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1. Analysis of mortality 

One is interested in the random variable T representing the lifetime of an individual; one 

supposes the individuals of the population initially identical, so that one will be able to have 

samples resulting from the distribution of T. 

1.1. Notations 

It is convenient to consider the variable 
x

T  representing the residual lifetime of an individual 

conditional to the fact that he is alive at age x, i.e.  xTxTT
dx

 . One can then define 

the probability of survival between x and tx   by: 

   xTtxTPtTPp
xxt

 , 

and the quotient of mortality between x and tx  : 

   xTtxTPtTPpq
xxtxt

 1 . 

When 1t  it is omitted in the notations, and one writes more simply xx qq 1 and xx pp 1 . 

 

Fig. 1 : Instantaneous rate of mortality as a function of age 

These quotients are expressed simply using the survival function of T: 

 
 xS

txS
pxt


 . 

It is usual to note1  xSl
x
 ; the number of deaths between x and tx   is noted 

txxxt
lld


 ; 

within the framework of the statistical analysis of the mortality of a cohort one measures the 

time lived by the individuals of the cohort between x and tx  , defined by: 

                                                 
1 A normalising constant may be used. 
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 

t

uxxt dulL

0

. 

 

Fig. 2 :  Representation of the survival function 

Starting from this indicator one can define the residual lifetime, which is a characteristic 

indicator of the mortality table: 

0

x x u x

i x

E l du L

 





  . 

The quotient of mortality 
xt

q  is calculated by dividing a number of deaths over the period by 

headcount at the beginning of period; one also calculates the mortality rate, obtained by 

dividing the number of deaths by average headcount over the period, that is to say: 

t x
t x

t x

d
m

L
 . 

The quotients of mortality are probabilities (numbers without dimension) whereas the rates of 

death are expressed in reverse time unit and count deaths per person under risk and unit of 

time. This difference leads to the following relationships with the hazard function, called in 

this context “instantaneous rate of mortality”: 

 1

0

1
lim

x t x x t x
h

t x

h P t T t h T t q
p t

 





     


, 

Because  1 t h x t x
x x

t x

q q
h P t T t h T t

h p

 


     ; thus when h is small, h x x
q h  and 

1
h x x

p h  . The link between the instantaneous rate of mortality and mortality rate is 

direct: 
0

lim
x h x

h
m


 , which justifies ex-post the terminology. 
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The relation between function of conditional survival and hazard function is written with the 

following notations: 

0

exp

t

t x x s
p ds



 
  

 
 . 

1.2. The Lexis diagram 

When studying mortality, it is rare to have access to exact information concerning ages and 

dates of death; these data are generally available in rounded figures: ages in integers and dates 

in years. In order to correctly determine the raw death rates in this context, one uses a 

particular formalism: the Lexis2 diagram. 

1.2.1. Presentation 

The analysis of the mortality of a given group is based on three measurements of time: the age 

of individuals, their generation (date of birth) and the observation date; of course these 3 

informations are linked and the knowledge of only 2 determines the third. 

Each one of these dimensions has however its importance in the determination of the level of 

mortality: 

 Age: this variable obviously influences the risk of death; 

 Observation date: the risk of death can vary according to circumstances like an 

epidemic, an extraordinary event (heat wave of summer 2003 for example), etc. 

 Generation: phenomena such as the improvement of sanitary conditions and 

progress of medicine result in modifying the risk of mortality at a given age in the 

course of time; moreover, one can imagine that the past of a given generation can 

modify the level of its future mortality: typically, an epidemic intervening on a date 

t and concerning people of age x on this date can contribute to decrease the rates of 

death at the ages higher than x for this generation, by resulting in the premature 

death of the least resistant individuals. 

It is then convenient to represent the life of an individual in a rectangular axis system called 

“Lexis diagram”, in the following way: 

                                                 
2 From the name of the german statistician and demograph Wilhelm LEXIS (1837-1914). 
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Fig. 3 : Lexis diagram 

The life of an individual is thus represented by a line parallel to the first bisectrix, which cuts 

the x-axis at year of birth and stops at the “funeral point” which is the day of death. By tracing 

a horizontal band between x and x+1 one isolates the individuals died at age x, and by tracing 

a vertical band between g and g+1, one isolates the deaths from the individuals of the 

generation g. In this formalism, x and g are integers, and x measures the age in completed 

years. 

1.2.2. Lexis diagram and measurement of mortality 

The funeral points which are in the square below are associated with the deaths at age x 

during the year t: 

 

Fig. 4 : Identification of the deaths at age x on year t 

The individuals concerned belong to generations t-x and t-x-1. In the same way one can 

deduct the number of deaths at age x among the generation g: 
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Fig. 5 : Identification of the deaths at age x in generation g 

These deaths occurred during years g+x and g+x+1. One also obtains the number of deaths at 

age x among generation g during year t: 

 

Fig. 6 :  Identification of the deaths at age x on year t in generation g 

Lastly, one can represent in the same manner the number of deaths during year t among the 

individuals of generation g: 
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Fig. 7 : Identification of the deaths in generation g on year t 

1.3. Longitudinal mortality and transverse mortality 

The “natural” measurement of mortality consists in counting the deaths which have occurred 

during a given period (one year for example), then calculating the rates of death per age by 

dividing this count by headcount under risk. Which amounts to considering a vertical band of 

the Lexis diagram. 

It can be seen that, should mortality evolve in the course of time, this approach introduces a 

bias in the measurement of mortality – more precisely, during times of decreasing mortality 

trend, it results in underestimating the lifetimes (or over-estimating rates of death). Indeed, in 

this approach one considers individuals of separate generations to calculate the rates of death 

– the obtained table thus does not represent the mortality of any real generation. 

 

Fig. 8 : Longitudinal mortality and transverse mortality 

The actual/real mortality of a generation is obtained by considering the rates along a digonal 

band, as shown above. One will thereafter need to calculate the quotient of mortality at age x 
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for year t; as one saw in 1.2.2 above, this quotient utilises two generations, xt   and 1 xt . 

One thus determines the “partial quotients of mortality”, by noting  gD
xt

 the number of 

deaths at age x for generation g, which occurred on year t: 

 
 

1

1,

ˆ xt

xt

x t xt

D t x
q

l D t x





 
. 

( 1txl ,  denotes the number of people of age x as of the date 01.01.t+1); this quotient thus 

approaches the probability for individuals of generation xt  , of dying at age x on year t. One 

estimates in the same way the probability for individuals of generation t – x – 1 of dying at 

age x on year t: 

 

xt

xt
xt l

xtD
q

12 
ˆ . 

The sought quotient then results from the aggregation of these 2 partial quotients: to survive 

between one’s xth and its (x+1) th birthday, it is necessary to survive from one’s xth birthday to 

the end of the calendar year, then from the end of the calendar year to one’s (x+1) th birthday, 

that is to say: 

  1 21 1 1ˆ ˆ ˆ
xt xt xt

q q q    . 

When one wants to determine mortality rate at age x for year t, one calculates classically, with 

obvious notations: 

 1
2

, ,

ˆ
/

xt
x

x t x t

D
m

l l





. 

1.4. Distribution of deaths within a year 

Available data are often gathered data in which the unit of time is the year. It is then advisable 

to give oneself a rule of distribution for the deaths within a year. This point was approached 

previously; three assumptions are classically proposed: 

 constant instantaneous rates of death between 2 non-integer ages (exponential 

assumption):  1 1
t

t x x
q q    ; 

 linear distribution of deaths during a year: 1
t x x
q t q    ; 

 Balducci assumption, which postulates that: 
 1 1

x
t x

x

t q
q

t q




 
. 

The Balducci assumption can be dismissed right from the start because it leads to 

instantaneous rates of mortality decreasing between 2 integer ages; indeed, one finds in this 

model that: 

 ln x

x t t x

x x

q
p

t p tq





  

 
, 
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which results from 1 1 x x

t x t x

x x x x

tq p
p q

p tq p tq
    

 
. The choice between the 2 remaining 

assumptions is not neutral on the appreciation which one will have of the level of mortality. 

Indeed, if c

x
T  and l

x
T are the residual lifetimes respectively in the constant instantaneous rates 

model and in the linear distribution of deaths model, one has, with obvious notations: 

   l c

x x
S t S t , which implies in particular that    l c

x x
e t e t ; the assumption of constant 

instantaneous rates thus leads to lower lifetimes: thus a prudent assumption in the case of 

guarantees in the event of death, and less prudent in the case of annuities. However, the 

difference between the 2 approaches is minor. 

To prove the inequality    l c

x x
S t S t , one sets rkt  , with  tk   and 10  r one notes 

that: 

     1l l

x x k x x k
S t P T k r p rq


      

and 

   c c r

x x k x x k
S t P T k r p p


    . 

The inequality to be shown is thus equivalent to  1 1 r

x k x k
r p p

 
   , and this last inequality 

is the direct consequence3 of  1 1
r

x rx    for all 10  r . In the models presented 

hereafter, the assumption of constant instantaneous rates of mortality between 2 integer ages 

is made, so that one has  1 1
t

t x x
q q   . 

1.5. Synthetic indicators of the level of mortality 

The characteristics of a mortality table are usually summarised by some indicators: life 

expectancy and entropy are two important indicators, presented hereafter. 

1.5.1. Residual life expectancy 

The residual life expectancy is by definition  
x

x
xe l

E
TEe  ; one thus has 






0

1 dul
l

e
ux

x
x

; 

one deduces in particular from this expression that: 

1x
x x

de
e

dx
   . 

Indeed, 

2

2

x x u

x
x

x

d
l l l du

dxd
e

dx l


 

  
 




 and because ln
x x

d
l

dx
   , the above equality can be 

written. The discrete version of this formula is simply 
0

1
x

x h

hx

e L
L





  . 

                                                 
3 There even is strict inequality if 0r . 
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This expression means that when mortality rates are small, the residual life expectancy 

decreases by approximately a year every year; on the other hand, when mortality rates become 

large, one can have a residual life expectancy which increases. 

From a practical point of view, that means that the graph of the 
x

e is almost aligned on a line 

of slope - 1 until around 75 years, then curving up as can be seen on the graph below: 

 

Fig. 9 : Residual life expectancy as a function of age 

From 75 years old onwards, a polynomial adjustment of order 2 works in general properly 

(which provides a simple parameterisation of a period mortality table). It can be noted that the 

residual life expectancy can be interpreted as the price of a continuous life annuity with zero 

discount rate. 

1.5.2. Entropy 

The decrease of mortality rates at young ages, yet with an ultimate lifespan seemingly 

remaining constant, has for consequence a phenomenon of “orthogonalisation” of the 

mortality tables, the number of people dying at high ages4 becoming larger and larger: 

                                                 
4 This phenomenon is accompanied by a decrease of the variance of lifetime with time. 
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Fig. 10 : Illustration of the phenomenon of orthogonalisation of mortality tables 

The entropy proposes to measure this phenomenon; one defines it by: 

 
0

0

ln
x x

x

l l dx

H

l dx




 





. 

As one has  ln
x x

d
l

dx
   , one can rewrite this quantity in the form: 

0

0 0

x x x
l e dx

H
l e







. 

The discrete version of this formula is 

 
0

0

ln
x h x h

h

x h

h

L L

H
L

 







 



.  Entropy thus divides the 

average number of “lost years” because of death by the number of possible years “in store” at 

date 0. 

One can notice that 0H  if and only if all of the deaths occur at the same age and that 

1H corresponds to the extreme opposite situation in which the instantaneous rate of 

mortality is constant: this measure is therefore well adapted to the assessment of the 

orthogonalisation phenomenon. Entropy went from approximately 50 % at the end of the 19th 

century to 15 % today. 

2. Some indicators 

The objective of this section is to provide some useful orders of magnitude on the level of 

mortality. One also illustrates the manner of quantifying the impact on the mortality of 

specific characteristics of the population, by taking the example of the smoker/non-smoker 

criterion. 
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2.1. General data 

The life expectancies at birth and at 60 years old, as well as the rate of death at this age, are 

indicated in the table below: 

 Women Men 

 TV73/77 TV88/90 TV99/01 TD73/77 TD88/90 TD99/01 

Birth 76.5 80.2 82.2 68.6 72.0 74.7 

Age 60 20.9 23.5 25 16.1 18.3 19.9 

q60 0.77% 0.57% 0.48% 1.90% 1.57% 1.18% 

This table clearly reveals disparities between men and women: 

 Women/men 

 TV73/77 TV88/90 TV99/01 

Birth 112 % 111 % 110 % 

Age 60 130 % 128 % 126 % 

q60 41 % 37 % 41 % 

One can also see a decreasing mortality trend: 

 Women Men 

 
TV88/90/TV73/77 TV99/01/TV88/90 TD88/90/TD73/77 TD99/01/TD88/90 

Birth 105 % 102 % 105 % 104 % 

Age 60 112 % 106 % 114 % 109 % 

q60 74 % 85 % 82 % 75 % 

The mortality gap between men and women translates in the fact that, in developed countries5, 

a sample of people older than 60 show 70 men for 100 women, and a sample of people older 

than 80 show 44 men for 100 women. 

2.2. Impact of smoking 

The impact of smoking on mortality is illustrated on the basis of: 

 The study of male smoker/nonsmoker Canadian tables; 

 Epidemiological studies conducted by the Ministry for Health in France. 

2.2.1. Study of Canadian tables 

Nonsmoking characteristic of policyholders has a favorable impact on their mortality. In 

Canada, studies led to the establishment, for men older than 30, of mortality tables 

differentiated by this characteristic. Their study enables us to quantify the impact of 

smoking on mortality. 

The following graph shows the evolution of annual mortality rates with age and depending 

on whether the man smokes or does not smoke. 

                                                 
5 As per a 1998 study from the US bureau of the census. 
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Fig. 11 : Comparison of male smoker vs nonsmoker rates of death  

As one could expect it, mortality rates of the smokers are systematically higher than those 

of the nonsmokers. The reduction of mortality of nonsmokers versus smokers shows a 

maximum at age 59 (63.35 %). 

 

Fig. 12 : Relative reduction of nonsmokers rates of death compared to that of smokers (men) 

The average reduction between ages 31 and 71 amounts to 53.4 %. This analysis makes it 

possible to measure the impact of smoking on mortality. Compared to the total population, 

the reduction for nonsmokers is about 20 % on average between ages 31 and 70. 
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Fig. 13 : Relative reduction of nonsmokers rates of death compared to the general population (men) 

A maximum is reached at age 58 with a reduction of almost 30%. 

2.2.2. Study of French Ministry for Health 

The study “smoking and mortality: epidemiologic aspects” provides interesting indicators 

making it possible to quantify the under-mortality of nonsmokers. The key elements can be 

summarised as follows: 

 Between ages 39 and 65, 1 death out of 3 for men is related to smoking and 1 death 

out of 16 among women. 

 Between ages 35 and 49, 40 % of men and 29 % of women are regular smokers. 

These percentages decrease respectively to 28 % and 14 % between ages 50 and 64. 

By making the assumption that these proportions are homogeneous on the indicated age 

segments, it is possible to estimate nonsmokers’ under-mortality compared to smokers. Let 

us note: 

 qtabac the rate of over-mortality related to smoking, 

 q the mortality rate of nonsmokers, 

 
F

 the proportion of smokers, 

 
NF

 the proportion of nonsmokers, 

  the proportion of deaths due to smoking. 

 
F tabac

F tabac NF

q

q q q




 




   
 

Thus: 

 1

tabac

F

q

q



 


 
 

The rate of under-mortality of nonsmokers compared to smokers is thus written: 

 
 

1
1 1

1

F

tabac F

q

q q

 

  

 
  

   
 

The rates calculated based on the elements of the study of the Ministry for Health are 

summarised in the following table: 

 Men Women 

Age 35-49 55.56 % 20.41 % 

Age 50-64 64.10 % 32.26 % 

 

Concerning men, the rates of under-mortality of nonsmokers compared to smokers (56 % 

and 64 %) are comparable with those resulting from the Canadian tables (53 %). These 

same rates are lower for women; however, female smoking is more recent and its impact 

less well assessed than that of men. 
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By supposing that the proportions of smokers referred to above are homogeneous on all 

age segments, rates of under-mortality of nonsmokers compared to general population are 

given by: 

 Men Women 

Age 35-49 33.33 % 6.25 % 

Age 50-64 31.71 % 6.25 % 

 

The male rates are slightly higher than what is observed with the Canadian tables. The 

female rates are clearly lower than the male rates. 

3. The construction of custom mortality tables 

We are in the parametric context; the construction of a custom table systematically comprises 

two stages: first of all the estimate of raw rates – by age, or age and generation in the case of 

prospective tables – then the adjustment of these raw rates to a parametric model. 

In practice one can distinguish two situations: first of all, the “reference” situation in which 

one disposes of data in sufficient quantity to build a reliable table. But in certain cases it may 

be that the available data are not sufficient to determine in a precise enough way the structure 

of the table, and one will then seek to simply position the mortality of the studied group with 

respect to a benchmark mortality, which will provide the general structure. 

3.1. Period tables 

3.1.1. Full construction 

The standard approach of construction of a mortality table within a parametric framework was 

described previously, it is therefore not detailed again here. It will only be reminded that it is 

based on the choice of a parametric form for the hazard function, with Makeham model as a 

reference model – the parameters estimate being carried out by the method of maximum 

likelihood. 

In some specific situations, one will be able however to turn to other models, such as Poisson 

regressions; the typical example of application of such models is the analysis of the mortality 

of a rare event, such as the consequences of the exposure to asbestos. The justification of the 

interest of the Poisson distribution for “rare” events comes from the observation that the 

binomial distribution ,n
n

 
 
 

 converges in law towards   when n , which is easily 

verified with the Laplace transform. 

As the number of deaths is very weak compared to risk exposure, one can use a Poisson 

distribution as model for the number of deaths per age and period. 

The following table gives the number of deaths caused by mesothelioma6 noted by age group, 

for five periods, as well as the population under risk for this period: 

                                                 
6 A cancer resulting from exposure to asbestos. 
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 1970-74 1975-79 1980-84 1985-89 1990-95 

25-29 0 10041742 1 10978690 1 10602254 1 10680272 1 10791607 

30-34 2 7720583 1 10038396 0 11005461 1 10651073 1 10837520 

35-39 2 8074903 3 7589268 5 9904593 5 10922900 6 10657919 

40-44 5 8510762 7 7879250 7 7457766 10 9761988 11 10853140 

45-49 9 8211522 9 8220829 14 7662805 14 7265550 17 9464014 

50-54 10 7173352 18 7821153 22 7866442 26 7354438 24 7022582 

55-59 16 4824443 20 6743790 32 7372021 41 7446988 41 7071006 

60-64 28 6069611 26 4404567 38 6213936 58 6813378 68 6988969 

65-69 33 5371770 42 5298248 41 3889820 63 5575185 84 6148376 

70-74 34 4157113 49 4371284 56 4387290 56 3277849 72 4829840 

75-79 24 2432745 37 3018047 53 3254297 73 3391145 64 2511709 

80-84 10 1229739 22 1467570 35 1878692 54 2112437 63 2362417 

85-89 7 527277 11 560756 16 691452 23 927740 31 1123450 

 

If one wants to explain the deaths according to age and period, one can choose two series of 

parameters, (ai) and (cj) each describing the effect of a given age segment and a given cohort. 

To satisfy the constraints of positivity (deaths are a positive number), one can propose a 

multiplicative model ai cj. One will choose for example to model the number of expected 

deaths  ij ij
E d  with a model of the form ln

ij

i j

ij

a c
N

 
  

 
 

 or, in an equivalent way 

 exp
ij ij i j

N a c   . In a cell, there is finally a likelihood related to the Poisson distribution: 

     exp exp exp / !
ijd

ij i j ij i j ij
N a c N a c d   , and global likelihood is obtained by 

multiplying likelihoods of each cell. 

The application of this type of models to the construction of prospective tables is presented in 

3.2.2 below. 

3.1.2. Use of a benchmark 

The use of a benchmark consists in seeking a “positioning” of the custom table compared to a 

given benchmark table – which can be for example an INSEE table. 

Many models are possible, but the most common approach consists in applying a reduction 

(or increase) rate to the rates of the benchmark table, which consists in seeking a coefficient  

such that 
ref
x

ex
x qq   . While remembering that the quotient of mortality is the discrete 

version of the hazard rate x  (with the relation  xx q 1ln  if one makes the 

assumption of constant hazard function between two integer ages), one notices that this model 

is thus a proportional random model in which one supposes the basic hazard function to be 

known. More precisely, if it is supposed that 
ref
x

ex
x    on the one hand and that 

 xx q 1ln  on the other hand, one obtains the following relation between the quotients 

of mortality: 



   

18 

 ref
x

ex
x qq  11 , 

relation which, to the first order when the rates are small, is equivalent to ex ref

x x
q q  . It was 

seen that in this context an estimator of the type “ordinary least squares” could be proposed 

for   ln . The estimator of   is thus obtained: 

   
nn

i
iref

n

i
iref xHexH

n

1

11

1



























 




 lnexpˆ  

With   the constant of Euler7 and     ref
xrefref LxSxH lnln   the cumulated hazard 

function. 

One can also consider as a selection criterion for the parameter   the difference between the 

number of deaths observed and the theoretical number of deaths associated with the 

“corrected” table. By noting 
obs
xL  the headcount under risk at age x in the population 

considered, the number of deaths predicted by the “corrected” table at age x is
obs
x

ref
x Lq  . 

If one constrains the total number of deaths predicted to equal the number observed, one 

obtains the following estimate of  : 








x

obs
x

ref
x

x

obs
x

Lq

D

̂ . 

An alternative approach consists in reasoning age by age and considering statistics of the Chi-

square type defined by: 

 
 

2

1

obs ref
n

x xobs

x ref
i x

q q
L

q


 



 



  

and to seek the value of  which minimises this distance. 

3.2. Prospective tables 

The objective of prospective tables is to take into account the future evolution of mortality; 

the usual methods first seek to adjust past tendencies, then to extrapolate them to the future. 

The prospective approach consisting in integrating into the future the effect of future medical 

progress is not examined here. 

The models used adjust raw rates calculated by methods such as that presented in 1.3 above to 

a parametric model, making it possible on the one hand to smooth sampling fluctuations and 

on the other hand to project the rates evolution in the future, by extrapolation. 

We have raw rates indexed by age x and calendar year t, which typically take the following 

form: 

                                                 
7 The value of which is approcimately 0,577215665. 
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Fig. 14 : Raw death rates per year 

The passage of raw quotients of mortality to instantaneous rates of mortality, which is the 

variable modelled in some approaches, is carried out via an assumption on the distribution of 

deaths within a year (see 1.4 above); if one makes the assumption of constant instantaneous 

rates in each square of the Lexis diagram, one obtains the following estimator: 

 1* ˆln
xt xt

q     

3.2.1. The Lee-Carter model 

It is a method of extrapolation of past tendencies initially used on American data, which 

quickly became a standard (see the original article Lee and Carter [1992]). The modeling used 

for the instantaneous rate of mortality is the following one: 

ln
xt x x t

k    , 

or, in an equivalent way 

*
ln

xt x x t xt
k       

The idea of the model is thus to adjust to the series (indexed twice by x and t) of the 

logarithms of instantaneous rates of death a parametric structure (deterministic) to which is 

added a random phenomenon; the criterion of optimisation will consist in maximising the 

variance explained by the model, which is equibalent to minimising the variance of errors. 

The parameter 
x

  is interpreted as the average value of  ln
xt

  with time. It is verified that 

 ln
xt t

x

d dk

dt dt


  and it is deduced that the coefficient

x
  translates the sensitivity of 

instantaneous mortality to age x compared to the general evolution tk , in the sens that 

 ln
xt

x

t

d

dk


 . In particular, the Lee-Carter model assumes that this sensitivity is constant 

with time. This constraint of the model can appear relatively strong: 

- For any age x the quotients of relative variations of mortality rates at different 

dates do not depend on age x. If the relative variation of mortality rate at age 50 in 
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2000 were 80 % of what it was in 1990 this coefficient of 80 % is retained for all 

ages; 

- For the same date t the quotients of relative variations of mortality rates at different 

ages do not depend on the date t. If in 2000 the relative variation of mortality rate 

at age 20 is 50 % of the relative variation at age 50 this coefficient of 50 % will 

apply to any future or past date. 

Lastly, one can notice that the form of the model implies the homoscedasticity of mortality 

rates, which is obviously false in practice. This disadvantage will be examined more in details 

in 3.2.2 below. 

In order to make the model identifiable, it is advisable to add constraints on the parameters; 

indeed, for all non zero constant c the model is invariant through the following 

transformations: 

 , , , ,x
x x t x tk c k

c


  

 
  

 
 

   , , , ,x x t x x x tk c k c        

It is thus advisable to impose two constraints on the parameters. The following constraints are 

retained: 

1
M

m

x

x

x x




  and 



M

m

t

tt
t

k 0 . 

One then obtains the parameters by a criterion of least squares (nonlinear): 

    
tx

txxxttxx kk
,

*
lnminarg,ˆ,ˆ

2
  

Next, we solve this program of optimisation, under the constraints of identifiability. The 

number of parameters to be estimated is high, it is equal to   112  mMmM ttxx . 

3.2.1.1. Parameters estimation 

With respect to  
x

 , since: 

     
2

2 1 2* *

,

ln ln
M

m

t

yt y y t M m x xt x t

y t t tx

k t t k     
 


      


  , 

one finds by taking into account the constraint 



M

m

t

tt
t

k 0  that: 

1

1

*ˆ ln
M

m

t

x xt

t tM m
t t

 



 

 . 

In other words, ˆ
x

  is the temporal average, at age x, of the instantaneous rates of death (on 

the logarithmic scale). One then considers the matrix  
xt

zZ   of the rates centered with 

respect to the temporal dimension: 
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* ˆln
xt xt x

z    . 

Z is a matrix of dimension  1 1,M m M mx x t t    . The form of the model amounts to 

seeking an approximation of Z as a product of 2 vectors of the form ˆˆ 'Z k , so that the 

decomposition is optimal in the sense of the least squares criterion, i.e. explains the greatest 

possible share of the total variance. The resolution of this problem requires the decomposition 

in eigenvalues of matrix Z, which one puts in the form: 





1i

iii
uvZ '  

with 0
21
 ..  the eigenvalues of ZZ' , 

i
u  the standardised8 eigenvector of ZZ'  

associated with 
i

 , and 
i

v  the eigenvector associated to the same eigenvalue for 'ZZ . This is 

justified by the fact that, since 
iii

uZuZ ' , one has  
iii

ZuZuZZ ' , and thus the two 

transposed matrices have the same eigenvalues with identical orders of multiplicity. 

Moreover, if iu  is an eigenvector of 'Z Z  then iZu  is an eigenvector of 'ZZ  associated with 

the same eigenvalue. If one poses 
1

i i

i

v Zu


 , one sees that 
' '

i i i i i
Zu u v u , which while 

adding and taking into account the orthonormality of the eigenvectors, leads to the 

decomposition of Z. 

One thus proposes as an approximation 1 1 1

'Z v u , with as a measure of the quality of this 

approximation the share of explained inertia 1

i




. One finally obtains the following 

estimators of  and k: 

1

1

1ˆ

j

v
v

 


 et 
1 1 1

ˆ
j

k v u  . 

The objective is to use the results of this fitting to extrapolate mortality rates for 
M

tt  ; the 

idea is to analyse the series of  
t

k̂ , which capture information on the temporal evolution of 

these rates in order to fit an ARIMA type model. 

At this stage one has a first estimate of the parameters of the model; however, if one is in a 

situation in which the headcount under risk is very large, one can think that sampling 

fluctuations over the total number of death per age must be very small. It is then advised to 

first proceed to fitting the model parameters so that the number of deaths forecasted by the 

model each year equals the observed number of deaths. Since the risk exposure is 
*

xt
xt

xt

D
L


  

with    1 xtDxtDD
xtxtxt

, this constraint is expressed by: 

 ˆˆˆexp
M M

m m

x x

xt xt x x t

x x x x

D L k 
 

   , 

                                                 
8 1

ii
uu'
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the variable being 
t

k̂ . The function     



M

m

M

m

x

xx
xt

x

xx
xxxt

DkLkF ˆˆexp  is introduced, so that 

the constraint above is expressed by   0kF . the form of the function F ensures the unicity 

of the root if it exists. The research of the root can be done by an algorithm of the Newton-

Raphson type, while posing: 

 
 

i

i
ii kF

kF
kk

'


1
 

with initial value 
t

kk ˆ
0

 and the stop criterion 




i

ii

k

kk
1  while taking for example 

710 . 

A new estimator 
ˆ̂
t

k is obtained. But the series 
ˆ̂
t

k 
 
 

 must be corrected to respect the constraint 

of identifiability 



M

m

t

tt
t

k 0 , which results in posing: 





M

m

t

tt
t

mM
tt

k
tt

kk
ˆ̂ˆ̂*

1
1 . 

We then have to correct  
x

̂  so that the equality between deaths predicted by the model and 

observed deaths remains valid, which leads to: 

1

*
ˆ ˆ̂

ˆ
M

m

t

x
x x t

t tM m

k
t t


 



 
 

 . 

The “typical” shape of obtained parameters is as follows, first of all for the parameters which 

are a function of age: 

Parameters 
x

  Parameters 
x

  

 

Fig. 15 :  Alpha coefficients 

 

 

Fig. 16 :  Beta coefficients 

 

then for the temporal component: 

Représentation des valeurs de alpha en fonction de l'âge, par la méthode de Lee-Carter
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Fig. 17 :  Evolution of the temporal tendency 

3.2.1.2. Extrapolation of the temporal component 

The series  *

t
k  then has to be modelled in order to extrapolate future rates; for that, an 

ARIMA model is generally used9, but any other time series model can be used. However, 

taking into account the pace of the graph above, the simplest modeling that one can imagine is 

for example a linear regression of these coefficients: 

tt
batk *  

with  
t
  a Gaussian white noise. 

3.2.1.3. Closing of the table 

The estimate of the parameters of the Lee-Carter model requires that one has a complete 

rectangular matrix of rates of death  *

xt
 ; in practice the estimated raw amounts show great 

instability at high ages, because of the small available headcount. Furthermore, it can happen 

that the data are not available any more beyond a particular age. Several methods exist to fill 

the table before carrying out the fitting, or ex-post (referred to as “closing of the mortality 

table”). One can consult on the subject Denuit and Quashie [2005]. 

As an illustration, one presents here the method of Coale and Kisker (Coale and Kisker 

[1990]); the method consists in extrapolating mortality rates at high ages (up to x=110 years 

for example) by using the following formula10: 

65

65

( )ˆ ˆ xg x

x
e  

   

gx indicating the average rate of growth of 
x

  between ages 65 and x. One thus calculates the 

coefficients gx up to a specific age, after which they are extrapolated in order to be able to 

recompose the rates 
x

 . Coale and Kisker indeed empirically noticed that the curves of the gx 

generally show a peak in the 80 years old neighbourhood before decreasing linearly. They 

consequently proposed the following equation: 

                                                 
9 While following the approach of Box and Jenkins. 
10 Index t is omitted in order to make notations lighter. 
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 80
80

x
g g s x    , 80x . 

Finally, one can use the following formula to extrapolate beyond age 80 the instantaneous 

rates of mortality: 

80 80

1

( )ˆ ˆ g s x

x x
e   


  , 80x . 

The following values of parameters are used: 

 79 80
31

465

ˆln g
s

  
   and 

80

65

80
15

ˆ
ln

ˆ
g





 
 
  . 

Thus, the mortality rates smoothed from raw data are directly obtained by the Lee-Carter 

smoothing method for ages lower than 80. For ages equal to or higher than 80, if the sample is 

not large enough, one resorts to the method of Coale and Kisker: which builds mortality rates 

at high ages based on smoothed (by Lee-Carter) rates at ages 65 and 80.    

The question of the closing of the table is important in the case of the construction of a table 

for reserving life annuities. One will however note that this will not be so important, should 

high age beneficiaries be a minority in the life annuities portfolio under study. 

Indeed, let us consider the simple example in which one computes the net present value of a 

life annuity on a single head using the mortality table TF00-02; one compares the calculation 

carried out with the complete table to that carried out with the table closed in a prudent way 

by making the rate of death a constant from age 95 onwards. So, carrying out this calculation 

for a head aged 75 using a discount rate of 2.5 %, should we consider that the rate of death 

remains stable from age 95 (and that the survivors all die brutally at age 120), the reserve 

would only have to be increased by 0.7 % (and approximately 2.5 % at age 85). 

The difference between two closing methods in terms of reserving is truly significant only at 

very high ages (see for example Delwarde and DENUIT [2006]). 

3.2.2. The log-Poisson model 

The Lee-Carter model rests on the assumption of homoscedasticity of mortality rates, which 

constitutes a strong and not very realistic assumption: indeed, the variance of the rates of 

death grows at high ages, noticeably because of lowering survivors headcount. One can 

illustrate this fact in two manners; first of all, one considers the French census as at 

01.01.2005, which is supposed to die according to table TV1999/2001. The variance of the 

rates of rough deaths that one would observe can be approximated by 
 

x

xx

L

qq 1
, and one 

notes the following evolution: 
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Fig. 18 :  Variance of the rate of death with age 

One notes a very strong increase after age 85. In a more direct way, when one carries out a fit 

by the Lee-Carter method, one can analyse the variance of the residues, and confront the 

observations with the assumption of heteroscedasticity. One obtains graphs with the following 

shape11: 

 

Fig. 19 :  Residues analysis in the Lee-Carter model 

Moreover, the criterion retained to estimate the parameters in the Lee-Carter method is not of 

“maximum of likelihood” type. 

Furthermore, it can seem natural to directly model the number of deaths rather than the 

instantaneous rate of mortality. If 
xt

D  indicates the number of deaths at age x on year t, and 

                                                 
11 See LELIEUR [2005]. 
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xtL  the risk exposure, 
xt

D  is then a random variable of which the expectancy will be 

modelled as follows: 

 xt xt xtE D L   . 

The log-Poisson model, proposed by Brouhns and al. [2002], is an adaptation of the Lee-

Carter model which integrates these various elements. It will be noted that the equality above 

is the direct consequence of the assumption of constant xt
  on each square of the Lexis 

diagram. Indeed, since the risk exposure is equal to: 

 
1

0

,
xt

L S x u t u du    

and      
0

, , exp ,

u

S x u t u S x t x v t v dv
 

      
 
 , a constant xt

  leads to: 

      , , exp ,S x u t u S x t u x t      

then     
1

0

, exp ,
xt

L S x t u x t du    and thus: 

 
 

   
 
 

 1
, ,

exp , ,
, ,

xt

S x t S x t
L x t q x t

x t x t


 
    , 

which establishes the result. 

The idea is to model the number of deaths at age x on year t by a Poisson distribution, as done 

in 3.1 above, by supposing that 
xt

D  follows a Poisson distribution of parameter
xt xt

L   with 

 exp
xt x x t

k    . The expression of the rate of instantaneous death is identical to that 

proposed in the Lee-Carter model, with the same interpretation of the various parameters. In 

particular, the model will be identifiable only with constraints on the parameters, and one can 

retain the same ones as those used by Lee and Carter. Lastly, one can note that to pass from 

the model of Lee-Carter to this Poissonnian model is equivalent to passing from a linear 

model to a generalised linear model with logarithm as the function of link12. 

Since one has  
 

 exp
!

d

xt xt

xt xt xt

L
P D d L

d


    with  exp

xt x x t
k    , the log-

likelihood13 of the model is written (plus or minus an additive constant): 

      
,

ln , , exp
xt x x t xt x x t

x t

L k D k L k          

One thus has a simple expression of log-likelihood; the equations of likelihood do not have an 

analytical solution because of the presence of the nonlinear term x t
k  and must be solved 

                                                 
12 See RENSHAW [1991]. 
13 It is a likelihood only if we use real headcounts under risk; if headcounts are normalised starting from an 

initial headcount of 0L , we end up with pseudo-likelihood. 
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numerically; one can for example use an algorithm of Newton-Raphson and use the process 

suggested in 3.2.1.1 above with objective function F to be cancelled the vector of scores 
'

,, 




















k

LLL


; which leads to the following relations of recurrence: 

  

  
1

ˆˆˆexp

ˆ ˆ
ˆˆˆexp

i i i

xt xt x x t
i i t
x x

i i i

xt x x t

t

D L k

L k

 

 
 


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 

 




 

The initial values are free, one will simply choose values for 0 0ˆ
x

   to avoid divisions by 0. 

In order to have the constraints of identifiability verified, it is advisable to fit the parameters 

thus estimated, by posing: 

1

1

* ˆ ˆ ˆ
M

m

t

t t t x

t t xM m

k k k
t t




 
  

  
   

*
ˆ

ˆ
x

x

x

x








 

1

*
ˆ

ˆˆ
M

m

t

x
x x t

t tM m

k
t t


 



 
 

  

The estimated values of the parameters are rather close to those obtained by the Lee-Carter 

model, as can be seen on the graphics shown in appendix14. The extrapolation of the temporal 

component is then carried out in the same manner as in the Lee-Carter model. 

3.2.2.1. Obtaining confidence intervals15 

In practice, such custom tables will generally be used to calculate residual life expectancies, 

to obtain lifetimes of annuity beneficiaries (current and future); more precisely they could be 

used to calculate net present values of life annuities, of the form: 

 1

0 0

,
exp

i
i

xt x i t i

i j

a v 

 

 

    

                                                 
14 Graphs taken from BROUHNS et al. [2002].  
15 Only the principe of the method is described here ; for the detailed approach, see HADERER [2003]. 
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With 
r

v



1

1  the discount factor. Beyond the point estimation of 
xt

a  which rises from 

modeling xt
 , one wishes to measure the associated precision, and thus to obtain confidence 

intervals. Two sources of risk are combined in this case, on the one hand the fluctuations of 

sampling of the Poissonnian model of regression, and on the other hand uncertainty related to 

the prediction of 
t

k  for 
M

tt  . 

The estimate of the parameters of the model (for 
M

tt  ) by the method of the maximum of 

likelihood makes it possible to conclude that the vector  ˆˆˆ , ,
x x t

k   is asymptotically 

distributed according to a normal distribution. One can then build confidence intervals for 
xt

a  

by the following simulation method: 

 Generation of a realisation  ˆˆˆ , ,
x x t

k   based on the normal distribution; 

 starting from the above realisation, estimation of the projection parameters of the 

ARIMA model associated with 
t

k ; 

 simulation of a trajectory of 
t

k  for 
M

tt  ; 

 determination of a realisation of the variable of interest (for example 
xt

a ). 

By renewing the operation one obtains an empirical distribution of the variable of interest, 

and then, in particular, a confidence interval. 

When the sample size is very large one can consider that sampling fluctuations become 

negligible, and remove the first stage of the algorithm. 

This kind of application will be developed within the framework of stochastic mortality 

models. 

3.2.3. Log-linear models 

In the choice of a model suitable for structuring a set of historical data, “flexibility” of the 

model as well as its “fidelity” to the data are directly related to the number of introduced 

parameters. The choice of a very flexible model is generally done to the detriment of 

predictive qualities (a completely nonparametric model does not authorise any prediction). 

Thus the Lee-Carter or Log-Poisson models may appear very parameterised. Furthermore, in 

the context of insurance portfolio data, the size of which is noticeably smaller than that at 

country level, the high number of parameters can lead to irregularities which are 

consequences of sampling fluctuations. This phenomenon is highlighted in Lelieur [2005]. 

In this context it can be useful to turn to less parameterised alternative models bringing into 

play analytical expressions related to ages or years (or both). 

Besides, the influences of age x and year t on mortality rates  tqx  are expressed via the 

introduction of the logit: 

      1lg lg ln /xt x xt xtq t q q   . 
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Logit for low mortality rates is not very different from the variable  xtln  of the Lee-Carter 

model but it can be materially different at high ages. It has the advantage of varying in 

  , , which simplifies the implementation of regression models. The typical shape of a 

logit is the following one (obtained with TV 1999/2001): 

 

Fig. 20 : Logit of rate of death as a function of age (table TV 99-01) 

One is thus led to introduce log-linear models. The basic model of this family imposes a 

linear trend with respect to time: 

 lg
x x x xt

t t      . 

The residues are supposed iid (and thus homoscedastic), which makes it possible to use the 

standard results of the ordinary linear model (with the calendar year t as explanatory variable, 

under x fixed). This parameterisation is close to that of the Lee-Carter model in which one 

would have supposed 
t

k t  and replaced  ln
xt

  by  lg
x

t . This model is used in particular 

for the construction of TPG 1993 tables. One has explicit expressions for the parameters. 

Indeed, by remembering that in the linear model iii baxy   one has: 

 
 x
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,cov
ˆ 














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1

1

1

 and xayb ˆˆ  , 

with 



n

i
ix

n
x

1

1
 one obtains the expressions of the coefficients 

x
  and 

x
 . 

One empirically notes a very strong correlation between the series  x  and  x , which 

results in proposing an alternative to the model in which these two coefficients are bound; that 

leads to the following model: 

   lg
x x x xt x xt

t a b t a t b              

Lg(x) - TV 1999/2001
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The number of parameters to be estimated significantly decreases to 12  mM xx  instead 

of  12  mM xx  in the preceding model and   112  mMmM ttxx  with the 

Lee-Carter model. However, the problem of least squares becomes nonlinear, which 

complicates the estimate of the parameters16. In practice one must resort to digital methods 

whereas in the first version of the model one has a direct explicit expression of the 

parameters. 

The linear drift can appear unrealistic on the long run, and one notes for example on 

American data a deceleration of the tendency. One can then seek models allowing to 

introduce for very long run forecasts some exogenic information translating a foreseeable 

deceleration of the drift. This can be carried out with the following models: 

 lg
x x x x xt

t t t         . 

In these models the estimates also reveal a very strong correlation between the estimates of 

parameters  x ,  x  and  x , which encourages to propose two new models in posing 

x x
a b    and 

x x
c d   and leads to the specification: 

   lg
x x xt

t b d t t c t a       . 

The resolution of the associated criterion of least squares does not call for any particular 

observation. 

3.2.4. The shifted logistic model 

One considers here the model suggested by Bongaart [2004] and defined by: 

   
   

 
1

exp

exp
xt

t x
t

t x

 
 

 
 


. 

Since the reverse of the logistic function  
1

lg ln
x

x
x

 
  

 
 is 

1

y

y

e
y

e



, it can be deduced 

by writing: 

 
  
  1

exp

exp
xt

x t
t

x t

 
 

 


 

 
 

with     lnt t   that this model can be also written: 

     lg ln
xt

t x t      . 

This model is in fact a generalisation of the Makeham model  exp
x

x      (Makeham 

[1860]) suggested by Thatcher [1999] by posing 
 
 1

exp

exp
x

x

x

 
 

 
 


 which can be 

adapted to the case of variable rates of deaths in the course of time. This adjustment of the 

                                                 
16 Which has to be globally carried out, and not age by age anymore. 
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Makeham model is justified originally by the will to correct the over-estimating of conditional 

rates of deaths at high ages observed in practice. 

The fact that  is independent from time is the consequence of the fact that it is noted 

empirically that this parameter depends little on time. 

The estimate of the parameters can be carried out by a method of nonlinear least squares by 

minimising 
 

2

,

ˆ
xt xt

xt

x t xt

q q
n

q



  with 

xt
n  the risk exposure for the age and year considered17. 

Once the model is fitted on past values, the extrapolation of future mortality is carried out by 

an extrapolation, via techniques of time series, of coefficients  t  and  t . This 

parameterisation has the advantage to be less constrained in the temporal dimension than Lee-

Carter or log-Poisson, extrapolation resting on 2 parameters and not just one. 

The calculation of x
q  as a function of 

 
 1

exp

exp
x

x

x

 
 

 
 


 is carried out via 

 
 
 

1 1

1 1
1

exp
exp exp

exp

x x

x

x x

u
q u du du

u

 
 

 

    
                

  . 

While posing    1
,

expv u u      one notices that 
 
 

1

1

exp

exp

u dv
du

u v

 

  



, which leads 

after some handling to: 

 

 

1

1
1

,

,

x

v x
q e

v x



 

 


 

   
  

. 

In other words, the survival function of this model is  
 

 

1

0

,

,

x
v x

S x e
v


 

 




 

   
 

. The term 

“shifted model” is justified by the following observation: if one considers only the component 

of mortality rate associated with ageing, 

   
   1

exp

exp

s

xt

t x

t x

 


 



 

then for a fixed year 
0

t  one can write for 
0

t t : 

     
     
0

0
1

exp

exp

s

xt

t x t

t x t

 


 




 
 

with  
 
 0

1
ln

t
t

t



 

 
     

 

. 

                                                 
17 In practice this criterion is close to a discretised maximum likelihood (see lecture notes on parametric models). 
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3.2.5. Use of time series 

The Lee-Carter model, after having adjusted on the historical data the parameters, ,  and k, 

proposes to regard the continuation of tk  as a time series to obtain the prospective values of 

the rates. One is thus led to pose: 

tt
batk *  

This approach can be transposed within the framework of the logistic models, with an aim of 

reducing the number of parameters. One then seeks to parameterise the function  tx xlg  

to take into account the influence of the year t in a nonparametric way, then to model the 

introduced time series. A model of the following form is thus considered: 

    xttx xft  ,lg  

where the function  txf ,  is chosen, for the sake of implementation simplicity, linear with 

respect to the (vectorial) parameter t . In a second phase the series  t  is modelled. 

The form retained for f is that of a cubic spline with nodes at the ages  1, , ,
i

x i p . The 

form of the function f with p nodes is then the following one: 

   
3

2 3

1

1

,
, , , , , ,

p

p t t t t i t i

i

f x a b c d e e a b x c x d x e x x




      
   

In practice, a simplified version of this model in which only the parameter ta  depends on 

time provides reliable results. By observing that the modeling of ta  through a linear 

regression similar to that carried out for tk , one can build an entirely parametric version of 

the model while proposing: 

   
3

2 3

1

1

, , , , , ,
p

p i i

i

f x a b c d e e a t bx cx dx e x x




       
   

3.2.6. Models with benchmarks 

If one does not have sufficient data to structure the complete table correctly, one can imagine 

to use the structure of an existing benchmark table and simply to position the mortality of the 

group considered compared to this reference. 

Two approaches are possible to achieve this goal, they are presented briefly hereafter. 

3.2.6.1. Logistic regression 

When one wishes to position a table compared to another, it can appear natural to carry out 

the regression of the logits of raw rates on the logits of benchmark table, which leads to the 

following model, suggested initially in Brass [1971]: 

     1 1ln / ln /
ref ref

xt xt xt xt xtq q a q q b       , 

or: 
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   lg lg
ref

x x xtt a t b     . 

The implementation of this approach if one retains a criterion of the type “least squares” is 

very simple, since we have a linear regression within the framework of an ordinary linear 

model. One thus has an explicit expression of the parameters a and b (see 3.2.3 above). 

It allows an easy extrapolation of the logits of the custom rates in the age segments for which 

the custom data would be insufficient. 

One can adapt the criterion of optimisation used to take into account the context of use of the 

tables while rather retaining: 

   60 60
ˆˆ, arg min ,lissé nonlisséa b e a b e    , 

under the following constraint:  

 60 60
0,

lissé nonlissée a b e  . 

Where  60
,

lissée a b  indicates the residual life expectancy at age 60, function of the parameters a 

and b, calculated based on the regression on the logits and 
nonlissé

e60  – indicating the residual 

life expectancy at age 60 calculated based on raw data. One then loses the explicit character of 

the expression of the parameters. The detail of the approach is presented in Lelieur [2005]. 

One can also retain the alternative    lg lg
ref

x x x x xtt a t b     with coefficients depending 

on age (or year). It is a model of this type which was used to build tables TGH and TGF 05 (cf 

Planchet [2006]). 

Lastly, one can observe that when   1ln /
ref ref
xt xt x x tq q k     , i.e. if the underlying 

mortality structure is described by a model of the Lee-Carter type, then: 

      1ln /xt xt x x t xt x x t xtq q a k b a b a k                    

and thus the adjusted model is also of Lee-Carter type with the same temporal tendency. Only 

the coefficient of sensitivity x  is transformed into xa  . This is a way to carry out a “level 

positioning” of custom mortality, the tendency of the reference being re-used directly. 

3.2.6.2. Positioning with respect to a benchmark 

One can also seek, in a set of exogenic prospective tables available, the benchmark table 

period  htt ,  the “closer” to the period  htt
exex
,  resulting from custom data. This leads 

to using shifted benchmark tables as custom tables. 

The concept of “closest” supposes the use of some sort of distance between the two tables. 

Various approaches are possible on this level: Chi-square on  tqx , distance deduced from the 

residual expectancies or their integrals (which represents the net present value of a portfolio 

of life annuities in which all ages are equi-represented and with zero discount rate) – the 

advantage of this indicator is the “smoothing” of fluctuations. 

These models will not be developed here. 
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4. Criteria of validation of the model 

The criteria of validation of the model provide decision-making supporting information 

within the framework of the selection of the most relevant model. The relevance is 

appreciated with respect to the context of use of the proposed tables – often for prospective 

tables: the liability valuation of life annuities. 

This results in particular in paying a special attention to the representation of the residual life 

expectancies. 

4.1. Fidelity to data 

The first of the requirements which a model must meet is to be faithful to the data which were 

used to calibrate it. This fidelity can be examined a priori in two manners: 

 Through mortality rates  tqx ,      1010 aaxxtx ,,,  ; 

 Through the residual life expectancy in the range  10 xx , , defined by 

   1 1
, min ,

t
e x x E X x x x X x      :  

The second criterion is justified by the fact that the use of prospective tables is mainly 

directed towards life annuity liability calculations. The residual life expectancy represents the 

the liability or reserve under a zero discount rate. The audit of conditional expectancies is thus 

impossible to avoid. 

The least parameterised models are in theory and in general most faithful. Nevertheless, this 

statistical logic is not always respected, calibration being done on  txlg  or  ln
xt

  and not 

on the elements selected to appreciate the fidelity of the model (mortality rate  tqx  and 

residual life expectancy  1xxet , ). One can however, and before implementation, note the 

following: 

 The Lee-Carter model can result in notably underestimating mortality rates at high 

ages (from 85-90 years). Indeed, the algorithm of reference built on a maximum 

likelihood approach favours the early ages (“younger”) and in addition the relation 

 1ln
xt xt

q     is based on the assumption of constant instantaneous rate of 

death between two integer ages – a debatable assumption at high ages; 

 One can expect that the least parameterised models fit best the “residual 

irregularities” of raw data which constitutes an all the more important handicap as 

data size is small; 

 As far as residual life expectancies are concerned, the irregularities of raw and 

fitted tables are classically crushed and only potential and systematic drifts of the 

models on the qx stand out. 

One can note at this stage that to avoid having to use the “formula of passage” 

 1ln
xt xt

q     in the Lee-Carter model, it is possible to model directly  txlg  rather than 

 ln
xt

  by writing: 
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1
ln xt

x x t xt
xt

q
k

q
  

 
     

. 

4.2. Comparison of modelled values and observations 

The comparison sees the number of exits observed and the number of exits estimated by the 

model on an interval  1,x x   or a paving stone    1 1, ,x x t t   . It is a central tool of the 

validation of a custom distribution and appreciation of its level of prudence. 

The calculation of the exits observed does not raise a difficulty and simply implies to define a 

convention of round-off. The whole part of the moment of exit is generally used. The number 

of exits estimated by the model is simply the expectation of the random variable “many 

exits”; one has, while being limited to the interval1  1,x x   : 

 
 
 

 
1

1 1

x

X

i C

Xe

S c
P D F dc

S e

  
    

 
  

By assuming a constant hazard function on this interval, 
 
 

 
1 1 x c eX

X

S c
e

S e

  
    to avoid the 

explicit intervention of the distribution of censoring  C
F dc  in the calculation, one supposes 

x
  rather small so that 

   1 x c e

x
e c e




  
    , then 

     
1

1

x

i x C

e

P D c e F dc


    . 

The number of exits expected on the interval  1,x x   is thus written, by supposing constant 

hazard function on this interval and by using an approximation of the survival function, valid 

when the rate of hazard 
x

  is small,      
1

1
n

i x

i

E D P D E x


     ; using the conditional 

probability of adjusted exit, one thus has: 

      1lnE D q x E x    . 

One can prevent making the assumption that 
x

  is small and thus only use the assumption of 

constant hazard function by using: 

       
  

1 1

1 1 1
i ix i i

n n
T ET E

i i

E D e q x
   

 

      . 

When the conditional probability of exit is small, this expression becomes 

     E D q x E x  , formula often used by the experts. 
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4.3. The stability of estimates 

The choice of the ages and years segments from which one must generate the forecasts is 

important since the estimates of the parameters depend materially on this choice. Indeed, it is 

possible that these differences, if they exist, generate different forecasts. 

With regard to age estimates, the choice of the age segment should not bear notable incidence. 

Thus if one retains for example the age segment [50 to 70] and the age segment [60 to 80], the 

common ages (from 60 to 70) must have close estimates. That is not the case in the Lee-

Carter and log-Poisson models: 

 

Fig. 21 : Estimated trends in Lee-Carter and impact of observation period 

For the models in which estimates are made age by age, their very nature insures equality of 

estimates when the age segments vary. For other models which take jointly into account all 

ages within an age segment, it can be expected that parameters estimates will depend (more or 

less strongly) on the chosen age segment. However, this instability should not disturb the 

estimation of logits, rates of death and residual life expectancies, provided the models present 

high levels of fidelity. 

Note that for the Lee-Carter model (the less parameterised in age) the identification constraint 

1
x

   has for mechanical consequence estimations differences – limited however to 

translations. 

4.4. Prospective capacity 

It can be noted that, as a general rule, the more parametric a model is, the better its capacity to 

be used for prospective purposes. This remark leads to favouring parametric approaches. 
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