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1. Taking into account censoring in duration models 

The object of this section is to determine the general form of likelihood of a censored duration 

model depending on the type of censoring and to illustrate, in the case of the exponential 

distribution, the impact of censoring1 on likelihood. 

In practice, one can be confronted to right-censoring (if X is the variable of interest, the 

observation of censoring C indicates that CX  ) or left-censoring (the observation of 

censoring C indicates that CX  ); the two types of censoring can be observed 

simultaneously. The traditional example is set by the following situation: one wants to know 

at which age X the children of a given group are able to carry out a certain task. When the 

experiment begins, some children of age C are already able to achieve the task, and for them 

CX  : this is left-censoring; at the end of the experiment, some children are still not able to 

achieve the task and for them CX   : this is right-censoring. 

1.1. Type I censoring: fixed censoring 

Let us consider a sample of survival durations  1
, ,

n
X X  as well as 0C  fixed; the 

likelihood function of the model associated with the observations    1 1
, , , ,

n n
T D T D  with: 

CXT
ii
  and 

1

0

i

i

i

si X C
D

si X C


 


 

holds a continuous component and a discrete component; it is written: 

     
1

1

i i

n
D D

i

i

L f T S C 




  

in other words, when one observes exit before censoring, it is the density term that intervenes 

in likelihood, and in the contrary case one finds the discrete term, the value of which is the 

survival function at the date of censoring. The distribution is thus continuous with respect to 

i
T  and discrete with respect to 

i
D . 

To demonstrate this formula, one only needs to calculate  , ,i i i i i iP T t t dt D d     . Since 

iD  can only take values 0 and 1, one calculates, on  0,C : 

   

   

1, , , ,

,

i i i i i i i i i i

i i i i i i

P T t t dt D P X C t t dt X C

P X t t dt f t dt

             

     

 

(one can always assume 
i

dt  sufficiently small so that 
i i

t dt C  ) and 

     

   

0, , , ,
i i i i i i i i i i

i

P T t t dt D P X C t t dt X C

P X C S C

       

  
 

 

                                                 
1 And, marginally, truncation, which will be mentioned but not developed. 
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These two cases can be summarised as follows: 

      
1

, ,
i id d

i i i i i i i
P T t t dt D d f t S C 


     

One can also find this expression by observing that: 

     1, ,

i

C

i i i i i i

t

P T t D P X t X C f u du        

and in the case where 0
i

D   since then 
i

T C  there is no density, but simply the probability 

of this event is equal to  S C . Since for a censored observation, by definition, CTi  , the 

expression above can be rewritten: 

     
1

1

i i

n
D D

i i

i

L f T S T 




  

By remembering that the probability density function can be written as a function of hazard 

function and survival function      f t h t S t    one can also write likelihood in the 

following form (except for a multiplicative constant): 

     
1

i

n
D

i i

i

L S T h T 



  

This expression is thus simply the product of the values of the survival function (which 

translates the fact that the individuals are observed at least until iT ), weighed for non-

censored exits by the value of the hazard function (which translates the fact that for these 

observations the exits indeed take place at time iT ). One generally uses log-likelihood, which 

is, except for an additive constant: 

       
1

ln ln ln

n

i i i

i

L D h T S T 



  
  . 

As an illustration, the cases of point estimation and interval estimation in the context of 

exponential distribution are detailed hereafter. 

1.1.1. Point estimation 

Let us now consider the case where the underlying distribution is exponential, of parameter 

; let 

1

n

i

i

R D



  be the number of observed deaths: 
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Since   tf t e 

   , the likelihood is thus written      
1

1

i i
i

n D DT C

i

L e e
 

 
 



 , which 

becomes: 

 
1

exp

n
R

i

i

L T  



 
  
 
 
  

One can incidentally notice that the distribution of R is discrete, and is a binomial distribution 

of parameters  1,
C

n e


 : the number of non-censored exits corresponds to draws from n 

values, the chances of success being equal to  1
C

e P T C





   . 

If 



n

i
i

TT
1

 indicates the total “risk exposure”2, one can write    
1

R

i
i

T T n R C



   ; by 

cancelling the first derivative of the log-likelihood        
1

ln

R

i
i

l R T n R C  



 
    
 
 
  

with respect to  , one finds that the maximum-likelihood estimator (MLE) of   is ˆ R

T
  . 

The exhaustive statistic is thus two-dimensional  RT, . 

The estimator of   is therefore the ratio of observed deaths to risk exposure; in a non-

censored model (obtained as the limit case of a censored model when C ), the 

expression ˆ R

T
   becomes 

1ˆ
X

  ; indeed, all deaths are observed in that case, and the 

estimator is the traditional “multiplicative inverse of the empirical average of lifetimes”. 

1.1.2. Interval estimation 

One can use the asymptotic efficiency of the maximum-likelihood estimator to determine a 

confidence interval for the estimator. In the case of exponential distribution one can also 

notice that, provided  C
m   and  C

  are the mean and standard deviation of T, then using 

the central limit theorem one gets 
 

 
C

C

T m
n



 


 which converges in probability to a standard 

normal distribution. Indeed, the random variables CXT
ii
  are iid, since 

i
X  are iid. The 

expressions of  C
m   and  C

   can be obtained by a few calculations: 

  
0

1
C C

u C
C

e
m u e du Ce


 

 



  

    

                                                 
2 T is sometimes called « global working time during trials ». 
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         22 2 2

2

1
1 2

C C
C i CE T m Ce e

 
   



 
      

Under the assumption that the duration of experiment C is small compared to the a priori 

lifetime of each individual 
1


, one has C  which is small compared to 1 and one can thus 

make a limited development of exponentials to the order 3 in C , which leads to: 

 
3

2

3
C

C
    . One thus obtains a relatively simple form of confidence interval for the 

parameter  . 

1.2. Type III censoring: random censoring3 

1.2.1. The case of an iid sample 

Type III censoring generalises type I censoring to the case where the censoring date is a 

random variable; more precisely, let  1
, ,

n
X X  be a sample of survival durations, and 

 1
, ,

n
C C  be a second independent sample composed of positive variables; it is said that 

there is type III censoring for that sample if instead of directly observing  1
, ,

n
X X  one 

observes    1 1
, , , ,

n n
T D T D  with: 

iii
CXT   and 














ii

ii

i

CXsi

CXsi

D

0

1

 

The likelihood of the sample    1 1
, , , ,

n n
T D T D  is written, with obvious notations: 

         
1

1

, , , ,i i
n

D D

X i C i C i X i

i

L f T S T f T S T    




         

The form of the above likelihood can be deduced, for example, from the fact that  1
, ,

n
T T  

is a sample of the distribution  ,.
T

S  with: 

             , , ,T i i i i i X CS t P T t P X C t P X t P C t S t S t              . 

One writes, as in 1.1 above, that: 

   

     

1, , , ,

, , , ,

i i i i i i i i i i i i

i i i i i i X i C i i

P T t t dt D P X C t t dt X C

P X t t dt t C f t S t dt 

             

      

 

and 

                                                 
3 These models can be analyzed as models with 2 independent competiting risks. 
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   

     

0, , , ,

, , , ,

i i i i i i i i i i i i

i i i i i i X i C i i

P T t t dt D P X C t t dt X C

P C t t dt X t S t f t dt 

             

      

 

These expressions are directly obtained from those seen in 1.1, in conditioning with respect to 

censoring, then integrating with respect to its distribution. More precisely, one writes: 

     

       

1, ,

, , ,

i i i

i i i i i i i i i i i

c

i i C X C

t t t

P T t D P X C t X C P t X C

P t X c f c dc f x dx f c dc  

 

        

 
    
 
 
 

  
 

then by Fubini one reverses integrals to obtain: 

     

   

1, , ,

, ,

i

i

i i i X C

t x

X C

t

P T t D f x f c dc dx

f x S x dx

 

 

 



 
   
 
 



 



 

and finally        1 1, , , , ,i i i i i i i i X i C i i
i

d
P T t t dt D P T t D f t S t dt

dt
           . The 

assumption is then made that the censoring is non-informative, i.e. that the censoring 

distribution is independent from the parameter  . Likelihood is in this case of the form: 

     
1

1

i i

n
D D

i i

i

L const f T S C 




   

The const term gathers information coming from the censoring distribution, which does not 

depend on the parameter. This last expression can be written as in 1.1 above: 

     
1

i

n
D

i i

i

L S T h T 



  

One can observe the fact that fixed censoring is simply a particular case of non-informative 

random censoring in which the censoring distribution is one of Dirac at point C. The 

expression established in the particular case of fixed censoring can therefore easily be 

generalised. 

1.2.2. Taking into account covariables 

When the model holds p explanatory variables (covariables)  1
, ,

p
Z Z Z , the assumption 

is made that the conditional distribution of X knowing Z depends on a parameter  . 

The observed sample becomes a sequence of triplets  iii ZDT ,, ; one gets back to the 

assumption of non-informative censoring; one assumes moreover that X and C are 

independent conditionally to Z, and that C is non-informative for the parameters of the 
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conditional distribution of X knowing Z. One finally assumes that Z admits a probability 

density which depends on a parameter  ,  ,
Z

f z  . 

Under these conditions, the expression of likelihood seen in 1.2 above becomes: 

       
1

,
i

n
D

i i Z iZ Z
i

L h T S T f Z
 

 


  

When the distribution of T knowing Z and the distribution of Z have no common parameter, 

one simply finds the expression of 1.2, in which the distribution of X is replaced by the 

conditional distribution of X knowing Z. This reasoning can be generalised without difficulty 

to the case of covariables depending on time. 

1.3. Another type of censoring: “stop at rth death” (type II censoring) 

Let us now consider the case where the date of observation end is not defined in advance, 

observation instead stopping at the time of the rth exit. The end date of the experiment is 

therefore random and is equal to  rX . 

In a more formal way, let us consider a sample of survival durations  1
, ,

n
X X  and 0r  

fixed; it is said that there is type II censoring for this sample if, instead of directly observing 

 1
, ,

n
X X ,  one observes    1 1

, , , ,
n n

T D T D  with: 

 rii XXT   and 

1

0

i i

i

i i

si X T

D

si X T




 
 

  

 rX  being the rth order statistic of sample  1
, ,

n
X X . The definition of the censoring 

indicator can be rewritten 
 

 













ri

ri

i
XXsi

XXsi

D

0

1

, which is a form similar to the case of fixed 

censoring with  r
C X . 

The likelihood has a form close to that of the type I censoring case; for its formulation one 

notices that, in the discrete part of the distribution, the times of the r exits are chosen among 

the n observations. Which results in: 

 
       

 
   

 
   

1

1

1 1

!

!

! !

! !

i i i

r n r

i r
i

n n
D D D

i i i i

i i

n
L f X S X

n r

n n
f T S T h T S T

n r n r

 

   








 

 
  

   

 
 



 

 

If the reference distribution is the exponential distribution, one therefore finds that: 

 
 

 
!

exp
!

rn
L T

n r
   


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with      
1

r

i r
i

T T n r T



   ; the statistic T is therefore exhaustive for the model. The 

maximum-likelihood estimator can easily be deducted from the above expression: ˆ r

T
   . In 

fact, in this case one can completely determine the distribution of T; precisely: 

Proposal: 2 T  follows a Khi-2 distribution with 2r degrees of freedom or, in an equivalent 

way, T follows a  ,r   distribution, since the Khi-2 distribution with 2r degrees of freedom 

is a Gamma distribution of parameters  
2

1,r   

Demonstration: One wants to show that    xPxTP
r

 22

2
; since the distribution of 

Khi-2 with 2r degrees of freedom is a Gamma distribution of parameter  
2

1,r , its density is: 

 
 

21

2
1

x
r

r
ex

r
xf





 . 

One writes: 

 
 

  1

1

!
exp

!
x

r
r

i r r

iA

n
P T x t n r t dt dt

n r
 



  
      

  
  
 , 

with  1

1

0 /
t

x r i r

i

A t t t n r t x


 
      
 

 . The following variable shift is made: 

 
1

1 1 2 1 2 1 1 1

1

1; ; ; ;
r

r r i r

i

t u t u u t u u t n r t u


 



          . 

It is verified that the determinant of the Jacobian matrix of generic term 
j

i

u

t




 is 

1
1
 rn

, 

which leads to: 

 
   









xB

r

ur dududue
rnrn

nxTP
111

1 ..
!

!  

with  
1

1 1

1

0 0, , ;
t

x r i

i

B u u r i u u x






 
      
 

 . Another change of variable: 

  1 1, ;
i i

v r i u i r v u        

finally allows to obtain: 

 
    























x
v

C

r

r dvedvdv
rrn

nxTP

v0

111
1

1
..

!!
!  
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with 








 





1

1
11

00
t

i
irv

vvvvC ;,.., ; by observing that the multiple integer on 
x

C  is of the 

form 1 txcste , one finally concludes that: 

 
 

 1 2

2

0

1
2

x

r u

r
P T x u e du P x

r



     
  . 

One deduces in particular from this proposal that the MLE estimator is biased and that 

 
1

ˆ r
E

r
 


: indeed, if T follows a gamma distribution of parameter  ,r  , then 

   
 

p p r p
E T

r

  




 for all p r   and thus: 

 
 
 

11 1
2 2

2 2 1
ˆ r r

E rE r
T r r

   


  
   

  
. 

The best unbiased estimator for   is therefore 
1r

T



 . One can also demonstrate that the 

variance of   is  
2

2
V

r


 


. 

This result can be obtained more simply. One uses for that the fact that the joint distribution 

of the order statistics 
    1

, ,
n

X X  is      1
1

1

1, , !
n

n

n i x x
i

f x x n f x
 



  . Through a shift 

of variable, it is demonstrated that the random variables       1
1

i i i
Y n i X X


     are 

independent and of common distribution the exponential distribution of parameter  . 

Since 
1

r

i

i

T Y


  one immediately obtains the result by observing that the sum of r exponential 

random variables of parameter   follows a  ,r  distribution. The average duration of the 

experiment can also easily be deducted: since  
1 1

r
i

r
i

Y
T

n i


 

 , one has 

  
1

1 1

1

r

r
i

E T
n i 


 

 . 

1.4. Truncation 

1.4.1. Definition 

It is said that there is left-truncation (resp. right-truncation) when the variable of interest is not 

observable when it is lower than a threshold 0c  (resp. higher than a threshold 0C  ). 

The phenomenon of truncation is very different from censoring, since in this case all 

information on observations outside of the interval are lost: in the case of censoring, one is 
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aware of the fact that there is information, but one does not know its precise value, simply the 

fact that it exceeds a threshold; in the case of truncation one does not have this information. 

The distribution observed in this case is therefore the conditional distribution with respect to 

the event  CTc  . The truncated survival function is therefore written: 

 
   
   

1

0

si t c

S t S C
S t c T C si c t C

S c S C

si t C






    



 

 

The hazard function also has  Ctc   as support and is written 

   
 

   

S t
h t c T C h t

S t S C
  


, which shows that the expression of h does not depend on 

c. Right-truncation increases the hazard function, and if there is only left-truncation  C    

then the hazard function is not modified. 

Truncation can for example be observed in the case of an IT/data migration process during 

which only claims in progress would have been included – claims or cases closed being left 

behind, and the corresponding information being lost. Truncation is also observed in the case 

of a sick leave policy with a deductible: the absences of durations lower than the deductible 

are not observed, and one therefore does not have any information about these claims. 

1.4.2. Type III truncation and censoring 

Most of the time, individuals are not observed since origins, but rather since the age (or the 

seniority) reached at the beginning of the observation period, noted i
E . Censoring i

C  can be 

lower than the age reached at the end of the observation period if the exit takes place in an 

anticipated way (for example cancellation). Under these conditions, the expression of the 

likelihood of the model is:  

       
1

, ,
,i

n
d

i i Z iZ E Z E
i

L h t S t f z
 

 



  

When the distribution of T knowing Z and the distribution of Z have no common parameter, 

one finds the following expression: 

      
1

, ,
ln ln ln

n

i i iZ E Z E
i

L cste d h t S t
 





   . 

As    , i iZ E Z
h t h t
 

  and  
 

 ,

iZ

iZ E
iZ

S t
S t

S e






 and one finally gets: 
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         
1

ln ln ln ln

n

i i i iZ Z Z
i

L cste d h t S t S e
  





    . 

Of course if all individuals are observed since the origin, 0
i

e   and the traditional expression 

is found: 

      
1

ln ln ln

n

i i iZ Z
i

L cste d h t S t
 





   . 

Example: let us consider the Weibull’s proportional hazard model (cf 3.2) in which: 

    1
; , exp 'h x z z x


   


  . 

The log-likelihood of this model is written according to the general expression pointed out 

supra: 

          
1 1 1

1
' '

ln ; , ln ln exp

n n n

i i i i i i i

i i i

L y z d d t d z z t e


     

  

          

where one noted 



d

i
i

dd
1

 the number of non-censored exits. 

Example: let us consider n individuals for which the assumption is made that the underlying 

hazard function is constant on the interval  1,x x  ; using the above one finds that the log-

likelihood of the model is, with the exception of a constant: 

       
1

ln ln ln

n

i i i x x

i

L d t e d E    



           

with 
1

d

x i

i

d d


  and  
1

d

x i i

i

E t e


  . It can be noted that it is as if the variable x
D  which 

counts the number of exits on the interval  1,x x   followed a Poisson distribution of 

parameter xE  ; indeed, in this case     ln lnx x xP D d cste d E       . 

2. Latent and observable likelihood in the presence of censoring 

In this paragraph, one considers observations of durations  1
, ,

n
t t , censored by a type I 

(fixed) or type III (random, non-informative) censoring, depending on the observation4; it is 

indeed a kind of censoring which one often meets in insurance problems. Let  1
, ,

n
c c  be 

the observed values of censoring. It is assumed that the observed lifetimes also depend on p 

explanatory variables5  1
, ,

p
z z . In the previous chapter the form of general likelihood was 

determined, and one now wishes to estimate the parameters by maximising this likelihood, 

                                                 
4 Equivalent to a random censoring, reasoning conditionally to the censoring value. 
5 

j
z is therefore a vector composed of the n values of the explanatory variable for the sample’s individuals. 
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while taking into account these explanatory variables. One will therefore look into expressing 

the relationship between latent score and observable score, and obtaining the observable 

model’s Fisher information. 

Similarly to what came previously, one therefore observes: 

iii CXT   and 














ii

ii

i

CXsi

CXsi

D

0

1

 

and the variables  iii DTY ,  are independent. When censoring is known, iY  is a function of 

the latent variable iX ; the observable model is therefore a model which provides incomplete 

information on iX . This functional relationship between latent and observable variables has 

consequences on the form of observable likelihood. More precisely, there is a functional 

relationship of the form  Y X ; the respective probability densities of Y and X are noted6 

 l  and  *l ; the observation of Y provides information on the distribution of X, and it is 

natural to be interested in the conditional distribution of yYX  ; one has: 

     *
, , ,l x l y l x y    

and shifting to log-likelihood one can write: 

     *
ln , ln , ln ,l x l y l x y     

By differentiating this expression with respect to  , and integrating with respect to the 

distribution of yYX  , one finds7: 

     * ln ,ln , ln , l x yl x l y
E y E y

 

  

   
    

        

. 

But 
   ln , ,l x y l x y

E y dx
 

 

  
 

   
  since the conditional distribution of yYX   has 

as for density  ,l x y  ; by reversing differentiation and integral, since the density integral is 

equal to one, one finds that 
 

0
,l x y

dx







 , and the score is therefore written: 

   *ln , ln ,l y l x
E y

 

 

  
  

   
 

Hence the observable score is the best prediction of the latent score, conditionally to the 

observations. By differentiating the log-likelihood expression twice, one obtains in the same 

way: 

                                                 
6 Likelihood for an observation will be noted l, while likelihood for a sample will be noted L. 
7 Expectancies depend on parameter   which is taken off notations for better clarity. 
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     22 2* ln ,ln , ln ,

' ' '

l x yl x l y  

     

 
   

     
 

then by taking the expectation one finds that the Fisher informations of both latent and 

observable models are bound by the following relationship: 

   
 2

*
ln ,

'
X Y

l x y
I I E E y


 

 

  
    

     

 

Note: the notation 
 2

'

f 

 



 
 indicates the Hessian matrix associated with f, of common term 

 2

i j

f 

 



 
. 

2.1. Application of the maximum-likelihood method  

This section presents the relationships between observable and latent likelihood in a general 

model, and then specifies the case of a duration model. 

2.1.1. General information 

One assumes the independence of observations conditionally to the explanatory variables as 

well as censoring; the log-likelihood of the model is written: 

   
1

ln , ; ln , ;
n

i i i

i

L y z c l y z c 


  

and since log-likelihood is differentiable, the maximum-likelihood estimator cancels the 

vector of scores: 
 

0

ˆln , ;L y z c 







. 

Under regularity technical requirements, most of the time satisfied in practice, one knows that 

there exists a local maximum of log-likelihood, almost surely converging towards the true 

parameter value and that, moreover, the maximum-likelihood estimator is asymptotically 

efficient and Gaussian, i.e.: 

    1
0ˆ ,

n
n N I  


   

with the Fisher information defined by  
 2

1

1 ln ,
lim ,

'

n
i i i

i i
n

i

l y z c
I E z c

n


 


 
  

   
 , the limit 

being in probability. The asymptotic variance of the estimator can be estimated by: 

 
 

1
2 ˆln , ;

ˆˆ
'

L y z c
V




 



 
  
  
  
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One thus disposes of a general framework to estimate the parameter though maximum-

likelihood in the presence of censoring8 and explanatory variables. 

2.1.2. Latent likelihood and observable likelihood 

Likelihood of the complete model, latent, is not observable; there is however a simple 

relationship between latent and observable scores, in that observable score is the optimal 

forecast of latent score based on observable variables, hence in a formal way: 

   *
ln , ; ln , ;

, ,
L y z c L x z c

E y z c
 

 

  
  

   

 

This property directly comes from the relationship established for an observation while 

introducing: 
   *ln , ln ,l y l x

E y
 

 

  
  

   

. 

With regard to the Fisher information, the information of the latent model can be broken 

down into the sum of the observable model’s information, and a term measuring the loss of 

information due to the presence of censoring. Which yields: 

Proposal:      *I I J    , with: 

 
 

1

1
*

ln , ;
lim , , ,

n
i i i

i i i
n

i

l x z c
J E V y z c z c

n







  
   

    
 , 

the limit being taken in probability. 

To prove this result one applies the equation of decomposition of the variance 

     V A E V A B V E A B         to 
 *ln , ;

,
i i i

i i

l x z c
A z c









 and YB  . 

2.2. The case of duration models 

In the case of a duration model, likelihood is calculated as a function of hazard rate and 

survival function, rather than density; since      thtStf  , one obtains: 

     
1 1

*
ln ; ln ; ln ;

n n

i i i i

i i

L x z h x z S x z  
 

    

Observable log-likelihood is calculated conditionally to  cz,  and is expressed by9: 

     
1 1

ln , ; ln ; ln ;
n n

i i i i i

i i

L y z c d h t z S t z  
 

    

One therefore finds, as established in 1.2 above, that observable log-likelihood is written in 

the same manner as in the latent model, replacing real duration by truncated duration and only 

keeping hazard function for complete information (where 1
i

d ). 

                                                 
8 The form of likelihood in the case of a duration model is set out in 2.2. 
9 Cf. 1.1. 
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However, the likelihood equations do not have a simple expression in the general case; usual 

algorithms will be used to determine the MLE by approximation: Newton-Raphson, BHHH 

(Berndt, Hall, Hall, Hausman) and EM algorithm – the latter being particularly well suited to 

the case of incomplete data. These algorithms are presented in 2.4 infra. 

However, for some model classes a direct approach remains possible: that is in particular the 

case of proportional hazard models, studied hereafter. 

2.3. Example: Weibull model 

The introduction showed the estimation of the parameters of the Weibull model in the non-

censored case. We will now see as an example the case of right-censoring. The following 

model is therefore considered: 

 
α

α 1

τ

α
exp

x
f x x

ll


   

   
   

,  
α

exp
x

S x
l

   
   

   

 

  

for which the following censored sample is observed    1, ,
,i i i n

t d


 where 
1 si 

0 si 
i i

i
i i

t x
d

t x


 


 

is the indicator of non-censored information. 

2.3.1. Parameters estimation 

The likelihood of this model is written: 

     
1

1

,
i i

n
d d

i i

i

L l f t S t




  

While noting 

1

n

i

i

d d



  the number of non-censored exits observed, there comes: 

     1

1

1, exp expi

d n
d i i

i i i

i

t t
L l t d d

l l l

 














          
           
           

 , 

   
1 1

1, exp exp ln

d n n

i i i

i i

L l l t d t
l

 




 





 

    
      
     

   

from which the following log-likelihood is deduced: 

     
1 1

1ln , ln ln ln ln
n n

i i i

i i

L l k d l l t d t    



 

        

Partial differential equations are thus written: 
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 

 

1

1

1 1 1

1

ln ,

ln , ln ln ln ln

n

i

i

n n n

i i i i i
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L l l t

l l

L l d l l l t t t d t

 

  

 


 

 







  


   


               



  
 

Hence one seeks solutions for the following system: 

1 α

α

1

α

1

α 1

1

1

1 1

α

ln

ln

n

i

i

n

i i n
i

i in
i

i

i

l t
d

t t

d t
d

t

 



 



  
  
  

 




 











 

The second equation defines an algorithm which converges towards ̂ , provided it is not 

given a too distant initial seed. In practice, this value can be the estimator obtained by the 

method of quantiles applied on the full complete observations (cf. introduction lecture). Once 

̂  is obtained, l̂ is deduced through the first equation. 

2.3.2. Numerical illustration 

An illustration is proposed in which 1’000 observations were simulated, of which 47 % 

censored. 

A first estimate of the parameters was carried out based on the non-censored 1’000 

observations of the principal risk, in order to obtain estimates which will be used as a standard 

to compare estimates obtained in the censored case. 

Note: It is necessary to define a stop criterion for the algorithms, making it possible to obtain 

the mle ̂ . In this illustration, the algorithm was stopped when the relative variation of the 

output of an iteration became lower (in absolute value) than 0.01 %. 

One should notice that using the selected stop criterion, the algorithm which provides ̂ is 

materially faster (factor 10 of iteration count) with complete data, compared to censored data. 

The following table shows the various estimates of parameters and indicates the expectancy 

and the variance corresponding to these estimates. Simulations were carried out taking as 

theoretical value for the parameters 2 5,   and 45l  . 
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 Complete data Incomplete data 

  
Not taking censoring 

into account 

Taking censoring into 

account 

 2.43 2.26 2.48 

L 44.78 38.31 44.65 

Average 39.71 33.93 39.61 

Variance 302.97 252.29 291.72 

 

The following table shows the relative errors when compared to the situation in which all 

observations are complete. 

 

 

Not taking censoring into 

account 
Taking censoring into account 

 -7.1 % 1.9 % 

L -14.5 % -0.3 % 

Average -14.5 % -0.2 % 

Variance -16.7 % -3.7 % 

 

The use of all available data, even incomplete, proves to be essential. In particular, not taking 

into account censoring results in underestimating the survival duration by 15 %. In the same 

way, in the presence of type I or II censoring, not taking into account the full available 

observations results in estimating a model in which the maximum survival duration is the 

level of censoring. 

2.4. Numerical algorithms for likelihood maximisation 

As seen in 2.2 above, the analytical expression of log-likelihood only seldom makes it 

possible to perform a direct calculation of the maximum-likelihood estimator. Of course, 

standard algorithms such as Newton-Raphson can be used in this context. However, specific 

methods can prove better suited. 

The reader interested by an introduction to numerical methods for optimisation may refer to 

Ciarlet [1990]. 

2.4.1. Newton-Raphson algorithm 

To solve the equation   00 xf  an algorithm is used, built from a linearisation near the 

solution, based on the development of Taylor to the order one; noting that 
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         kkkkkkk xxox
dx

df
xxxfxf   111 , one thus proposes the recurrence 

defined by   01 kxf , which leads to: 

 
 k

k
kk xf

xf
xx

'
1 . 

In the case of a duration model, one uses as function f the derivative of log-likelihood with 

respect to the parameter (score), which leads to the expression: 

 
 1

2

1

ln , ;
ln , ;

'

k

k k k

L y z c
L y z c


  

  





 
   

   
. 

The above writing is matrix calculus, valid for a multidimensional  . 

In order for the algorithm to converge it is advisable to start from an initial value “near” the 

theoretical value. It has an interesting property: provided we have a convergent estimator, not 

necessarily asymptotically efficient, it can be sued as the initial value for the Newton-

Raphson algorithm. Asymptotic efficiency is then obtained from the first iteration10. 

There exists an alternative to the Newton-Raphson algorithm, called BHHH algorithm 

(Berndt, Hall, Hall, Hausman), which consists in replacing in the above iterative expression 

the Fischer information matrix by its expression only based on the first derivative of log-

likelihood. One obtains as follows: 

     
1

1

1 1

ln , ; ln , ; ln , ;

'

n n
i i i i i i i i ik k k

k k

i i

l y z c l y z c l y z c  
 

  





 

   
  

   
 

   

This version of the Newton-Raphson algorithm has the same properties as the previous one. 

2.4.1. Expectation-Maximisation algorithm 

This algorithm was imagined more specifically within the framework of incomplete data; it is 

based on the remark that, if the variables  1
, ,

n
x x  were observable, the estimate would 

simply be carried out by maximising latent log-likelihood  ln , ;L x z c  ; since these 

observations are not available, the idea is to replace the target function by its best 

approximation knowing the observable variables  1
, ,

n
y y . This was initially suggested by 

Dempster and al. [1977]. 

One introduces, for  ˆ,   fixed, the function    *

ˆ
ˆ, ln , ; , ,q E L x z c y z c


      ; the EM 

algorithm is then defined by the repetition of the following steps: 

- calculation of  ,
k

q   ; 

- maximisation in  of  kq , , the solution of which is 1k


   

                                                 
10 In this case, the obtained estimator is not maximum-likelihood, but it is nonetheless asymptotically efficient. 
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In practice this algorithm is interesting when the calculation of  ,
k

q    is materially simpler 

than the direct calculation of  ln , ;L y z c  ; in the contrary case, one may end up using the 

Newton-Raphson algorithm for the optimisation stage of  ,
k

q   , which makes the approach 

heavier. 

EM algorithm presents under certain regularity conditions, which will not be detailed here, 

the following “good properties”: 

Proposal: EM algorithm is increasing, that is    1
ln , ; ln , ;

k k
L y z c L y z c 


 ; moreover, 

any limit   of a sequence of solutions  k  satisfies the following first order condition: 

 
0

ln , ;L y z c 









 

Demonstration: cf. Droesbeke and Al [1989]. 

2.4.2. Other methods 

Other methods can prove useful in the case of strongly censored samples; indeed in this case, 

the usual “frequential” estimation used up to that point may not be well suited; one can then 

turn to Bayesians weighed sampling algorithms, in particular MCMC algorithms. 

This situation, not very common in insurance, will not be developed here; the interested 

reader can refer to Robert [1996]. 

3. Proportional hazard models 

In these models the hazard function is written      0
; exp 'h x z z h x    with 

0
h  the basic 

hazard function, which is given. This situation occurs for example when one wants to position 

the mortality of a specific group compared to a reference mortality, known, represented by 
0

h

. One can for example imagine that the mortality of an important group was adjusted using a 

Makeham11 model and that one is interested in positioning the mortality of some 

subpopulations: men/women, smokers/non-smokers, etc. This approach will primarily focus 

on defining the positioning of a population compared to another, without always seeking the 

absolute risk level. The expression of the hazard function of a proportional model can be 

written: 

 
 0

;
ln '

h x z
z

h x


  , 

which expresses that the logarithm of the instantaneous rate of risk, expressed compared to a 

basic rate, is a linear function of the explanatory variables. There are p explanatory variables, 

which implies that 
1

'
p

i i

i

z z 


 . It may easily be verified that the survival function of the 

model is of the form: 

                                                 
11 Cf. section 5. 
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      0; exp exp 'S x z z H x    , 

with H0 the basic cumulated hazard function12. Taking into account the form of the survival 

function, it is natural to be interested in the transformed variable ; indeed if 

the following model is considered: 

'v z     

(in other words one poses 'v z   ) it is found that 

           0 0; ln ' ; exp ' exp ;P t z P H x z t z P H x z t z           , 

hence: 

         1
0; exp ' exp ; exp expP t z S H z t z t   

     

 

The distribution (conditional) of the residue   is thus a Gumbel13 distribution, which verifies 

  E  and  
6

2V ,   being the Euler14 constant. 

One recognizes in the equation 'v z     a formulation formally equivalent to that of a 

linear model, in which the residues are however neither Gaussian, nor centered, since 

  E : 

 ; 'E V z z      

The important point here is that the distribution of   does not depend on the parameter. If one 

wishes to obtain a model with standard residues, one should consider the transformation 

 XHV 0 . One has        1 1

0 0
P V t P X H t S H t      and thus: 

    exp exp 'P V t z t     . 

V thus follows an exponential distribution of parameter  exp 'z  , which results in posing 

the nonlinear model: 

 exp 'v z     

with   0E ,     2exp 'V z   and    ; exp 'E V z z  . It is noted that the residues of 

this model are heteroscedastic. 

One can note that the rate of death of a subpopulation is expressed simply using the basic rate 

of death: 

 
 
 

 
 

 

  
 0

0

0

1 1
1 1 1 1

exp '

exp ';
;

;

z

zS x z S x
q x z q x

S xS x z










   
           

  

. 

                                                 

12 Using the relationship     







 

t

dsshtS
0

exp . 

13 Cf. introduction focused on Weibull distribution, and http://fr.wikipedia.org/wiki/Loi_de_Gumbel 
14 The value of which is approximatively 0,577215665. 

http://fr.wikipedia.org/wiki/Loi_de_Gumbel
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When  0
q x  is small one finds as one could expect it: 

     0
; exp 'q x z q x z    . 

3.1. Case where the basic hazard function is known15 

One is initially interested in the case of non-censored data within the framework of the linear 

model defined above. 

One seeks to estimate   while assuming 
0

H  known; the above equation can be used to build 

a convergent estimator of the parameter, but this estimator is non-asymptotically efficient; 

one can imagine to use it as initialisation value for a log-likelihood maximisation algorithm. 

However, the expression of the model in the form of a linear model naturally results in 

proposing the estimator of ordinary least squares (OLS): 

 
1

0

1 1

' 'ˆ ln

n n

MCO i i i i

i i

z z z H x



 

 
  
  
  . 

In the writing above  1, ,i i ipz z z  is the vector of size p made up of the values of the 

explanatory variables for the individual nb i. If it is assumed that the model integrates a 

constant and that it is the first component of  , then one can show that  0 0
'ˆ , , ,   is a 

convergent estimator of  . The direct transposition of the linear model case thus leads to a 

simple to calculate estimator, presenting a priori “good properties” for  . 

Within the framework of the model  exp 'v z    , which has the advantage of having 

standard residues, MLE estimator is solution of the following nonlinear least squares 

program: 

   
2

0

1

'
Min exp

n

i i

i

H x z


 
  . 

This estimator can easily be calculated; however, the estimators above are usable for complete 

data, but not in the case of censored data. 

Indeed, in the presence of censoring, the estimator ˆ
MCO

  restricted to complete data is 

asymptotically biased. However, the bias being not too large in practice, this estimator can be 

used as initial value for numerical algorithms. 

In the presence of incomplete data, one returns to the model’s likelihood equations. 

3.1.1. Likelihood equations 

According to the general equations determined in 2.1.2 above, one has: 

        0 0

1 1

* ' '
ln ; ln exp

n n

i i i i

i i

L x z z h x z H x  

 

       

                                                 
15 In Cox model, the basic hazard function is assumed unknown, when it is here assumed known. 
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for latent likelihood, and: 

        0 0

1 1

' '
ln , ; ln exp

n n

i i i i i

i i

L y z c d z h t z H t  

 

       

for observable likelihood. By differentiation one finds the vector of latent scores: 

       0

1 1 1

*
' ' ' ' 'ln ;

exp exp

n n n

i i i i i i i

i i i

L x z
z z z H x z z


  


  


     


    

The latent score is therefore the scalar product between errors    0
'

expi i iH x z    and the 

explanatory variables, for the metric defined by the weights  '
exp iz  . With regard to the 

observable vector of scores, one has: 

   
1

' 'ln , ;
exp

n

i i i

i

L y z c
z z


 





 


  

with  , ,i i i i iE y z c  . As the residue of the non-censored model is defined by

   0
'

expi i iH x z   , it is thus a question of showing that 

     0
'

, , expi i i i i i iE y z c H t d z   . 

The likelihood equations are thus equivalent to a condition of orthogonality between 

explanatory variables and expected errors, like in the case of a traditional linear model. 

3.1.2. Fisher Information 

The Fisher information has a particularly simple expression here: 

 
1

'
n

i i i

i

I z z p


  

with    iiiiii cXPczdEp  ,  the probability that the observation is complete. For 

which one writes that 
     

2

0

1

' 'ln , ;
exp

'

n

i i i i

i

L y z c
z z z H t




 



  

 
  then one takes the 

expectancy by observing that the vector of scores is, in this model, standard. The 

decomposition of the Fisher information introduced in 2.1.2 above is written here: 

 



n

i
iii

n

i
iii

n

i
ii

pzzpzzzz
111

1'''
 

3.2. Case of a parametric basic hazard: Weibull model 

One examined into 2.3 Weibull model without explanatory variables; one wishes here to 

generalise this model within the framework of a proportional hazard model. The basic hazard 
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function is not supposed to be known anymore, and is supposed to follow a distribution of 

Weibull; it depends on a parameter, which will therefore have to be estimated, and the model 

thus comprises an additional parameter compared to the previous version. 

3.2.1. General presentation 

This model is defined by the specification16: 

    1
; , exp 'h x z z x


   


   

According to the above, the model log-likelihood is written17: 

         
1 1 1

1
' '

ln , ; , ln ln exp

n n n

i i i i i i

i i i

L y z c d d t d z z t


     

  

         

where 



d

i
i

dd
1

 is the number of non-censored exits. The likelihood equations are therefore: 

 
 

1 1

0
ˆ' ' '

ˆ ˆln , ; ,
ˆexp

n n

i i i i i

i i

L y z c
d z z z t


 




 


    


   

 
     

1 1

0
ˆ'

ˆ ˆln , ; ,
ˆln exp ln

ˆ

n n

i i i i i

i i

L y z c d
d t z t t


 


 

 


    


  . 

Like in the case where the basic hazard function is known, the first equation is interpreted like 

a scalar product, between the explanatory variables and the generalised residues 

 ˆ ' ˆexpi i i it d z


   , like in 3.1.1 above, but after estimation of the basic hazard function. 

The second equation does not present any particular interpretation. 

These equations must be solved through numerical methods. 

The terms of the Fisher information matrix are obtained by differentiating another time, and 

one finds: 

   
2

2
1

' 'ln , ; ,
exp

n

i i i i

i

L y z c
z z z t

 


 


 


  

     
2

1

' 'ln , ; ,
exp ln

n

i i i i

i

L y z c
z z t t

 


 



 

 
  

 
    

2
2

2 2
1

'
ˆ ˆln , ; ,

exp ln

n

i i i

i

L y z c d
z t t


 


  


   


  

                                                 
16 The scale parameter of Weibull distribution is fixed to 1. 
17 This expression can be related to that in 2.3 in the model without explanatory variables. 



    

26 

3.2.2. Particular case of the exponential model 

When in the previous model the parameter   is set to 1, one obtains the case of an 

exponential basic hazard function, with parameter noted   (equal to the value of the hazard 

function18). In 1.1.1 above one studied this case and showed that the maximum likelihood 

estimator was equal19 to 

 
1

n

i i

i

d

d t n d c



 
. 

Let us now take for parameter 
1




 ; in the non-censored case, the estimator of   is the 

empirical average of the sample, which is without bias. In the presence of censoring, MLE 

estimator of   is the reverse of the estimator above (by functional invariance of MLE) 

 
1ˆ

n

i i

i

d t n d c

d
 

 




, which is a biased estimator. The existence of censoring thus 

introduces bias into the model. One can show20 that this bias has for expression: 

   2

2

1

exp
ˆ

exp

c
c

E O n

c
n


 



 
 
   

  
   

  

, 

and that the asymptotic variance is written: 

 
2

1

ˆ

exp

V
c

n







  
   

  

. 

The usual normal approximation is deduced. 

3.3. Case where the basic hazard function is not specified: Cox model21 

The constraint of a particular form for the basic hazard function is now lifted; it therefore 

becomes a nuisance parameter, of infinite size. 

Indeed, completely specifying a parametric model can prove too restrictive in some cases; 

moreover, one can be interested in the sole measurement of the effect of covariables, in which 

case the specification of the basic hazard function does not bring anything to the model 

(except for constraints). In other words, the context is one where the objective is to position 

various populations with respect to each other, without consideration for the absolute level of 

the risk. That justifies the interest for a partial specification, studied here. 

                                                 
18 In other words the scale parameter which was ignored in Weibull model is reintroduced here. 
19 Assuming all censoring equal to c. 
20 See BARTHOLOMEW [1957] and BARTHOLOMEW [1963]. 
21 For a detailed presentation of Cox model, see DUPUY [2002], whose notations and presentation logics are used 

here. 
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Let us start with the following formulation: 

     0; exp 'h x z z h x    

with 0h  an unknown factor. 

3.3.1. Estimate of the parameters 

To carry out the statistical inference in this model, Cox [1972] proposed to use a partial 

likelihood in which the parameter of nuisance 0h  does not intervene. This approach is a 

particular case of a more general approach consisting in determining a partial likelihood when 

the model contains a parameter of nuisance of great dimension. The principle of this 

approach, described in Cox [1975], is presented hereafter, and then applied to the case of the 

Cox model. 

Let us consider a vector X of density  ,
X

f x  . It is supposed possible to break down X into a 

pair  WV,  such as: 

     , , ,X VW V
f x f w v f v    

An example of such a decomposition is provided by the vector V of the values of X ordered by 

ascending order and W the vector of the ranks. It is also assumed that the parameter   is of 

the form  0
, h  ,   being the parameter of interest. The idea is that, if, in the 

decomposition above, one of the terms of does not depend on 0h , it can be used to estimate . 

The simplification caused by this approximation must compensate for the loss of information. 

Reminder – the basic model under consideration is still the following: 

iii CXT   and 













ii

ii

i

CXsi

CXsi

D

0

1

 

with      0; exp 'h x z z h x   . According to the general expression of the likelihood of a 

censored model in the presence of covariables (cf 1.2.2 above), one can write the complete 

likelihood of Cox model: 

 

             

0

1
0 0 0

1

,

exp ' exp exp ' exp exp 'i i

n
d d

i i i i i i

i

L h

h t z H t z H t z



  






       
   

 

In the expression above, the basic hazard function intervenes in two manners: directly, and 

through the cumulated hazard function 0H . One can show that there does not exist a 

maximum for likelihood unless a restriction is not imposed on the basic hazard function. 

By breaking down likelihood in a way that isolates the incidence of the basic hazard function 

in a term which will be neglected, one obtains (after a series of tedious developments which 

are not written here, cf. Dupuy [2002]) the following expression of partial likelihood (valid 

with or without ex-æquo): 
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 
 

   
1

1

1

exp '

exp '

i

i j

d

n
i

Cox n
i

j T T
j

z
L

z









 
 
 

  
 

 
  




 

One can however give a simple heuristic justification of the above formula; it is observed 

indeed that in the denominator of the above fraction intervenes  



n

j
TTi ji

R
1

1 , which is 

none other than the population subjected to the risk exposure at the time of the exit of 

individual i (if it is observed). Conditioning by the timing of occurrence of deaths 

1
0

k
t t   (with thus nk   corresponding to the non-censored exits), one considers the 

following events (ordered):  iC is the set of the censorings occurring between 1it  and it  and 

iD  the set of the non-censored exits (death) occurring in it . Which sums up to a problem of 

combinative analysis consisting in counting the exits configurations leading to the observed 

sequence, the dates of death being known. In other words, one is not interested by the 

absolute claim level, but simply by the positioning of individuals with respect to one another, 

according to the values taken by each explanatory variable. One can then break down the 

probability of observing the sequence  ii DC ,  into: 

 

   1 1 1 1 1 1 1

1 1

1, ,i i

k k

i i i i i i

i i

P C D i k

P D C C D D P C C C D D  

 

   

  
. 

By gathering the events related to deaths on the one hand, and those relating to censoring on 

the other hand, the above expression becomes: 

 

   1 1 1 1 1 1 1

1 1

1, ,i i

k k

i i i i i i

i i

P C D i k

P D C C D D P C C C D D  

 

   

  
 

One notices the analogy of the above formula with the general expression of likelihood given 

supra. One can then note iR  the complementary of  1 1 1i iC C D D   to describe the 

population under risk right before the moment it . The basic idea of Cox’s partial likelihood 

consists in ignoring in the likelihood the term associated with censoring, to only keeping: 

   
1

1, ,

k

i i i i

i

P C D i k P D R



      . 

What remains is the evaluation of  ii RDP ; for simplification purposes the assumption is 

made of absence of ex-aequo, which amounts to saying that the set 
i

D  is a singleton: 

 i i
D j . Which then yields: 
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 
 
 

 
 

, exp '

, exp '

i i

i i

i j j

i i

i j j

j R j R

h t z z
P D R

h t z z





 


 

 
, 

And finally leads to the expression we were looking for. 

The expression of partial likelihood is generalised without difficulty to the case of time 

dependent covariables; in the case of fixed covariables, one can show (cf. Fleming and 

Harrington [1991]) that this expression is equal to the distribution of the rank vector 

associated with (T1,...,Tn). In practice the resolution of the system of equation 

  0ln
Cox

i

L 






 is carried out via a numerical algorithm (cf. infra). 

The interest of the obtained estimator ̂  is legitimated by the fact that it is convergent and 

asymptotically normal, like an estimator of the standard maximum-likelihood22. 

3.3.2. Model tests 

Two types of tests can be carried out within the framework of the Cox model: 

- Validation of the assumption of proportional hazard; 

- The total nullity of coefficients, i.e. 0   

The global model validation can be carried out using a test, the principle of which is studied 

in detail by Therneau and Grambsch [2000], based on the residues of Schoenfeld. The latter 

are defined for each individual i and each covariable j as the difference between the value, at 

the date 
i

T  of exit of i, of the covariable for this individual  1
, ,

i i ip
z z z , and its expected 

value: 

 

 

exp '

exp '

i

i

j j

j R

i i i

j

j R

z z

r d z
z









 
 
   
 
 
 




. 

By then introducing the product of the inverse of the variance-covariance matrix of 

Schoenfeld’s residues for individual i with the vector of these same residues, called reduced 

Schoenfeld residue, one can build a test of the assumption of proportional hazard. This test 

will be studied in detail later on. 

The total nullity of the coefficients can be tested via a traditional test – say Wald or score (cf. 

section 4). 

                                                 
22 This result is demonstrated by ANDERSEN and GILL [1982]. 
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4. Tests based on likelihood 

One proposes here to test an assumption of the form   0g   , where g is a function with 

values in r , against the alternative   0g   . Three asymptotic tests based on likelihood are 

classically used: the ratio of likelyhood maxima, Wald test, and the score test. It can be 

demonstrated that they are equivalent, in the sense that the associated statistics differ from an 

infinitely small amount in probability. One will thus choose that whose implementation is 

simplest. 

One notes ̂  the maximum-likelihood estimator in the non-constrained model and 0̂  its 

equivalent in the constrained model.  g   is a vector of dimension r (a (r,1) matrix) and it is 

supposed that the matrix 
' j

i

gg

 

 
  

  
 which is of dimension  rp,  is of rank r. 

4.1.1. Ratio of likelihood maxima 

The idea here is to compare constrained and non-constrained likelihoods and to accept the 

null hypothesis if these two values are close. The following statistic is therefore used: 

    02 ˆ ˆln ln
R L L     

which converges under the null hypothesis towards  r2 , hence a test whose critical region 

is given by   2

1

RW r 


  . 

4.1.2. Wald test 

The idea of Wald test is that, if   0ˆg   , then the null hypothesis is accepted. In a formal 

way, the following statistic: 

 
 

 
 

 
1

1
ˆ ˆ'

ˆ ˆ ˆ'
'

W
g g

ng I g
 

   
 




  
 
  
 

 

converges under the null hypothesis towards  r2 , hence a test whose critical region is given 

by   rW W 2

1 
 . 

4.1.3. The score test 

One is interested here in the first order condition of the constrained model, which reveals the 

Lagrangian    ln 'L g   . The first order condition is thus written: 

   0 0

0

ˆ ˆln '
ˆ

L g 


 

 
 

 
 

and the following statistic is used: 
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 
 

 0 0
1

01
ˆ ˆln ln

ˆ
'

S
L L

I
n

 
 

 

 


 
 

which converges under the null hypothesis towards  r2 , hence a test whose critical region 

is given by   rW S 2

1 
 . 

5. Adjustment of raw mortality rates 

In this paragraph one illustrates the implementation of a parametric approach in the case of 

the construction of a mortality table. For various ages 
10

xxx  , observations are available, 

made up on the one hand of populations under risk at the beginning of period23, noted 
x

N  

and, on the other hand, of the deaths observed over the reference period, 
x

D . The number of 

deaths at age x is a binomial random variable of parameters 
x

N and 
x

q , where 
x

q  is the 

mortality rate at age x. It is natural to estimate this rate by the empirical estimator 
x

x
x N

D
q ˆ , 

which is unbiased, convergent and asymptotically normal24. It will be supposed that one has 

sufficient data to consider that the Normal approximation is valid. One will for example use 

Cochran criterion, which consists in checking that 5 xx qN ˆ  and   51  xx qN ˆ . 

According to the above, the most direct method to estimate the parameters of a parametric 

model in this context consists, once the form of the hazard function is fixed, in writing log-

likelihood: 

       1

1 1 1

n n n

n i i i i

i i i

L y y d h t S t S e

  

     ln , , ; ln ln ln    

then to solve the normal equations  1 0nL y y





ln , , ;


. It is what was carried out in 

example 1.1.1 above. However, in practice these equations can be tricky to solve. Therefore, 

if one wishes to use Makeham model, the log-likelihood of a censored sample25 has the 

following form: 

       1

1 1

1ln , , ; ln
ln

i i

n n
t t

n i i

i i

b
L y y d a b c at c

c


 

 
         

 
  . 

Solving the system of equations 0



L

a
ln , 0




L

b
ln , 0




L

c
ln , is tedious, when 

possible. Indeed, the additions at play in the expressions above comprise a potentially very 

alarge number of terms. Thus, one is led to propose a two-steps approach:  

                                                 
23 Generally, the time period is one year. 
24 In practical terms, a raw mortality rate will often be obtained through a non-parametric framework (Kaplan-

Meier) and then the risk exposure of the rate as well as of the observed number of deaths at a given age. 
25 Assumed non-left-truncated to make writing simpler. 
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 one starts by calculating raw rates of deaths xq̂  through a method that takes into 

account potential censoring (also taking into account the degree of accuracy 

associated with the individual data), 

 then one adjusts the chosen parametric model to these raw rates. For that purpose 

one uses the “passage formula” between the expression of the continuous time 

model and the following raw rates: 

 
1

1 exp
x

x
x

q y dy
 

   
 
  

This relationship between the discrete mortality rate 
x

q  and the hazard function26 
x

  simply 

expresses the fact that the probability of survival between x and x+1, conditionally to the fact 

that the individual is alive at age x, is equal to 
 
 xS

xS 1
. 

Curve fitting/smoothing is justified by the fact that the curve of raw rates presents 

irregularities with age, and that it can be assumed that these abrupt variations are not due to 

variations of the real risk incidence, but rather due to data insufficiency. Fitting through a 

function that models the underlying risk is a way of smoothing these sampling27 fluctuations. 

Among the distributions most often used, one finds the Makeham distribution, which will be 

applied below, after having presented the general approach. 

5.1. Discretised maximum-likelihood 

Within the framework of the binomial model28, the number of deaths observed at age x, xD , 

follows a binomial distribution of parameters   xx qN ,  and the likelihood associated with 

the realisation of a number of deaths xd  is therefore equal to: 

   1 x xx x

x

N dd d
x x x xN

P D d C q q


   . 

For all observations one thus obtains the following log-likelihood (except for a constant 

independent of the parameter): 

        1ln ln lnx x x x x

x x

L d q N d q       . 

This expression is not very easy to handle (for example within the framework of the 

Makeham model one will show that    1
1

xc c

x
q s g


   ), however, numerically the search 

for a maximum does not pose major problems. In order to get to a problem of weighed least 

squares, the approximation is generally made that xq̂  follows a normal distribution: 

   
    2

1
ˆ ;

x x

x x

x

q q
q N q

N

 
  

 
  

 
 

. 

                                                 
26 Hazard function h is traditionally noted  in demographics. 
27 For more developments, cf. lecture on « fitting and smoothing ». 
28 One can often practically get back to this model through proper determination of the population under risk. 
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The likelihood function is then written, by making the assumption of independence between 

ages: 

 
 

  
 

2

2

1 1

22

ˆ
exp

x x

x

q q
L




   

 
 
 
 

 , 

hence the log-likelihood: 

  
 

  
 

2

2
x x

1 1

22

ˆ
ln ln

x x
q q

L



   

  
  

 
 

  . 

The target function is still complex and the parameter comes into the normal distribution’s 

expectancy as well as its variance; that can generate instability in searching for the optimum 

through algorithms; one will therefore use approached likelihood in which the theoretical 

variance is replaced by the estimated variance. The maximisation of likelihood is then 

equivalent to the minimisation of: 

  
 

  
2

2

2
x x

1

2 1

ˆ
ˆ

ˆ ˆ ˆ

x x x
x x

x x

q q N
q q

q q







 


  . 

The problem is reduced to a problem of weighed least squares in the nonlinear case; it can be 

solved numerically by most specialised statistical software. 

However, one has to correctly specify what reference population x
N  is used for the binomial 

experiment. It appears reasonable to wish that on average the model is unbiased, which 

translates into  x x xE D q N  . Without any truncation or censoring, one thus chooses 

 xN S x . In the presence of truncation and/or censoring, it is necessary to take into account 

these phenomena in the calculation. One can show that it is then reasonable to retain the risk 

exposure x xN E  where  x i

i I

E d x



 with  id x  the duration of presence under risk of 

individual i. This result will be justified in the lecture on mortality tables. 

5.2. Application: Makeham model 

The Makeham distribution verifies the relation: x

x
a b c     where µx is the instantaneous 

rate of death at age x. The parameter a can be interpreted like an accidental incidence; the 

coefficient 
x

b c , corresponding to an ageing of the population, has the rate of death growing 

in an exponential way. Taking into account the growth of rates of death with age, one must 

have a constant c higher than 1 as well as a positive b. One then obtains: 

   
 

 
1 1

1exp exp exp exp
ln

x x y x
x y

x x

b
p dy a b c dy a c c

c


      
             

     
  . 

Let us write  as  exp  and   








c
bg

ln
exp , the function used for the fitting/smoothing 

the rates of discrete deaths is thus: 
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 1
1 1

x
c c

x xq p s g


     . 

From now on, we shall use this discretised version of the model. 

5.2.1. Curve fitness to Makeham model 

Before carrying out the adjustment itself, one seeks to validate the adequacy of this kind of 

function to the suggested situation. For that purpose, one observes that one has 

       gccsq x

x
lnlnln 11  . For the qx close to zero29, one can make the approximation, 

 
xx

qq 1ln  and thus: 

     gccsq x

x
lnln 1  

It results from it that    gccqq x

xx
ln

2

1
1


, which helps noticing, by taking the logarithm 

of this expression, that: 

     
2

1

1
1ln ln ln ln

x x
q q x c c

g


  
     

  
. 

Under the assumption that mortality rates follow a Makeham distribution, the points 

  xx qqyx  1ln,  are therefore aligned on a line of slope  cln . Thus the idea is to 

proceed to a linear regression and to produce an analysis of the regression based on the 

following model: 

 Degree of 

freedom 

Sum of 

squares 

Average of 

squares 

F Critical 

value of F 

Regression 1     

Residues n-1     

Total N     

Tab. 1 -  Variance analysis 

One possibly concludes with the adjustment by a line on the interval 
10

xxx   by carrying 

out a Fisher test (with a threshold to be defined, for example 5%). Reminder: the Fisher test 

statistic used to test the global significance of a linear regression30 model 

ippi xxy    11110 ..  is 

11
2

2

1 




 p

pn

R

R
Fp  

                                                 
29 As an indication, the mortality rate at age 60 is in France about 0,50% pour women, and 1,20% for men 

(source: TV/TD 99/01). 
30 To validate the fact that regression coefficients are not all zeros. 
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with 

 

 












n

i
i

n

i
i

yy

yy

R

1

2

1

2

2

ˆ

. This statistic follows a Fisher distribution  11 p, . 

5.2.2. Fitting though maximum-likelihood method 

Once validated the fact that an adjustment of the Makeham type can prove to be relevant, one 

seeks to estimate its parameters though the method of maximum-likelyhood. It will be noted 

incidentally that the maximum likelihood determined in the discretised model under study is 

not identical to the direct maximum likelihood which is obtained based on the continuous 

basic model. 

One notes  , ,s g c   the vector of parameters to be determined, and    1
1

x
c c

xq s g


    

the Makeham function to be fitted. One seeks the vector of parameter which provides the best 

possible fit to the 
x

q̂  curve (raw observed incidence rates). 

One can also simply use the MS Excel solver. In all cases, the algorithm converges towards 

the true value of the parameter only provided that the initial value 0
  is rather close to  . 

It is thus advisable to determine acceptable initial parameters values. One can use for that 

purpose the property established in 5.2.1 above, about the alignment of points 

  xx qqyx  1ln, ; the ordinate at origin and the slope determine g and c, and one can 

solve based on the relationship31        sgccp x

x
lnlnln  1 . 

In order to test whether the coefficients of the obtained Makeham function are not 

significantly equal to zero, a Student test is carried out which consists in comparing the ratio 

(estimate/standard deviation) with a Student distribution of m degrees of freedom (m = 

number of ages observed - 3 estimated parameters). Finally, Khi-2 tests are carried out, based 

on the statistic 
 





x

xx
x q

qq
NW

2ˆ
, xq  being the theoretical rate of death of the model at 

age x. The asymptotic distribution of W is a  13
2

p , where p indicates the number of 

ages under study. It is advisable in practice to handle with precaution the Khi-2 test, the 

asymptotic distribution being a  1
2

 kp , p being the number of classes and k the 

number of parameters of the model, only because in that case the estimator is of maximum 

likelyhood. For other methods of determination of the parameter, this result is not true 

anymore in general (see Fischer [1924]). 

The following graph shows the Makeham fitting carried out by pseudo-maximum likelihood 

(by standardising populations under risk at each age) on the age bracket 40-105 of the TF 00-

02 table. 

                                                 
31 The left hand side part of the equation must therefore only slightly depend on x. 
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Figure 1 -  Fitting of a Makeham distribution to TH00-02 

5.3. Thatcher model 

In practice, the Makeham model leads to an over-estimate of conditional rates of deaths at 

high ages. In order to correct this over-estimate, Thatcher [1999] proposed another (similar) 

model in writing  
1

t

t

e
t

e






 




 

 
. While    1

,
expv u u      one notices that, 

 
 

1

1

exp

exp

u dv
du

u v

 

  



 which leads after some processing to    

1

,

tS t e v t 
  

 . One 

deduces in particular: 

     
11

0 0

1
,

t t tE T e v t dt e e dt   
   

 
     . 

Which leaves  
1

1 exp

x

x

x

q y dy

 
   
 
 
 , yielding: 

 

 

1

1
1

,

,

x

v x
q e

v x


 

 




 

    
 

. 

The outcome is adjustments that are close to those obtained with the Makeham model, but 

with slightly lower rates: 
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Figure 2 -  Comparison of Makeham and Thatcher fitting to TH00-02 

5.4. Raw rates fitting based on Logits  

The estimate of mortality rates xq  is constrained by the fact that one must have  10,xq ; 

while posing     1lg ln /x xx q q  , the logit of the rate of death, one is brought back to a 

“free” value in   ,  and one can then use the techniques of linear regression on 

explanatory variables. The most simple candidates as explanatory variables can be age and 

logit of rates of death of a reference table. 

5.4.1. The logistic function 

The logistic function is by definition  
1

lg ln
x

x
x

 
  

 
 and is defined on  0 1, ; it is 

increasing within this interval: 

 
 

1

1
lg

d
x

dx x x



. 

Also: 

 
 

2

2 22

2 1

1
lg

d x
x

dx x x





. 

Hence on the interval  0 1 2,  the function  lg x  is concave. Reminder: according to the 

Jensen inequality, if f is convex, then     E Ef X f X . This yields that, in a zone where 

rates of death are small, and if the rate of death was estimated by ˆ
xq  assumed unbiased, then: 

   ˆElg lgx xq q . 

In other words, the obtained empirical logits are negatively biased (they underestimate true 

logits). As the function  lg x  (and its inverse) is increasing, by underestimating theoretical 
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logits, this approach underestimates theoretical rates of death. This conclusion is reversed for 

exit/death rates higher than ½. 

Within the framework of a fitting of  ˆ ˆlgx xy q , one obtains the adjusted rates of deaths 

through the inverse transformation 
1

y

y

e
y

e



. The presence of exponentials in this 

expression leads to an important amplification of the bias of estimate mentionned above. In 

the case of mortality risk, a logits fitting model leads to underestimating rates of death in 

proportions which can be material (typically 5 % to 10 %). 

Models using logits of rates of death must therefore be used with prudence in the context of 

risks in case of death. They integrate on the contrary a safety margin in the context of risks in 

case of survival. 

The use of logistic fitting within the framework of qualitative variables is more and more 

“legitimated” by the following remark: the quantity 
1

x
x

x

q
c

q



 is the ratio of the probability 

of “success” over the probability of “failure” within the framework of a Bernoulli experiment; 

an interpretation is therefore that there is “ xc  time more chances for death to occur, than for it 

not to occur”. It is then relatively natural to seek to explain the level reached by xc  using 

explanatory variables, and because of positivity of xc . The simplest model that one can think 

of is obtained in writing  exp t

x x
c z , with zx the vector of explanatory variables. 

One then falls back on the context of a generalised linear model32 with a logistic link function: 

 lg
t

x x x
q z   , 

which allows the use the standard procedures for estimation, available in most specialised 

software (once the distribution of x  is specified). One can also note that this model can be 

written in the form: 

 
1

'

'

x

x

z

x z

e
q

e




 


. 

One can thus seek the solution by the method described above, of discrete maximum 

likelihood. 

5.4.2. Logistic fittings 

The base model for logistic fitting starts from the observation that on a broad spectrum the 

logit of the rates of death presents a linear trend; the following modelling is proposed, the 

simplest version of the module presented infra assuming that the age constitutes a relevant 

explanatory variable: 

 ˆlg x xq a bx     

                                                 
32 See NELDER and WEDDERBURN [1972] for the original presentation, and PLANCHET et al. [2011] for an 

introduction. 
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Where   is a Gaussian iid noise; one therefore simply regresses the logits from the rates of 

death on age. The reverse transformation of the logit being 
1

y

y

e
y

e



, the model 

 lg xq a bx   is written in an equivalent way: 

1

dx

x dx

ce
q

ce



 

by stating that 
a

c e and d b . An alternative approach to the linear regression 

 ˆlg xq a bx     therefore consists in carrying out an estimate by maximum likelihood in 

the parametric model 
1

dx

x dx

ce
q

ce



. This approach avoids a priori the underestimating effect 

of mortality rates associated with the linear regression approach, the rate of death being the 

modelled variable (but the maximum likelihood estimator has however no reason to be 

unbiased). 

The determination of the survival function and the hazard function, related to one another by 

   
0

exp

t

S t s ds
 
  
 
 
  requires to make assumptions. Indeed, the relationship 

 
 
 

1
1

S x
q x

S x


   leads in the general case to the following constraint on the hazard 

function: 

   
1

1ln

x

x

x

q s ds



     

In the discrete model specified until now X is a priori an integer. One thus needs a rule of 

passage of discrete time to continuous time. Various approaches may be used (Balducci, 

constancy of chance rates by segment, etc.). If one chooses the assumption of constancy of the 

hazard function between two integer values, one finds that the hazard function is a staircase 

function with, at the integer points: 

1

dx

x dx

cde

ce
 


. 

In practice it can appear that the curve of raw rates 
x

q̂  presents a stall starting from a pivot 

age, which indicates an acceleration of the incidence. In this context, one is brought to seek an 

adjustment via models of the logistic type built on fittings of   1ˆ ˆln /x xq q  on age, which 

will thus play the part of explanatory variable. 

One seeks to adjust the raw rates on a function of the form: 

    1 0ˆ ˆln /x x cq q ax b c x x        
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Where 
c

x  is a “pivot age” beyond which mortality accelerates (standard logit model). In other 

words, one writes the logistic regression model according to: 

    1 0ˆ ˆln /x x cq q ax b c x x        

where (X) form a Gaussian white noise. One can generalise these models by writing: 

    1 0ln /x x c xq q ax b c x x


         

If one does not have sufficient data to properly structure the complete table, one can imagine 

using the structure of an existing reference table, simply positioning the mortality of the 

considered group with respect to the reference. When one wishes to position a table with 

respect to another one, it can appear natural to carry out the regression of logits of the raw 

rates on logits of the reference table, which leads to the following model: 

     1 1ˆ ˆln / ln /x x x x xq q a q q b       

5.4.3. Parameters estimation 

In the case of the regression model based on age, the estimate can be carried out according to 

the following procedure: before the pivot age 
c

x , one carries out a linear regression of 

  1ˆ ˆln /x xq q  on x, then beyond one makes one second regression (nonlinear) of 

    1ˆ ˆln /x xq q ax b   . 

In the case of a regression of logits of the raw rates on logits of a reference table, estimation is 

carried out via a traditional ordinary least squares estimate. 

5.5. Confidence intervals for raw rates 

The first stage of the construction of the mortality table is the estimate of raw rates for each 

age. It is appropriate, beyond point estimation, to have an idea of the precision of the estimate 

carried out. It depends on two factors: 

 risk population/exposure 
x

N , 

 the level of mortality rate to be estimated 
x

q . 

Indeed, the larger 
x

N  and 
x

q , the better the precision. The precision will be measured by the 

width of the confidence interval. To determine it, two methods are available: 

 the use of the Gaussian approximation, if enough observations are available; 

 the calculation of the finite distance interval, which is a priori possible since the 

distribution of 
x

q̂  is known. 

Initially, one thus seeks which type of confidence interval shall be used. For that purpose, one 

notices that a relationship exists that binds the uncertainty of the estimate, the number of 

observations and the degree of confidence of the desired interval: 
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 
2

1
/a

f f
p u

N


   

where f is the value around which the interval is built. (i.e. f is equal to the estimated value 
x

q̂

) and up indicates the quantile of order p of the standard normal distribution. 

Example 

If the value to be estimated 
x

q  is worth 0.2, if one wishes an interval at 95 % for a precision 

of about 0.01. It is necessary to have: 

  2 2

22 2

1 0 2 0 8
1 96

0 01
/

, ,
,

,
x a

f f
N u

p

 
  


 

that is to say approximately: 

6 150N

  

If only 3’000 observations are available, one will turn to the finite distance confidence 

interval. At the 95 % level, considering the most unfavorable case of a frequency of ½, one 

obtains a worst-case (rather broad) necessary number of observations to obtain the precision 

p  by 
2

1
p

N


 . 

5.5.1. Asymptotic confidence intervals 

x
N  indicate the exposure to the risk at age x, 

x
D  the number of deaths in the year of the 

people of age x, and 
x

q  was estimated by 
x

q̂ . According to the central limit theorem: 

 
 0 1

1

ˆ
,

ˆ ˆ

x x
x

N

q q
N N

q q 




 
 

The asymptotic confidence interval of level   for 
x

q is thus given by: 

   
2 2

1 1ˆ ˆ ˆ ˆ
ˆ ˆ,

x x x x
x x

x x

q q q q
I q u q u

N N
  

  
   
 
 

 

The limit of this approach is that it only allows to build confidence intervals for a specific age, 

but does not allow to frame the rates of death on a fixed age range with a known degree of 

confidence. One now wishes to frame the rates of death simultaneously on all ages x of a 

range of ages  0 0
,x x n  (where n is a positive integer). The framing of rates of death thus 

now corresponds to a confidence “band” – gone is the confidence interval at one “point” only. 

One wishes to build bands of confidence for rates of death, and not for survival functions. In 

practice, one seeks  ˆ
x

t q  such that     0 0
1ˆ ˆ , ,

x x x
P q q t q x x x n        . For this 

purpose, one uses the Sidak estimation method, which is based on the principle of the test 

threshold inflation, when the number of tests increases (cf. for example Abdi [2007]). 
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For memory, a band of confidence on the degree of confidence 1   on the ages range 

 0 0
,x x n  can be presented like a collection of confidence intervals for the various ages 

 0 0
,x x x n   built so as to have a simultaneous interval of probability equal to 1  . That 

is to say   0
1ˆ ˆ ,

x x x
P q q t q x x       the interval of probability of level 1   (with 

 0 1,  ) for 
x

q  at the age 
0

x x . The simultaneous probability to frame the rates of death 

x
q  at both ages 

0
x x  and 

0
1x x  is then  

2
1  , by assuming the independent framing 

on these two ages. By repeating the operation so as to include all the ages of  0 0
,x x n , it 

appears then, always under the assumption of independence, that the simultaneous probability 

to frame the rates of death 
x

q  for the various ages  0 0
,x x x n   is  

1
1

n



 . 

On these bases, one can thus build a band of confidence to the threshold   on the age bracket 

 0 0
,x x n , by constituting specific confidence intervals for each age  0 0

,x x x n   with 

the threshold: 

 
 1 1

1 1
n

 


   , 

since in this case one has    
1

1 1
n

 


   . Also, an approximation of the band of 

confidence allowing simultaneously to frame the rates of death on all the ages  0 0
,x x n  

based on Sidak method is: 

 
 2 0 0

1
1

ˆ ˆ
ˆ , ,

x x

x x

x

q q
P q q u x x x n

R
 

 
       
 
 

, 

with  
 1 1

1 1
n

 


   . The intervals and bands of confidence above allow to frame the raw 

death rates under the fluctuations of sampling, respectively for a given age or on an age 

bracket. The bands of confidence are by construction broader than the confidence intervals. 

5.5.2. Finite distance confidence intervals 

Here one considers the case where 
x

N  is not large enough to be able to use the central limit 

theorem. Based on the fact that    1
x

k k k

x N x x
P D k C q q      one calculates the exact finite 

distance confidence interval. One thus seeks 


m  such that: 

  1ˆ ˆ
x x x

P q m q q m         

By multiplying by 
x

N the terms of the inequality of which one wants to calculate the 

probability, one finds that one must have: 

 

1

1

^

^

( )

( )

ˆ ˆ[ ]

ax

ax

N q m

x x x x

k N q m

P D k P q m q q m  

 
  

 

 
  
 

         

One can think of an iterative procedure to find 


m  : 
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step n°0 

 kDP
x
  is calculated with 

xx
qNk ˆ , and compared to 1 . If   1

x
P D k    , go to 

next step. 

step n°j 







jqN

jqNk

x

x

x

kDP

^

^

][  is calculated and compared to 1 . If 1

^

^

[ ]
x

x

N q j

x

k N q j

P D k 


 

   , go to step 

j+1. 

final step 

When this iterative process comes to a stop, we get 
x

N

j
m 


. 
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