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Abstract

This paper implements Wilmoth’s [Computational methods for fitting and extrapolating the Lee–Carter model of mortality
change, Technical report, Department of Demography, University of California, Berkeley] and Alho’s [North American
Actuarial Journal 4 (2000) 91] recommendation for improving the Lee–Carter approach to the forecasting of demographic
components. Specifically, the original method is embedded in a Poisson regression model, which is perfectly suited for
age–sex-specific mortality rates. This model is fitted for each sex to a set of age-specific Belgian death rates. A time-varying
index of mortality is forecasted in an ARIMA framework. These forecasts are used to generate projected age-specific mortality
rates, life expectancies and life annuities net single premiums. Finally, a Brass-type relational model is proposed to adapt
the projections to the annuitants population, allowing for estimating the cost of adverse selection in the Belgian whole life
annuity market.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and motivation

1.1. Mortality on the move

Mortality improvements are viewed as a positive change for individuals and as a substantial social achievement.
Nevertheless, they pose a challenge for the planning of public retirement systems as well as for the private life annu-
ities business. More generally, all the components of social security systems, including disability and survivorship
benefits, as well as medical care for the aged, are affected by mortality trends, not only old-age pensions. Similarly,
other insurance products sold by private companies are influenced by improvements in longevity. A prime example
is post-retirement sickness cover (in particular medical expenses cover indemnifying the insured from his retirement
age on for the cost incurred in obtaining medical treatment).

During the 20th century, the human mortality globally declined. To have an idea of this evolution,Table 1
displays increases in life expectancies at birth (e0) and at age 65 (e65) calculated from Belgian period lifetables
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Table 1
Evolution ofe0 ande65 in Belgium

Period e0 e65

Men Women Men Women

1880–1890 43.29 46.51 10.67 11.60
1928–1932 56.03 59.80 11.42 12.56
1946–1949 62.03 67.26 12.32 13.87
1959–1963 67.15 73.18 12.43 14.83
1968–1972 67.78 74.20 12.59 15.28
1979–1982 70.03 76.80 12.94 16.91
1988–1990 72.42 79.12 14.02 18.30
1991–1993 72.99 79.77 14.50 18.79
1994–1996 74.06 80.75 15.21 19.58
1997–1999 74.76 81.17 15.62 19.85

(source: National Institute of Statistics, Brussels); for more details about the evolution of mortality in Belgium
during 1880–1999, seeBrouhns and Denuit (2001a). Notice thate0 ande65 have significantly increased for both
sexes, although progresses have occurred at an uneven rate.

Since 1970, the main factor driving continued gains in life expectancy in industrialized countries is a reduc-
tion of death rates among the elderly. Based on available demographic evidence, the human life span shows no
sign of approaching a fixed limit imposed by biology or other factors. Rather, both the average and the maxi-
mum life span have increased steadily during the 20th century. For more details, we refer the interested reader to
Wilmoth (1997)andWilmoth et al. (2000). The complexity and historical stability of these changes suggest that
the most reliable method of predicting the future is merely to extrapolate past trends, as pointed out byWilmoth
(2000).

1.2. Projected lifetables

When living benefits are concerned, the calculation of expected present values (needed in pricing and reserving)
requires an appropriate mortality projection in order to avoid underestimation of future costs. This is because
mortality trends at adult/old ages reveal decreasing annual death probabilities; see, e.g.Benjamin and Soliman
(1993), and references therein. Mortality improvements have obvious effects on pricing and reserving for life
annuities; see, e.g.Marocco and Pitacco (1998), Olivieri (2001)andCoppola et al. (2000). More generally, such
trends affect any insurance cover providing some kind of “living benefits”, such as long term care benefits or lifetime
sickness benefits, as pointed out inOlivieri and Pitacco (1999, 2001). Olivieri and Pitacco (2000)discussed solvency
requirements for life annuities.

In order to protect the company from mortality improvements, actuaries have to resort to lifetables including a
forecast of the future trends of mortality (the so-called projected tables). Different approaches for building these
technical bases have been developed by actuaries and demographers. SinceCramér and Wold (1935), the evolution
over time of graduated mortality curves is popular for the purpose of extrapolation. One classical procedure is based
on the projection of parameters (see, e.g.Benjamin and Soliman (1993)). In the authors’ opinion, this approach
suffers from serious drawbacks. Indeed, it first heavily relies on the appropriateness of the retained parametric
models (as Makeham, for instance). Secondly, the estimated parameters are often strongly dependent so that uni-
variate extrapolations may be misleading. Building a multivariate time series for the parameters is theoretically
possible but seriously complicates the approach. The method applied in this paper avoids these problems, being
simultaneously distribution-free and defining a univariate mortality index to be forecasted for generating mortality
projections.
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1.3. Extending the Lee–Carter approach

Lee and Carter (1992)proposed a simple model for describing the secular change in mortality as a function of
a single time index. The method describes the log of a time series of age-specific death rates as the sum of an
age-specific component that is independent of time and another component that is the product of a time-varying
parameter reflecting the general level of mortality, and an age-specific component that represents how rapidly or
slowly mortality at each age varies when the general level of mortality changes. This model is fitted to historical
data. The resulting estimate of the time-varying parameter is then modeled and projected as a stochastic time series
using standard Box–Jenkins methods. From this forecast of the general level of mortality, the actual age-specific
rates are derived using the estimated age effects.

This paper aims to investigate possible improvements of the powerful Lee–Carter method, in the spirit ofWilmoth
(1993) and Alho (2000). Specifically, we switch from a classical linear model to a generalized linear model,
substituting Poisson random variation for the number of deaths for an additive error term on the logarithm of
mortality rates. It is worth to mention that the Poisson distribution is well suited to mortality analyses; see, e.g.
Brillinger (1986)andMcDonald (1996a–c)for more details. It has been successfully applied byRenshaw and
Haberman (1996)andSithole et al. (2000)to the forecasting of mortality trends. As in the Lee–Carter method,
time series are used to make long-run forecasts of age–sex-specific mortality. We believe that this improvement
makes the model more intuitively acceptable. The two approaches will be compared on the basis of Belgian
mortality data.

1.4. Agenda

The paper is organized as follows.Section 2makes precise the notation and assumption used throughout this
paper. It also briefly describes the data to be analyzed in the empirical part of this paper. InSection 3, we present the
main features of the classical Lee–Carter methodology for projecting mortality.Section 4is devoted to the variant
of the Lee–Carter methodology studied in this paper. We carefully enhance the similarities and differences between
the two approaches for readers’ convenience. InSection 5, we apply both models on Belgian data.Section 6deals
with the adverse selection, particularly important in the annuities market. A Brass-type relational model is used to
adapt forecasts to the annuitants’ mortality (reflected in the statistics gathered by the Belgian regulatory authorities).
Section 7gives the final conclusions.

2. Notation, assumption and data

2.1. Notation

We analyze the changes in mortality as a function of both agex and timet . This “period analysis” is known to
be more appropriate than a “cohort analysis”; we refer the interested reader, e.g. toTuljapurkar and Boe (1998)for
more details. Henceforth,µx(t) will denote the force of mortality at agex during calendar yeart . We denote asDxt

the number of deaths recorded at agex during yeart , from an exposure-to-riskExt (i.e.,Ext is the number of person
years from whichDxt occurred).

2.2. Piecewise constant forces of mortality

In this paper, we assume that the age-specific mortality rates are constant within bands of time, but allowed to
vary from one band to the next. Specifically, given any integer agex and calendar yeart , it is supposed that

µx+τ (t) = µx(t) for 0 ≤ τ < 1. (2.1)
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This is best illustrated with the aid of a coordinate system that has calendar time as abscissa and age as coordinate.
Such a representation is called a Lexis diagram after the German demographer who introduced it. Both time scales
are divided into yearly bands, which partition the Lexis plane into rectangular segments. Model(2.1)assumes that
the mortality rate is constant within each rectangle, but allows it to vary between rectangles.

Henceforth, we denote aspx(t) the probability that an individual agedx in yeart reaches agex + 1, asqx(t) =
1 − px(t) the corresponding death probability, asex(t) the expected remaining lifetime of an individual reaching
agex during yeart , and asax(t) the net single premium relating to a life annuity sold to an individual agedx in
year t . Tedious but straightforward computations show that under(2.1), we have for integer agex and calendar
yeart :

px(t) = exp(−µx(t)) = 1 − qx(t),

ex(t) = 1 − exp(−µx(t))

µx(t)
+

∑
k≥1




k−1∏
j=0

exp(−µx+j (t + j))


 1 − exp(−µx+k(t + k))

µx+k(t + k)
,

ax(t) =
∑
k≥0




k∏
j=0

px+j (t + j)


 vk+1,

wherev = (1 + i)−1 is the discount factor corresponding to the yearly interest ratei. Throughout this paper, we
have takeni = 4% for the numerical illustrations.

2.3. Data

The models presented in this paper are fitted to the matrix of Belgian death rates, 1960–1998. Data relating
to the entire Belgian population have been provided by the National Institute of Statistics. In addition to these
national data, we resort to market data to quantify the impact of adverse selection on the price of life annuities.
These data have been supplied by the Belgian regulatory authorities (Office de Contrôle des Assurances, OCA;
Controle Dienst der Verzekeringen, CDV). They are only available for a few years (1997–1999) but are of excellent
quality. Indeed, OCA–CDV requires the companies to provide exposure-to-risk measured in person years, together
with observed deaths in each age group. These data allow for an accurate estimation of age–sex-specific forces
of mortality.

3. Lee–Carter classical methodology

3.1. Model

A powerful and elegant approach to mortality forecasts has been pioneered byLee and Carter (1992). Those
authors proposed a remarkably simple model for mortality projections, specifying a log-bilinear form for the force
of mortalityµx(t). The method is in essence a relational model

ln µ̂x(t) = αx + βxκt + εx(t), (3.1)

whereµ̂x(t) denotes the observed force of mortality at agex during yeart , theεx(t)’s are homoskedastic centered
error terms and where the parameters are subject to the constraints∑

t

κt = 0 and
∑
x

βx = 1 (3.2)

ensuring model identification.
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When the model(3.1) is fit by ordinary least-squares (OLS), interpretation of the parameters is quite simple:

αx : the fitted values ofαx exactly equals the average of ln̂µx(t) over timet so that expαx is the general shape of
the mortality schedule;

βx : represents the age-specific patterns of mortality change. It indicates the sensitivity of the logarithm of the force
of mortality at agex to variations in the time indexκt . In principle,βx could be negative at some agesx,
indicating that mortality at those ages tends to rise when falling at other ages. In practice, this does not seem
to happen over the long run.

κt : represents the time trend. The actual forces of mortality change according to an overall mortality indexκt
modulated by an age responseβx . The shape of theβx profile tells which rates decline rapidly and which
slowly over time in response of change inκt .

The error termεx(t), with mean 0 and varianceσ 2
ε reflects particular age-specific historical influence not captured

in the model.

3.2. OLS estimation

The model(3.1)is fitted to a matrix of age-specific observed forces of mortality using singular value decomposition
(SVD). Specifically, thêαx ’s, β̂x ’s andκ̂t ’s are such that they minimize∑

x,t

( ln µ̂x(t) − αx − βxκt )
2. (3.3)

It is worth mentioning that model(3.1) is not a simple regression model, since there are no observed covariates in
the right-hand side. The minimization of(3.3) consists in taking for̂αx the row average of the ln̂µx(t)’s, and to
get theβ̂x ’s andκ̂t ’s from the first term of an SVD of the matrix ln̂µx(t) − α̂x . This yields a single time-varying
index of mortalityκt .

Before proceeding directly to modeling the parameterκ̂t as a time series process, theκ̂t ’s are adjusted (takinĝαx

andβ̂x estimates as given) to reproduce the observed number of deaths
∑

x Dxt, i.e., theˆ̂κt ’s solve∑
x

Dxt =
∑
x

Ext exp(α̂x + β̂x
ˆ̂κt ). (3.4)

So, theκt ’s are reestimated so that the resulting death rates (with the previously estimatedα̂x andβ̂x), applied to
the actual risk exposure, produce the total number of deaths actually observed in the data for the yeart in question.
There are several advantages to make this second-stage estimate of the parametersκt . In particular, it avoids sizable
discrepancies between predicted and actual deaths (occurring because the first step is based on logarithms of death
rates). Other advantages are discussed byLee (2000).

3.3. Modeling the index of mortality

An important aspect of Lee–Carter methodology is that the time factorˆ̂κt is intrinsically viewed as a stochastic
process. Box–Jenkins techniques are then used to estimate and forecastκt within an ARIMA times series model.
These forecasts in turn yield projected age-specific mortality rates, life expectancies and annuities single premiums.

3.4. Comments

The original Lee–Carter method was used to aggregate (sexes combined) US data.Carter and Lee (1992)im-
plemented their model for males and females separately, showing that the two series are best treated as declining
independently.Wilmoth (1996)applied Lee–Carter methods to forecast Japanese mortality and also experimented
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with variants of this model.Lee and Nault (1993)applied Lee–Carter methods to model Canadian mortality,Lee and
Rofman (1994)fitted model(3.1)to Chilean data, andBrouhns and Denuit (2001b)did the same for Belgian statistics.

It should be noted that the Lee–Carter method does not attempt to incorporate assumptions about advances in
medical science or specific environmental changes; no information other than previous history is taken into account.
This means that this approach is unable to forecast sudden improvements in mortality due to the discovery of new
medical treatments or revolutionary cures including antibiotics. Similarly, future deteriorations caused by epidemics,
the apparition of new diseases or the aggravation of pollution cannot enter the model. The actuary has to keep this
in mind when he sets his reinsurance program.

The Lee–Carter methodology is a mere extrapolation of past trends. All purely extrapolative forecasts assume that
the future will be in some sense like the past. Some authors (see, e.g.Gutterman and Vanderhoof (2000)) severely
criticized this approach because it seems to ignore underlying mechanisms. As pointed out byWilmoth (2000), such
a critique is valid only in so far as such mechanisms are understood with sufficient precision to offer a legitimate
alternative method of prediction. The understanding of the complex interactions of social and biological factors that
determine mortality levels being still imprecise, the extrapolative approach to prediction is particularly compelling
in the case of human mortality.

4. Poisson modeling for the number of deaths and Lee–Carter methodology

4.1. Model

According toAlho (2000), the model described inequation (3.1)is not well suited to the situation of interest.
As already mentioned, the main drawback of the OLS estimation via SVD is that the errors are assumed to be
homoskedastic. This is related to the fact that for inference we are actually assuming that the errors are normally
distributed, which is quite unrealistic. The logarithm of the observed force of mortality is much more variable at
older ages than at younger ages because of the much smaller absolute number of deaths at older ages.

Because the number of deaths is a counting random variable, according toBrillinger (1986), the Poisson assump-
tion appears to be plausible. In order to circumvent the problems associated with the OLS method, we now consider
that

Dxt ∼ Poisson(Extµx(t)) with µx(t) = exp(αx + βxκt ), (4.1)

where the parameters are still subjected to the constraints(3.2). The force of mortality is thus assumed to have the
log-bilinear form lnµx(t) = αx + βxκt . The meaning of theαx , βx , andκt parameters is essentially the same as
in the classical Lee–Carter model.

4.2. Maximum likelihood estimation

Instead of resorting to SVD for estimatingαx , βx andκt , we now determine these parameters by maximizing the
log-likelihood based on model(4.1), which is given by

L(α,β, κ) =
∑
x,t

{Dxt(αx + βxκt ) − Ext exp(αx + βxκt )} + constant.

Because of the presence of the bilinear termβxκt , it is not possible to estimate the proposed model with commercial
statistical packages that implement Poisson regression. However, the LEM program(Vermunt, 1997a,b)can be used
for this purpose. InAppendix A, we give the quite simple LEM input files that we used for our analyses.

The algorithm implemented in LEM to solve the likelihood equations is a uni-dimensional or elementary Newton
method.Goodman (1979)was the first who proposed this iterative method for estimating log-linear models with
bilinear terms. In iteration stepν+1, a single set of parameters is updated fixing the other parameters at their current
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estimates using the following updating scheme

θ̂ (ν+1) = θ̂ (ν) − ∂L(ν)/∂θ

∂2L(ν)/∂θ2
,

whereL(ν) = L(ν)(θ̂ (ν)).
In our application, there are three sets of parameters, i.e., theαx , theβx , and theκt terms. The updating scheme

is as follows, starting witĥα(0)
x = 0, β̂(0)

x = 1, andκ̂ (0)
t = 0 (random values can also be used)

α̂(ν+1)
x = α̂(ν)

x −
∑

t (Dxt − D̂
(ν)
xt )

− ∑
t D̂

(ν)
xt

, β̂(ν+1)
x = β̂(ν)

x , κ̂
(ν+1)
t = κ̂

(ν)
t ,

κ̂
(ν+2)
t = κ̂

(ν+1)
t −

∑
x(Dxt − D̂

(ν+1)
xt )β̂

(ν+1)
x

− ∑
x D̂

(ν)
xt (β̂

(ν+1)
x )2

, α̂(ν+2)
x = α̂(ν+1)

x , β̂(ν+2)
x = β̂(ν+1)

x ,

β̂(ν+3)
x = β̂(ν+2)

x −
∑

t (Dxt − D̂
(ν+2)
xt )κ̂

(ν+2)
t

− ∑
t D̂

(ν+2)
xt (κ̂

(ν+2)
t )2

, α̂(ν+3)
x = α̂(ν+2)

x , κ̂
(ν+3)
t = κ̂

(ν+2)
t ,

whereD̂(ν)
xt = Ext exp(α̂(ν)

x + β̂
(ν)
x κ̂

(ν)
t ), or the estimated number of deaths after iteration stepν. The criterion used

to stop the procedure is a very small increase of the log-likelihood function (the default value of LEM is 10−6, but
it can be recommmended to set the criterion a little bit sharper, so to 10−10).

After updating theκt parameters, we have to impose a location constraint. LEM uses the centering constraint∑
t κ̂t = 0, which is the same constraint as in the Lee–Carter parameterization. This constraint is specified with a

design matrix, namely thespe() statement in the code given inAppendix A. After updating theβx parameters, a
scaling constraint has to be imposed. The scaling constraint used by LEM isβ̂1 = 1, which is different from the
Lee–Carter parameterization. In order to obtain the Lee–Carter parameterization in which

∑
x β̂x = 1, one has to

divide the LEM estimates forβx by
∑

x β̂x and multiply the LEM estimates forκt by the same number.
Another option to take the constraint

∑
t κt = 0 into account consists in computing the updates for theκt ’s without

constraints and centering the updates before really updating theκt ’s. This simple method only works because we
are dealing with an identification constraint (not a model restriction).

Contrarily to the classical Lee–Carter approach (where SVD is applied to transformed mortality rates), the error
applies directly on the number of deaths in the Poisson regression approach. There is thus no need of a second-stage
estimation like(3.4).

4.3. Modeling the index of mortality

We do not modify the time series part of the Lee–Carter methodology. Estimates ofαx andβx are used with
forecastedκt to generate other lifetable functions.

5. An application to Belgian population mortality statistics

5.1. Model selection

Table 2reports the value of the likelihood-ratio statistic (L2) for various models we estimated using the Belgian
population mortality statistics. It is obtained by comparing the current model with the saturated model, i.e.:

L2 = 2
∑
x

∑
t

Dxt ln

(
Dxt

D̂xt

)
,
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Table 2
Testing results for the estimated Poisson models

Model Women Men

L2 �L2 L2 �L2

αx 82 313 44 674
αx + κt 13 150 0.840 11 133 0.751
αx + β · t 15 712 0.809 15 856 0.645
αx + βxκt 7 083 0.914 6 395 0.857
αx + βx · t 10 430 0.873 12 677 0.716

whereD̂xt is the estimated number of deaths in the model concerned. It is a real badness-of-fit measure: the
smaller isL2 the better is the model. Model 4 is the Lee–Carter model. In order to get an impression on its
performance in describing the time trend in the age-specific death rates, we also estimated four more restricted
models. These models assume time-constant age-specific rates (1), age-independent trend (2), age-independent linear
trend (3), and age-dependent linear trend (5). The fit measures show that our bilinear model outperforms these more
parsimonious specifications. More precisely, both the assumption of an age-independent and a linear time trend is too
restrictive.

The�L2 measures denote the proportional reduction ofL2 compared to the model with time-constant mortality
rates (model 1). It indicates which proportion of the observed change in rates over time can be explained by a model
with a time trend. As can be seen, the Lee–Carter model reduces theL2 with 91.4% among females and 85.7%
among males. These proportions can be increased by including additional terms to the model such as, for example,
a second bilinear term. If we extend the model with a second bilinear term, we obtain�L2 values of 96.3 and
93.6% for females and males, respectively. The inclusion of a second bilinear term moderately improves the fit but
seriously complicates the analysis (because two dependent time indices have now to be extrapolated in the future).
Therefore, we confine our study to the single bilinear term model.

5.2. Parameter estimates

For the sake of comparison, we give on all figures both the results obtained with the classical Lee–Carter
methodology (dashed lines) and the ones obtained with the Poisson modeling described inSection 4(solid lines).

Fig. 5.1plots the estimatedαx , βx andκt (for the female population). This clearly illustrates the fact that similar
trends are observed even if the way to calculateαx , βx andκt are different.Appendices B, C and Dcontain the
detailed numerical values.

5.3. Forecasting

Box–Jenkins methodology (identification–estimation–diagnosis) is used to generate the appropriate ARIMA time
series model for the male and female mortality indexes. The estimated models (ARIMA(0,1,1)) are

κt − κt−1 = Cm + εt + θmεt−1 (5.1)

for males and

κt − κt−1 = Cf + εt + θf εt−1 (5.2)

for females. The constant terms (Cm andCf ) indicate the average annual change ofκt , and it is this change that
drives the forecasts of the long-run change in mortality. Theεt is the independent disturbance (random error). The
resulting values for the parameters of the models are given inTable 3, both for theκt ’s obtained via the classical
Lee–Carter method and for the Poisson case.
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Fig. 5.1. Estimations ofαx , βx andκt .
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Table 3
Estimation of the parameters of the models(5.1) and (5.2)

Men Women

Ĉm θ̂m Ĉf θ̂f

SVD −0.34988 −0.39603 −0.63191 −0.46299
Poisson −0.31324 −0.27881 −0.54574 −0.48978

The sex-specific estimated values ofκt are shown with their 95% interval forecasts inFig. 5.2. Appendix Dgives
the complete results in tabular form. The fitted ARIMA(0,1,1) model generates mortality forecasts by first forecasting
κt . The reconstituted sex-specific forces of mortality are then used to generate sex-specific life expectancies and
life annuities. Most of the variance over time at any given age is explained by the parameterκt . Proportions of the
variance accounted for by the model (ratio of the variance of differences between the actual and fitted rates to the
variance for the actual rates) over the years 1960–1998 at different ages are given inTable 4. We see that for Belgian
data, the proportion of the total temporal variance in mortality rates accounted by both models ((3.1) and (4.1))
through ages 60–98 is in most of the cases above the 90%. The Poisson model performs better at the highest ages
(over 90). An overall measure of goodness-of-fit proposed byLee and Carter (1992)is obtained by summing all the

Fig. 5.2. Estimated values ofκt for the different cases.
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Table 4
Proportions of the variance accounted for by the model

Age SVD Poisson

Men Women Men Women

60 0.9613 0.9483 0.9662 0.9562
61 0.9778 0.9670 0.9798 0.9689
62 0.9767 0.9784 0.9770 0.9809
63 0.9806 0.9821 0.9801 0.9820
64 0.9828 0.9804 0.9845 0.9803
65 0.9864 0.9784 0.9873 0.9787
66 0.9817 0.9837 0.9836 0.9827
67 0.9817 0.9832 0.9848 0.9846
68 0.9850 0.9921 0.9873 0.9941
69 0.9855 0.9922 0.9893 0.9942
70 0.9779 0.9823 0.9818 0.9857
71 0.9818 0.9884 0.9849 0.9904
72 0.9714 0.9907 0.9738 0.9925
73 0.9792 0.9920 0.9805 0.9939
74 0.9772 0.9884 0.9759 0.9893
75 0.9851 0.9922 0.9843 0.9931
76 0.9895 0.9914 0.9896 0.9935
77 0.9806 0.9835 0.9799 0.9867
78 0.9806 0.9819 0.9780 0.9837
79 0.9874 0.9905 0.9858 0.9931
80 0.9835 0.9934 0.9814 0.9950
81 0.9922 0.9888 0.9905 0.9910
82 0.9879 0.9913 0.9842 0.9922
83 0.9729 0.9895 0.9689 0.9915
84 0.9712 0.9914 0.9662 0.9926
85 0.9842 0.9883 0.9827 0.9915
86 0.9808 0.9878 0.9796 0.9906
87 0.9828 0.9893 0.9826 0.9921
88 0.9733 0.9832 0.9741 0.9856
89 0.9547 0.9843 0.9565 0.9875
90 0.9504 0.9810 0.9528 0.9864
91 0.9677 0.9823 0.9708 0.9876
92 0.9316 0.9704 0.9408 0.9781
93 0.8965 0.9359 0.9129 0.9466
94 0.8538 0.9300 0.8818 0.9464
95 0.8866 0.9166 0.9090 0.9384
96 0.8714 0.8396 0.9027 0.8760
97 0.8966 0.7506 0.9158 0.8038
98 0.7369 0.8200 0.8228 0.8500
Overall 0.8859 0.8951 0.9079 0.9138

unexplained age group variances and taking their ratio to the sum of total variances over ages. These results can be
found in the last line ofTable 5. The Poisson model accounts for slightly more variability than its SVD counterpart.

5.4. Forecasting e65 and a65

Lee and Carter (1992, Appendix B)reported that for life expectancy forecasts, it is reasonable to restrict attention
to the errors in forecasting the mortality index and to ignore those in fitting the mortality matrix, even for short
run forecasts. Therefore, we have based the CI on the variability relating to the mortality index. The resulting life
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Table 5
Life expectancies at the age of 65, in function of the year this age is reached

Year Men CI Women CI

SVD
1999 16.01 [15.03, 16.96] 21.21 [19.89, 22.09]
2000 16.09 [15.06, 17.08] 21.33 [19.98, 22.24]
2001 16.17 [15.10, 17.21] 21.46 [20.07, 22.39]
2002 16.25 [15.14, 17.33] 21.59 [20.16, 22.54]
2003 16.33 [15.18, 17.44] 21.72 [20.25, 22.68]
2004 16.41 [15.22, 17.55] 21.84 [20.34, 22.82]
2005 16.49 [15.26, 17.67] 21.97 [20.44, 22.96]

Poisson
1999 15.91 [15.02, 16.78] 21.03 [19.99, 21.82]
2000 15.99 [15.04, 16.90] 21.15 [20.08, 21.96]
2001 16.06 [15.07, 17.02] 21.26 [20.17, 22.10]
2002 16.14 [15.11, 17.13] 21.38 [20.26, 22.24]
2003 16.21 [15.14, 17.24] 21.49 [20.35, 22.37]
2004 16.28 [15.18, 17.35] 21.60 [20.44, 22.50]
2005 16.36 [15.22, 17.46] 21.72 [20.53, 22.63]

Table 6
Life annuities at the age of 65, in function of the year this age is reached

Year Men CI Women CI

SVD
1999 10.68 [10.17, 11.17] 13.18 [12.64, 13.62]
2000 10.72 [10.19, 11.24] 13.24 [12.68, 13.69]
2001 10.77 [10.21, 11.31] 13.30 [12.72, 13.76]
2002 10.81 [10.23, 11.37] 13.36 [12.77, 13.83]
2003 10.86 [10.25, 11.43] 13.41 [12.81, 13.90]
2004 10.90 [10.27, 11.49] 13.47 [12.85, 13.96]
2005 10.94 [10.30, 11.55] 13.53 [12.90, 14.02]

Poisson
1999 10.63 [10.17, 11.08] 13.15 [12.71, 13.53]
2000 10.68 [10.18, 11.15] 13.21 [12.75, 13.60]
2001 10.72 [10.20, 11.21] 13.26 [12.79, 13.67]
2002 10.76 [10.22, 11.27] 13.31 [12.83, 13.73]
2003 10.80 [10.24, 11.33] 13.37 [12.87, 13.79]
2004 10.84 [10.25, 11.39] 13.42 [12.92, 13.85]
2005 10.88 [10.28, 11.45] 13.47 [12.96, 13.91]

expectancies at the age of 65 are given inTable 5, while the resulting life annuities can be found inTable 6. Both
methods are also compared here. It is interesting to note that the Poisson approach gives lower forecasts compared
to the classical Lee–Carter model.

6. Measuring the impact of adverse selection

6.1. Log-linear approach

A peculiarity of the mortality projection problem, which seems not to have been examined so far in the literature,
and which is crucial for actuaries, is the adverse selection characterizing life annuities markets. We resort here to a
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Brass-type relational model to quantify the impact of this phenomenon on annuity premiums. The idea is to build
a functionf (µx) and to relate the mortality in a population under study (the annuitants, in our case) to that in a
reference population whose mortality rates areµref

x (the whole Belgian population, in our case), so that

f (µx) = ϑ1 + ϑ2f (µref
x ).

Examples of the functionf (·) include logarithm and logit. Note that we have dropped the reference to the calendar
time t since the paucity of market data often forces the actuary to concentrate on a particular period of time.

Usually, the actuary has some mortality statistics about annuitants at his disposal, either market statistics, or data
from some insurance portfolio. Annuitants mortality data are often much more scarce than official statistics. It is
therefore hopeless to reproduce an approach in the spirit of the Lee–Carter method.

In Brouhns and Denuit (2001c), a clear linear relationship between forces of mortality relating to the entire
Belgian population (µNIS

x ) and the annuitants reflected in the statistics gathered by the regulatory authorities (µRA
x )

has been detected for the period 1997–1999 (explaining more than 96% of the variation, for both males and females).
Specifically, the model

ln µRA
x = ϑ1 + ϑ2 ln µNIS

x (6.1)

has been estimated on the basis of the 1997–1999 period lifetable (the last available from the Belgian National
Institute of Statistics). The results are displayed inTable 7.

Henceforth, let us denote asµNIS
x (t) (resp.µRA

x (t)) the mortality force of the Belgian population at agex during
yeart , as reflected in the NIS data (resp. of the Belgian annuitants at agex during yeart , as reflected in the data
collected by the Belgian regulatory authorities). Assuming that the relation(6.1) relating national and annuitants
forces of mortality remains valid over time, we get

µRA
x (t) = exp(ϑ1){µNIS

x (t)}ϑ2,

where we insert the estimates ofTable 7.

6.2. Poisson modelling

We can also address this problem with a Brass-type relational model, embedded in a Poisson regression framework.
We assume here that

DRA
x ∼ Poisson(Exµ

RA
x ) with µRA

x = exp{#1 + #2 ln µNIS
x },

where theµNIS
x ’s are treated as known constants. The model has been fitted to the data relating to the period

1997–1999. The parameter estimation via theSAS procedureGENMOD gives the results summarized inTable 8.
This is comparable toTable 7, except that we have gained in precision: the confidence intervals are in this case
smaller than with the linear approach.

Table 7
Results for the linear regression model

ϑ̂1 σ(ϑ̂1) 95% CI ϑ̂2 σ(ϑ̂2) 95% CI

Women −0.9512 0.1014 [−1.1499,−0.7525] 0.9453 0.0300 [0.8865, 1.0041]
Men −1.2928 0.0733 [−1.4365,−1.1491] 0.8322 0.0261 [0.7810, 0.8842]



386 N. Brouhns et al. / Insurance: Mathematics and Economics 31 (2002) 373–393

Table 8
Parameter estimation for the Poisson model

#̂1 σ(#̂1) 95% CI #̂2 σ(#̂2) 95% CI

Women −0.8706 0.0588 [−0.9859,−0.7553] 0.9522 0.0170 [0.9190, 0.9855]
Men −1.2401 0.0593 [−1.3564,−1.1238] 0.8422 0.0167 [0.8094, 0.8750]

Table 9
Comparison life expectancies and life anuities calculated with and without adjusting for antiselection

Year 65 is reached e65 Poisson eRA
65 SVD eRA

65 Poisson Deviation (%) a65 Poisson aRA
65 SVD aRA

65 Poisson Deviation (%)

Women
1999 21.03 26.90 25.44 21.0 13.15 15.44 15.07 14.6
2000 21.15 26.99 25.52 20.7 13.21 15.48 15.11 14.4
2001 21.26 27.07 25.61 20.4 13.26 15.52 15.15 14.2
2002 21.38 27.15 25.69 20.2 13.31 15.55 15.18 14.0
2003 21.49 27.24 25.77 19.9 13.37 15.59 15.22 13.9
2004 21.60 27.32 25.85 19.7 13.42 15.62 15.25 13.7
2005 21.72 27.39 25.93 19.4 13.47 15.65 15.29 13.5
2006 21.83 27.47 26.01 19.1 13.53 15.69 15.32 13.3
2007 21.94 27.55 26.09 18.9 13.58 15.72 15.36 13.1
2008 22.05 27.63 26.16 18.7 13.63 15.75 15.39 12.9
2009 22.16 27.70 26.24 18.4 13.68 15.79 15.42 12.8
2010 22.27 27.77 26.31 18.2 13.73 15.82 15.46 12.6

Men
1999 15.91 22.84 21.94 37.9 10.63 13.66 13.43 26.3
2000 15.99 22.89 22.00 37.6 10.67 13.69 13.46 26.1
2001 16.06 22.95 22.05 37.3 10.72 13.71 13.49 25.9
2002 16.14 23.00 22.11 37.0 10.76 13.74 13.52 25.7
2003 16.21 23.05 22.16 36.7 10.80 13.77 13.54 25.4
2004 16.28 23.10 22.22 36.4 10.84 13.79 13.57 25.2
2005 16.36 23.16 22.27 36.2 10.88 13.82 13.60 25.0
2006 16.43 23.21 22.33 35.9 10.92 13.84 13.62 24.8
2007 16.50 23.26 22.38 35.6 10.96 13.87 13.65 24.6
2008 16.58 23.31 22.43 35.3 11.00 13.89 13.67 24.4
2009 16.65 23.36 22.49 35.1 11.03 13.92 13.70 24.2
2010 16.72 23.41 22.54 34.8 11.07 13.94 13.73 23.9

6.3. Incorporating adverse selection in the price list

In order to be aware of the consequences of adverse selection on pure premiums, we have computed the difference
between life expectancies and life annuities calculated either on the whole Belgian population, either on the insured
population. The results are summarized inTable 9. Relative deviations were calculated as follows:(eRA

65 −eNIS
65 )/eNIS

65
(with eRA

65 calculated in the Poisson framework) and similarly(aRA
65 −aNIS

65 )/aNIS
65 . We see that the impact of adverse

selection on pure premiums relating to life annuities may be as large as 15% for women and 26% for men. As above,
the adaptation based on the Poisson model gives lower premiums than the linear regression approach.

7. Conclusion

This paper proposes a new method for building projected lifetables. We substituted a log-bilinear Poisson re-
gression model for SVD in the Lee–Carter approach, implementing a suggestion ofAlho (2000). The results are
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in accordance with those produced by SVD, but the Poisson approach allows for many other applications in life
insurance, in particular the projection of future cash flows.

In this paper, we have used the likelihood ratio statistic for model selection (i.e., to decide on retaining or deleting
some effects in the model). Another descriptive measure that could be used is the absolute difference between
observed and estimated cell counts (called the dissimilarity index DI in LEM). For example, for males model 1 in
Table 2has a value of 0.0637 and model 4 a value of 0.0180. A model with a constant rate of mortality across time
and age has a value of 0.2961. For model 4, this means that the discrepancy between the observed deaths table and
its estimated counterpart is only 1.8%.

Recently,Renshaw and Haberman (2002)investigated the feasibility of constructing mortality forecasts on the
basis of the first two sets of SVD vectors, rather than just on the first set of such vectors, as in the Lee–Carter
approach. These authors also considered generalized linear and bilinear models with Poisson error structures. We
refer the readers to this excellent paper for more details.

Mortality trends may differ from the forecasted trend. This originates the longevity risk. The longevity risk is
thus attributable to systematic deviations of the mortality from the projected mortality assumed in the calculation
basis (used in pricing and reserving). In a companion paperBrouhns et al. (2002), we show how the model proposed
in this paper may be used to deal with the longevity risk.
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Appendix A. LEM input files

This is the LEM input file that estimates the Poisson version of the Lee–Carter model:

man 2
dim 40 39
lab X T
mod {wei(XT), X, spe(T,1a,X,b)}
dat deaths.dat
sta wei(XT) exposures.dat

The command “man” indicated the number of (manifest) variables, in this case 2. With “dim”, one specifies
the number of levels of the variables. For females, we had 40 age groups and 39 time points. The command
“lab” is used to specify variable labels. The “mod” statement is used to specify the three relevant model terms:
the exposures [wei(XT)], the age effect [X], and the bilinear term [spe(T,1a,X,b)]. It is assumed that the
files “deaths.dat” and “exposures.dat” contain the tables with observed counts and exposure times. The
commands “dat” and “sta” are used to specify these data files.
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Appendix B. Values ofα

Age SVD Poisson

Men Women Men Women

60 −3.98 −4.76 −3.99 −4.76
61 −3.90 −4.69 −3.90 −4.68
62 −3.80 −4.59 −3.80 −4.59
63 −3.72 −4.49 −3.71 −4.49
64 −3.62 −4.39 −3.62 −4.39
65 −3.52 −4.29 −3.52 −4.29
66 −3.42 −4.18 −3.42 −4.18
67 −3.34 −4.09 −3.34 −4.09
68 −3.25 −3.97 −3.25 −3.97
69 −3.15 −3.86 −3.15 −3.86
70 −3.06 −3.75 −3.05 −3.75
71 −2.97 −3.64 −2.97 −3.64
72 −2.88 −3.51 −2.88 −3.51
73 −2.80 −3.40 −2.80 −3.40
74 −2.70 −3.28 −2.70 −3.28
75 −2.61 −3.15 −2.61 −3.15
76 −2.52 −3.04 −2.52 −3.04
77 −2.43 −2.91 −2.43 −2.91
78 −2.34 −2.80 −2.34 −2.80
79 −2.25 −2.68 −2.24 −2.68
80 −2.16 −2.56 −2.15 −2.56
81 −2.07 −2.45 −2.07 −2.45
82 −1.98 −2.34 −1.98 −2.33
83 −1.89 −2.21 −1.89 −2.21
84 −1.81 −2.11 −1.81 −2.11
85 −1.69 −1.98 −1.70 −1.98
86 −1.62 −1.88 −1.63 −1.89
87 −1.53 −1.78 −1.53 −1.79
88 −1.47 −1.69 −1.47 −1.69
89 −1.38 −1.59 −1.39 −1.60
90 −1.31 −1.51 −1.32 −1.52
91 −1.23 −1.43 −1.25 −1.44
92 −1.20 −1.36 −1.21 −1.37
93 −1.14 −1.29 −1.15 −1.30
94 −1.09 −1.22 −1.11 −1.24
95 −1.05 −1.21 −1.09 −1.23
96 −1.02 −1.15 −1.07 −1.18
97 −0.99 −1.17 −1.07 −1.21
98 −1.05 −1.15 −1.13 −1.20
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Appendix C. Values ofβ

Age SVD Poisson

Men Women Men Women

60 0.0576 0.0310 0.0594 0.0352
61 0.0563 0.0301 0.0582 0.0348
62 0.0508 0.0323 0.0533 0.0371
63 0.0529 0.0309 0.0557 0.0357
64 0.0512 0.0307 0.0534 0.0355
65 0.0481 0.0322 0.0501 0.0376
66 0.0482 0.0314 0.0503 0.0364
67 0.0455 0.0328 0.0473 0.0381
68 0.0447 0.0335 0.0464 0.0386
69 0.0434 0.0333 0.0448 0.0386
70 0.0415 0.0331 0.0430 0.0386
71 0.0394 0.0345 0.0407 0.0398
72 0.0358 0.0332 0.0369 0.0383
73 0.0362 0.0341 0.0371 0.0396
74 0.0337 0.0326 0.0351 0.0379
75 0.0314 0.0318 0.0325 0.0370
76 0.0314 0.0320 0.0328 0.0369
77 0.0307 0.0340 0.0313 0.0390
78 0.0292 0.0340 0.0300 0.0390
79 0.0294 0.0315 0.0299 0.0364
80 0.0281 0.0290 0.0288 0.0333
81 0.0235 0.0286 0.0243 0.0333
82 0.0222 0.0264 0.0236 0.0307
83 0.0224 0.0258 0.0236 0.0303
84 0.0204 0.0240 0.0217 0.0279
85 0.0238 0.0287 0.0248 0.0308
86 0.0224 0.0267 0.0232 0.0285
87 0.0210 0.0260 0.0213 0.0271
88 0.0183 0.0233 0.0182 0.0239
89 0.0185 0.0217 0.0183 0.0223
90 0.0150 0.0213 0.0146 0.0203
91 0.0143 0.0187 0.0132 0.0167
92 0.0059 0.0166 0.0038 0.0138
93 0.0069 0.0153 0.0056 0.0108
94 0.0038 0.0118 −0.0004 0.0059
95 −0.0102 0.0078 −0.0137 0.0000
96 −0.0186 0.0040 −0.0236 −0.0048
97 −0.0249 −0.0025 −0.0355 −0.0150
98 −0.0503 −0.0021 −0.0598 −0.0185
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Appendix D. Values ofκ

Estimatedκt (1960–1998) and forecastedκt (1999–2040)

Year SVD Poisson

Men Women Men Women

1960 5.61 13.36 4.20 10.62
1961 1.74 7.10 1.68 6.32
1962 3.34 8.75 3.01 7.59
1963 4.29 9.43 3.79 8.15
1964 2.10 6.15 2.21 5.58
1965 3.35 7.25 3.29 6.43
1966 3.32 6.99 3.34 6.21
1967 3.36 6.28 3.29 5.69
1968 5.12 8.28 4.68 7.19
1969 4.79 7.52 4.52 6.58
1970 4.02 7.16 3.90 6.32
1971 4.13 6.79 4.03 5.96
1972 3.34 5.02 3.40 4.51
1973 3.40 4.90 3.41 4.50
1974 2.72 3.92 2.97 3.74
1975 3.84 4.53 3.95 4.42
1976 3.38 3.62 3.63 3.60
1977 1.42 0.76 1.74 1.19
1978 2.01 2.42 2.17 2.36
1979 1.10 0.51 1.25 0.75
1980 1.41 0.71 1.35 0.58
1981 0.92 −0.28 0.69 −0.40
1982 0.20 −0.86 0.07 −0.83
1983 0.48 −0.37 0.12 −0.49
1984 −0.62 −2.67 −0.52 −2.29
1985 −0.63 −3.00 −0.46 −2.57
1986 −1.37 −3.41 −1.19 −2.77
1987 −3.36 −6.04 −2.83 −5.05
1988 −3.45 −6.75 −3.15 −5.82
1989 −3.13 −5.98 −3.29 −5.49
1990 −4.40 −7.97 −4.33 −7.22
1991 −5.01 −8.33 −4.88 −7.59
1992 −5.27 −9.23 −5.09 −8.41
1993 −4.52 −8.31 −5.07 −8.54
1994 −6.65 −10.31 −6.42 −9.46
1995 −6.58 −10.53 −6.39 −9.61
1996 −7.28 −11.18 −7.05 −10.31
1997 −8.24 −11.68 −7.92 −10.72
1998 −8.52 −11.82 −8.07 −10.72
1999 −8.77 −12.72 −8.38 −11.55
2000 −9.12 −13.36 −8.69 −12.09
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Appendix D. (Continued)

Year SVD Poisson

Men Women Men Women

2001 −9.47 −13.99 −9.01 −12.64
2002 −9.82 −14.62 −9.32 −13.18
2003 −10.17 −15.25 −9.63 −13.73
2004 −10.52 −15.88 −9.95 −14.27
2005 −10.87 −16.52 −10.26 −14.82
2006 −11.22 −17.15 −10.57 −15.37
2007 −11.57 −17.78 −10.89 −15.91
2008 −11.92 −18.41 −11.20 −16.46
2009 −12.27 −19.04 −11.51 −17.00
2010 −12.62 −19.67 −11.83 −17.55
2011 −12.97 −20.31 −12.14 −18.09
2012 −13.32 −20.94 −12.45 −18.64
2013 −13.67 −21.57 −12.76 −19.19
2014 −14.02 −22.20 −13.08 −19.73
2015 −14.37 −22.83 −13.39 −20.28
2016 −14.72 −23.47 −13.70 −20.82
2017 −15.07 −24.10 −14.02 −21.37
2018 −15.42 −24.73 −14.33 −21.91
2019 −15.77 −25.36 −14.64 −22.46
2020 −16.12 −25.99 −14.96 −23.01
2021 −16.47 −26.63 −15.27 −23.55
2022 −16.82 −27.26 −15.58 −24.10
2023 −17.17 −27.89 −15.90 −24.64
2024 −17.52 −28.52 −16.21 −25.19
2025 −17.87 −29.15 −16.52 −25.73
2026 −18.22 −29.79 −16.84 −26.28
2027 −18.57 −30.42 −17.15 −26.83
2028 −18.92 −31.05 −17.46 −27.37
2029 −19.27 −31.68 −17.78 −27.92
2030 −19.62 −32.31 −18.09 −28.46
2031 −19.97 −32.94 −18.40 −29.01
2032 −20.32 −33.58 −18.72 −29.56
2033 −20.67 −34.21 −19.03 −30.10
2034 −21.02 −34.84 −19.34 −30.65
2035 −21.37 −35.47 −19.66 −31.19
2036 −21.72 −36.10 −19.97 −31.74
2037 −22.07 −36.74 −20.28 −32.28
2038 −22.42 −37.37 −20.60 −32.83
2039 −22.77 −38.00 −20.91 −33.38
2040 −23.12 −38.63 −21.22 −33.92
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