−

+b,-d −−

-b,+d ++

+b,+d ++ ++

(d) M-P 4 pseudoinverse with “hradlim”

-b,-d +b,-d -b,+d +b,+d
-b,-d −− −−

+b,-d −−

-b,+d ++

+b,+d ++ ++

(e) M-P pseudoinverse with “sign”

-b,-d +b,-d -b,+d +b,+d
-b,-d −− −−

+b,-d −−

-b,+d ++

+b,+d ++ ++

1 “+” ,“-”,“b” and “d” have the same meaning as in Table 3.
2 “ −−” means the method in the row is statistically significantly worse than the method in the column.
3 “++” means the method in the row is statistically significantly better than the method in the column.
4 “M-P” stands for Moore-Penrose.

which allows for the use of z-test: if the number of wins is at least N/2 + 1.96
√

N/2(or, for a quick rule of a thumb,
N/2 +

√
N), the algorithm is significantly better with p < 0.05. In this case, if one algorithm wins more than 71.28

times on 121 datasets, then it is considered as statistically significantly better than the other one. These cases are
highlighted in Table 6. Table 6 summarizes the results for each pair of comparisons. The entry in each column repre-
sents the number of times ridge regression (pseudoinverse) is better than pseudoinverse (ridge regression) for the same
activation function. For example, the first column means ridge regression is better than Moore-Penrose pseudoinverse
in 59 of 121 datasets and worse in 57 of 121 datasets. Generally, ridge regression leads to a better performance for
almost all cases.

2.4. Overall Comparison
In this section, we present an overall comparison of the RVFL variants. Since we have already found that hardlim

and sign activation functions consistently performed poorly, RVFL with these two activation functions will be ex-
cluded in this comparison. Hence, an overall comparison with 36 RVFL variants is presented in Table 7. In the same
way, pairs of methods whose ranks differ by more than 4.5589 are statistically significantly different.

2.5. Range of the random parameters
In [17], the authors indicate that the performance of the RVFL may depend on the ranges of uniformly distributed

random weights. However, this issue has been untouched in the literature to the best of the authors’ knowledge. In
this work, we investigate this issue by introducing one scaling factor S to control the ranges of the randomization.
This process can also shed light on the effect of saturation of hidden neurons in RVFL. Based on the performance in
previous section, we choose ridge regression based RVFL with radbas activation function because it achieves the best
performance among all variants.
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Table 5: Statistical significance test for different activation functions. The values in bracket stands for their average rank. Lower
values stands for better performance. The mark

√
indicates that these two methods are statistically significantly different.

(a) -bias, -link, Ridge regression
sigmoid sine hardlim tribas radbas sign
(3.18) (2.67) (4.83) (2.95) (2.48) (4.89)

sigmoid √ √ √

(3.18)
sine √ √

(2.67)
hardlim √ √ √ √

(4.83)
tribas √ √

(2.95)
radbas √ √ √

(2.48)
sign √ √ √ √

(4.89)

(b) +bias, -link, Ridge regression
sigmoid sine hardlim tribas radbas sign
(3.16) (2.69) (4.80) (2.98) (2.49) (4.88)

sigmoid √ √ √

(3.16)
sine √ √

(2.69)
hardlim √ √ √ √

(4.80)
tribas √ √

(2.98)
radbas √ √ √

(2.49)
sign √ √ √ √

(4.88)

(c) -bias, +link, Ridge regression
sigmoid sine hardlim tribas radbas sign
(3.45) (2.91) (4.36) (2.98) (2.76) (4.55)

sigmoid √ √ √

(3.45)
sine √ √

(2.91)
hardlim √ √ √ √

(4.36)
tribas √

√

(2.98)
radbas √ √ √

(2.76)
sign √ √ √ √

(4.55)

(d) +bias, +link, Ridge regression
sigmoid sine hardlim tribas radbas sign
(3.37) (2.98) (4.37) (3.02) (2.71) (4.54)

sigmoid √ √ √

(3.37)
sine √ √

(2.98)
hardlim √ √ √ √

(4.37)
tribas √

√

(3.02)
radbas √ √ √

(2.71)
sign √ √ √ √

(4.54)

(e) -bias, -link, Moore-Penrose pseudoinverse
sigmoid sine hardlim tribas radbas sign
(2.79) (2.82) (4.68) (3.36) (2.60) (4.75)

sigmoid √ √

(2.79)
sine √ √

(2.82)
hardlim √ √ √ √

(4.68)
tribas √ √ √

(3.36)
radbas √ √ √

(2.60)
sign √ √ √ √

(4.75)

(f) +bias, -link, Moore-Penrose pseudoinverse
sigmoid sine hardlim tribas radbas sign
(2.73) (2.96) (4.68) (3.34) (2.59) (4.69)

sigmoid √ √

(2.73)
sine √ √

(2.96)
hardlim √ √ √ √

(4.68)
tribas √ √ √

(3.34)
radbas √ √ √

(2.59)
sign √ √ √ √

(4.69)

(g) -bias,+link, Moore-Penrose pseudoinverse
sigmoid sine hardlim tribas radbas sign
(3.10) (2.95) (4.19) (3.56) (2.93) (4.27)

sigmoid √ √

(3.10)
sine √ √

(2.95)
hardlim √ √ √ √

(4.19)
tribas √ √

(3.56)
radbas √ √

(2.93)
sign √ √ √ √

(4.27)

(h) +bias, +link, Moore-Penrose pseudoinverse
sigmoid sine hardlim tribas radbas sign
(3.17) (3.05) (4.08) (3.58) (2.99) (4.12)

sigmoid √ √

(3.17)
sine √ √

(3.05)
hardlim √ √ √ √

(4.08)
tribas √

√

(3.58)
radbas √ √

(2.99)
sign √ √ √ √

(4.12)

In previously section, the random weights are generated with uniform distribution in [-1,1], as done exactly in [35],
while the biases are in [0,1]. In this section, the random weights and biases are generated with uniform distribution in
[−S , S ] and [0, S ] respectively, where S is a positive scaling factor. In this work, we set S = 2t, t is set to be -5:0.5:5.
The performances 21 RVFL configurations with direct links and bias are summarized in Fig. 2. It is obvious that
all RVFL variants perform poorly when the range of the random parameters becomes either too large or too small.
Another interesting conclusion is the commonly adopted approach that S = 1 for the randomization may not lead to
the optimal performance.

For RVFL without direct link, setting t > 0 for scaling factor S to increase the discrimination power of the features
in the hidden neurons may make more neurons to saturate. This can be compensated by either having more hidden
neurons or the direct link from the input layer to the output layer. On the other hand, setting t < 0 for scaling factor
S to reduce the possibility of neuronal saturation may reduce the discrimination power of the features in the hidden
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Table 6: Comparisons between ridge regression and Moore-Penrose pseudoinverse. The entry in each column rep-
resents the number of times ridge regression (pseudoinverse) is better than pseudoinverse (ridge regression) for the
same activation function. Statistically significant columns are highlighted.

(a) -bias, -link,

sigmoid sine hardlim tribas radbas sign
Ridge Regression 59 61 80 78 63 80

Moore-Penrose pseudoinverse 57 56 36 38 54 37

(b) +bias, -link,

sigmoid sine hardlim tribas radbas sign
Ridge Regression 57 70 81 77 63 81

Moore-Penrose pseudoinverse 58 48 36 40 54 37

(c) -bias, +link,

sigmoid sine hardlim tribas radbas sign
Ridge Regression 64 57 68 76 58 63

Moore-Penrose pseudoinverse 52 56 46 42 59 51

(d) +bias, +link,

sigmoid sine hardlim tribas radbas sign
Ridge Regression 68 61 67 78 63 63

Moore-Penrose pseudoinverse 49 56 47 39 53 51

Table 7: Overall Comparison based on overall ranks of 32 RVFL variants 1. Lower values in rank reflects better
performance.

Method RR, -b,-d,sigmoid, RR, +b,-d,sigmoid, RR, -b,+d,sigmoid, RR, +b,+d,sigmoid
Rank 18.3182 18.0579 17.0000 16.6860

method RR, -b,-d,sine, RR,+b,-d,sine, RR,-b,+d,sine, RR,+b,+d,sine
Rank 15.1157 15.2603 14.5455 14.9421

method RR, -b,-d,tribas, RR,+b,-d,tribas, RR,-b,+d,tribas, RR,+b,+d,tribas
Rank 16.7810 16.7479 15.1446 15.5702

method RR, -b,-d,radbas, RR,+b,-d,radbas, RR,-b,+d,radbas, RR,+b,+d,radbas
Rank 13.9545 14.0083 13.2686 13.4256

Method MP, -b,-d,sigmoid, MP, +b,-d,sigmoid, MP, -b,+d,sigmoid, MP, +b,+d,sigmoid
Rank 17.0124 16.7149 16.5124 16.9298

method MP, -b,-d,sine, MP,+b,-d,sine, MP,-b,+d,sine, MP,+b,+d,sine
Rank 17.3223 18.2066 15.7107 16.3678

method MP, -b,-d,tribas, MP,+b,-d,tribas, MP,-b,+d,tribas, MP,+b,+d,tribas
Rank 20.8636 20.9876 19.7934 20.1612

method MP, -b,-d,radbas, MP,+b,-d,radbas, MP,-b,+d,radbas, MP,+b,+d,radbas
Rank 15.4504 16.5785 15.0496 15.5124

1 RR and MP stand for ridge regression and Moore-Penrose pseudoinverse, respectively. “+” ,“-”,“b” and “d” are the
same meaning as in Table 3.
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Figure 2: Performance of RVFL based for different ranges of randomization. Smaller rank indicates better accuracy
and less number of hidden neurons. N stands for the number of hidden neurons corresponding to the testing accuracy
used in the ranking.

neurons. Again, this can be compensated to some degree by having more hidden neurons or the direct link from the
input layer to output layer. In Table 8 and Table 9, we also present rank values based on accuracies and number
of hidden neurons of different RVFL variants for different scaling factor S with t = −1.5 : 0.5 : 1.5 since their
performance is consistently better than others as indicated in Fig. 2. The average rank values based on accuracies of
RVFL when all parameters (N, λ, S ) are tuned are presented in Table 10.

Table 8: Average rank values of RVFL based on accuracies for different scale factor values over 121 datasets. Each
column stands for a distinct comparison. Lower rank means higher accuracy. All RVFLs use ridge regression solution
and radbas activation function.

Method S = 2−1.5 S = 2−1 S = 2−0.5 S = 1 S = 20.5 S = 21 S = 21.5

-b,-d 2.6446 2.5992 2.5992 2.6612 2.7231 2.6322 2.6653
+b,-d 2.6529 2.5785 2.6446 2.6405 2.6736 2.6860 2.7355
-b,+d 2.4298 2.4752 2.3140 2.3182 2.3430 2.4215 2.3182
+b,+d 2.2727 2.3471 2.4421 2.3802 2.2603 2.2603 2.2810

Table 9: Average rank values of RVFL based on the number of hidden neurons for different scale factor values over
121 datasets. Each column stands for a distinct comparison. Lower rank means less number of hidden neurons. All
RVFLs use ridge regression solution and radbas activation function.

Method S = 2−1.5 S = 2−1 S = 2−0.5 S = 1 S = 20.5 S = 21 S = 21.5

-b,-d 2.6818 2.6529 2.6322 2.5868 2.6653 2.6736 2.6942
+b,-d 2.6488 2.7025 2.5785 2.5785 2.6488 2.6570 2.6281
-b,+d 2.3760 2.3140 2.3760 2.4091 2.3636 2.3926 2.3099
+b,+d 2.2934 2.3306 2.4132 2.4256 2.3223 2.2769 2.3678

Results in Table 8 and Table 10 are consistent with the previous subsections which clearly indicate the advantage
of the direct link. Moreover, RVFL with direct link achieves better accuracy with less number of hidden neurons. The
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Table 10: Average rank values of RVFL based on accuracies when all parameters (N, λ, S ) are tuned. Lower rank
means higher accuracy. All RVFLs use ridge regression solution and radbas activation function.

-b,-d +b,-d -b,+d +b,+d
Rank 2.8140 2.6653 2.3430 2.1777

direct link from input layer to output layer severs as a standing out regularization and make a high chance for RVFL
to achieve a better performance with high possibility than those without direct link. That is, with smaller number of
random hidden neurons, direct link in RVFL leads to a thinner and simpler model than those without. For a given set
of observations or data, there is always an infinite number of possible hypotheses fit the same data. According to the
Occams Razor principle, one should choose from a set of otherwise equivalent models of a given phenomenon the
simplest one. For example, it is possible for us to further increase the performance of RVFL if we enlarger the number
of random hidden neurons. “Super flat” RVFL models (i.e. with a large number of hidden neurons) are more likely to
overfit the available data. This is also in line with the PAC learning theory [18] that advocates for learning with lower
complexity models. Hence, the tuning range for the number of hidden neurons can be relatively narrower for RVFL
with direct links.

3. Concluding Remarks

In this work we presented extensive and comprehensive evaluation of variants of RVFL with closed-form solution
by using 121 UCI datasets [11]. The conclusion of our investigations are as follows:

1. The effect of the direct links from the input layer to the output layer. It turns out that the direct links lead to
better performance than those without in all cases as seen in Table 4.

2. The effect of the bias in the output layer. It turns out that the bias term in the output neurons only has mixed
effects on the performance, as it may or may not improve performance. Hence, bias can be a tunable network
configuration depending on the specific problem.

3. Effect of scaling the randomization range of input weights and biases. We show scaling down the randomization
range of input weights and biases to avoid saturating the neurons may risk at degenerating the discrimination
power of the random features. However, this can be compensated by having more hidden neurons or direct
link. Scaling the randomization range of input weights and biases up to enhance the discrimination power of
the random features may risk saturating the neurons. Again, this can be compensated by having more hidden
neurons or combining with the direct link from the input to the output layer. However, for reasons explained in
Subsection 2.5, we prefer lower model complexity.

4. The performance of 6 commonly used activation functions summarized in Table 1. It turns out that radbas
function always leads to a better performance. hardlim and sign activation functions lead to penultimate worst
and worst performances, respectively.

5. The performance of Moore-Penrose pseudoinverse and ridge regression (or regularized Least Square) solutions
for the output weights. It turns out that with one more parameter (λ in Eq. (2)) to tune, ridge regression based
RVFL shows better performance than the Moore-Penrose pseudoinverse based RVFL.

This work sets a basis for future research for random vector functional link network. Future studies and develop-
ments of RVFL may include:

1. Performance of RVFL ensemble. Neural network has low bias and high variance [4]. Hence, the performance
of RVFL can be significantly improved by ensemble methods.

2. Performance of kernel methods with RVFL. Recent research [32, 33, 2] shows the success of random features for
large-scale kernel machines. Hence, it is worthy to investigate kernel machines with random features extracted
from RVFL.
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3. Performance of deep RVFL structure. Recent work in computer vision and machine learning community
demonstrates the success of deep neural networks [19]. Hence, how to design a good deep RVFL structure
for a specific problem is an open problem now.
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