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1. Introduction 

1.1. General information 

In some situations, one would rather not make any a priori assumptions on the form of the 

survival distribution; one therefore seeks to directly estimate this function, in a space of 

infinite dimension; this framework of functional estimation is the field of non-parametric 

estimation. 

Provided one disposes of data in sufficient quantity, one can obtain reliable estimates of the 

survival function as well as associated expressions. 

In the usual context of a non-censored iid sample  1
, ,

n
T T , one has the empirical estimator 

of the distribution function    





n

i
tTn in

tF
1

11 . This estimator has a certain number of “good 

well-known properties”: it is without bias, convergent and asymptotically Gaussian. More 

precisely, convergence is uniform in the almost-certain sense, and one has the following 

“central limit theorem”: 

 n
n F F W   

Where W is a centered Gaussian process of covariance          ,s t F s F t F s F t    . 

This result rises directly from the theorem of Donsker in the case of the uniform distribution1 

and owing to the fact that  TF  follows a uniform distribution on  10, . 

The purpose of empirical estimation in duration models is to seek an estimator that verifies 

equivalent properties in the presence of censoring. In order to do so, one commences by 

introducing the presentation of duration models starting from point processes, which then 

facilitates obtaining results via asymptotic results on the martingales. 

1.2. Notations 

In the following, one notes F the cumulative distribution function of the non-censored model, 

G the cumulative distribution function of censoring and CXT   the censored variable. 

One also notes: 

   0
0,S t P T t D   ,    1

1,S t P T t D    and 

             0 1
1 1

c
S t S t S t P T t F t G t       . 

2. Duration models and point processes 

The study of a survival duration is generally carried out by studying the distribution of 

variable X, associated with the survival function S. One proposes here to reason differently 

and to consider the point process naturally associated with X,  tN  equal to 0 as long as the 

                                                 
1 The limiting process being then the Brownian bridge, a centered Gaussian process of covariance stts  . 
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event has not taken place, then 1 once it has:    tXtN  1 . When taking into account 

censoring, one builds in the same way    
1

, 1
1

T t D
N t

 
  the process of the non-censored exits2. 

The presentation made here is heuristic and its purpose is to provide an understanding of 

mechanisms at play. The reader interested by a rigorous mathematical formalisation of these 

tools may refer to the article of Gill [1980] or to the book of Fleming and Harrington [1991], 

or for a presentation in French to the work of Dacunha-Castelle and Duflo [1983]. 

This approach largely uses the theory of martingales, whose significant results are reminded 

hereafter. 

2.1. Reminders on martingales 

It is said that a process  tM  adapted to a filtration  
0t t

F


 is a martingale if it is of 

continuous trajectory on the right with limits on the left (cor-lol), and verifies: 

  0tE M t     and  t s sE M F M s t   . 

A martingale can be seen as a process of errors, in the way that on the one hand its expectancy 

is constant (one will thus always be able to assume that it is null) and on the other hand its 

increments are non-correlated: 

  0 0cov , ,
t s v u

M M M M s t u v       . 

If the condition of constancy of the conditional expectancy is weakened and if the process is 

increasing in conditional expectancy in a way that  t s s
E M F M s t   , then it is said that 

M is a sub-martingale. By the inequality of Jensen, if M is a martingale then 2M  is a sub-

martingale since     
2

2 2

t s t s sE M F E M F M s t    . 

In order to push formalisation further, it is necessary to introduce a new definition. 

Definition: A predictable process is a measurable random variable defined on the combined 

space   P,, 0  with tribe P generated by sets of the form   ts, , with sF . 

The tribe of predictable events is generated by processes adapted to filtration  
0t t

F  
 with 

t s
s t

F F


  and with continuous trajectories on the left. 

In an intuitive way, one can say that a predictable process is a process which value in t is 

known “right before” t. Thus a continuous on the left (and adapted) process is predictable 

because of the continuity property. 

These various tools lead to the decomposition of Doob-Meyer of a cor-lol adapted3 process X, 

which expresses that such a process is the difference between two (local) sub-martingales if 

and only if there exists a unique decomposition of X in the form X A M   with A a 

                                                 
2 Notations of lecture notes on parametric models are used, with X the non-censored variable, and the couple 

(T,D) in right-censoring situation. 
3 See for example DACUNHA-CASTELLE and DUFLO [1983]. 
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predictable process with limited variation (in the sense that 
1

0

sup
i i

t

s t t
D

dA A A


     with 

D the set of subdivisions of  0, t ) and M a (local) centered martingale. 

One can deduce of this, in particular, that if M is a martingale, 2M has a predictable 

compensator, noted M  (that one will take care not to confuse with the quadratic variation 

 M ). 

2.2. Application to duration models 

Let us recall the definition of a point process. 

Definition: a point process   , 0N t t   is an integer values process adapted to a filtration 

 
0t t

F


 such that   00 N ,   tN  almost surely and such that the trajectories are 

continuous on the right, piecewise constant and only show jumps of amplitude +1. In practice 

one will often consider for  
0t t

F


 the natural filtration associated with N, that is to say 

  , 0tF N u u t   N  with N  the P-negligible events. 

The Poisson process provides an example of point process; the  tN  process introduced 

above is a simple case in which the process jumps only once. 

Point processes show positive and increasing trajectories, thus with limited variation, and one 

can then define for an adapted process  tX  the integral    
0

t

X u dN u  as a Stieljes integral, 

trajectory by trajectory. For example, in the presence of censoring the process of non-

censored events    1
1

1  DtTtN ,  can be written: 

     
t

udNuCtN

0

1
 

with     suC C,01 . Censoring therefore acts like a filter. Since a point process is a sub-

martingale (since it is increasing), its predictable compensator is associated to it, which is 

therefore a predictable increasing process, so that the difference between the point process 

and its compensator is a martingale. In a more formal way there is the following result. 

Proposal: If a point process   0ttN ,  adapted to a filtration  
0t t

F


 is such that 

   tNE , then there exists a unique increasing and continuous on the right process  , 

such that   00  ,     tE and      ttNtM   is a martingale. 

When   can be put in the form    
0

t

t u du   , the process   is called the intensity of the 

point process. For example, the compensator of a homogeneous Poisson process is   tt  , 

or, in an equivalent way, the intensity of a homogeneous Poisson process is constant and 

equal to  . 
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From a heuristic point of view, the decomposition      N t t M t    expresses that the 

process N “oscillates” around the predictable trend   so that the difference between the 

process of interest N and its trend is comparable to a residue, the variations of which are 

controlled. The equation      N t t M t    can thus be read as “observations = model + 

term of error”. One has in particular    t tE N E  . 

One now seeks to determine the predictable compensator of the process    tXtN  1 . 

One notes    uNtN
tu

 lim  the limit on the left of  tN  and one is interested in the 

distribution of the random variable   1
t

P dN N t  , while having noted formally 

   tNdttNdNt   with dt “small”. The random variable  tdN  can only take values 0 

and 1. By definition of the survival function and hazard function, one has: 

    1tP dN N t h t dt    with the probability  tS  

and 

   01  tNdNP
t

 with the probability  tS1 . 

Indeed, if   1tN , the exit already occurred and the process cannot jump any more. This 

event occurs with the probability  tS1 . The process N can only jump between t and t + dt 

only if   0tN  (event of probability  tS ) and the probability of jump is  dtth . One poses 

then      tXtht  1 , product of the hazard function in t and indicator of presence right 

before t,    tXtY  1 . The process  t  is predictable and   1Y t   is equivalent to 

  0N t   . Therefore     1tP dN N t t dt   , or in an equivalent way 

    tE dN N t t dt  . The remarks above imply that: 

               
0 0

t t

M t N t u du N t h u Y u du N t H t T         

is a centered martingale since    0tE dM N t    and since the intensity of process N can be 

calculated according to: 

     
0

1
1lim

t
u

t P N t u N t F
u


 



      . 

The process  t  is thus the intensity of process  tN , which is random. Conditionally to the 

“immediate past”, the increase in  tN  between t and dtt   thus follows a distribution of 

Bernouilli of parameter  t dt . 

As an illustration one finds, in the case of an exponential distribution, the following paths of 

N, M and H: 
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One can show just as well that the predictable compensator of the process of non-censored 

events    
1

1
1

,T t D
N t

 
  is written: 

     1

0

t

t R u h u du   , 

with    tTtR  1  the indicator of presence at risk before t (i.e. the function taking value 1 if 

the individual is neither dead nor censored; one indeed recalls that since CXT  , 

   tCtXtT  , ). One thus passed from the statistical model where one gave 

oneself the couple  ,T D  as observed information, to the model made up of  1,N R . 

In the case of a population, of which individuals are all supposed to have the same hazard 

function h, one associates to each population member a process of non-censored event 

   1
1

1 
iii DtTtN ,  as well as the indicator of presence under risk, counting individuals 

neither dead nor censored    
1

i
i T t

R t


  and one builds the aggregate processes 

   



n

i
i tRtR

1

 and    



n

i

tNtN
i

1

11
. They respectively count population under risk and the 

number of non-censored events which have occurred. 

One is thus in the presence of a model with “multiplicative intensity” (Aalen [1978]), in the 

sense that the counting process 
1

N  has an intensity which can be put in the form: 

     t R t h t   

with R  an observable process (predictable) and h the hazard function, unknown and to be 

estimated. These processes will make it possible to introduce in a simple way the usual non-

parametric estimators. 
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3. Non-parametric estimators in duration models 

One will note as an introduction that the distribution can be, as seen above, characterised by 

various functions: hazard function, cumulative hazard function, cumulative distribution 

function, probability density function, etc. It is obvious that estimating the hazard function is 

of the same degree of complexity as estimating the probability density function; one will 

therefore naturally turn towards the empirical estimation of cumulative hazard or survival 

function, a priori more simple. Estimating the hazard function will then require to regularise 

the estimator of the cumulative hazard function, which will generally be discontinuous. These 

aspects are not covered here4. The two principal estimators in this context are the estimator of 

Nelson-Aalen of the cumulative hazard rate and the Kaplan-Meier estimator of the survival 

function. 

3.1. The estimator of Nelson-Aalen5 of the cumulative hazard rate 

One recalls that the cumulative hazard function is defined, in the general case, by 

 
 

 0

t dS u
H t

S u


 , expression which leads to the traditional expression in the case of a 

continuous model    
0

t

H t h u du   where    ln
d

h t S t
dt

  . 

3.1.1. General presentation 

The fact that        

t

duuhuRtNtM

0

1
 is a centered martingale suggests proposing  tN

1
 

as estimator of    
t

duuhuR

0

. But then the process 
  

 
 

0

0

1t
R u

dM u
R u



  is also a martingale and 

one has by construction of M: 

  

 
 

  

 
   

  

 
   

0 0 01 1

0 0 0 0

1 1 1t t t t
R u R u R u

dM u dN u h u du dN u H t
R u R u R u

  
        

provided that t is such that   0R t  . Thus     
 

 




t
uR

uNd
uR

tH

0

10
1

ˆ  is a natural estimator of 

H, called the estimator of Nelson-Aalen. It was initially proposed by Nelson [1972]. One can 

give another justification of it, by noticing that the cumulative hazard function verifies, by 

construction: 

     H u du H u h u du    

                                                 
4 The interested reader can refer to Droesbeke and Al [1989]. 
5 The original study of Nelson-Aalen relates to the operating life of ventilators. 
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and    uenvieenduuetuentresortiePduuh  ; a natural estimator of this quantity is 

therefore 
   

 
 
 uR

uNd

uR

uNduuN
111




 if   0uR , so that while summing on a  t,0  cut, 

sufficiently fine so that each subdivision contains no more than one jump, one obtains: 

    
 

 




t
uR

uNd
uR

tH

0

10
1

ˆ , 

Which is indeed the preceding expression. As the processes considered here are purely with 

jumps one can, while noting      N t N t N t    , put this expression in the form: 

 
 
  /

ˆ

i

i

i T t i

N T
H t

R T


   

By posing    tNtd   the number of deaths in t and    tRtr   the population under risk 

right before t, one can thus rewrite the equation above in the following intuitive form: 

 
 
     1

i i i

i i i

i T t i T t T ti i

d T d d
H t

r T r n i  

  
 

  
/ /

ˆ , 

the second equality being true only if there is no ex-æquo. The function Ĥ  is continuous to 

the right. One can verify that this estimator is biased and underestimates in average the 

cumulative hazard function. Indeed, 

 
  

 
 

  

 
      

0 01

0 0

1 1
ˆ

t t
R u R u

H t dN u dM u R u h u du
R u R u

 
    . 

Since M is a martingale, it comes in taking the expectancy of the two members of the equation 

above        
0

0

1ˆ
t

R u
E H t E h u du


  
   . But: 

      
0

1 0 1 0
R u

E P R u P R u


             
. 

One finally deduces: 

             
0 0 0

0 0ˆ
t t t

E H t h u du P R u h u du H t P R u h u du                   

which implies that     tHtHE ˆ : the estimator of Nelson-Aalen indeed tends to 

underestimate the model’s cumulative hazard function. 

3.1.2. Variance of the estimator of Nelson-Aalen 

It results from the approximation carried out in the previous section that the increase in the 

process  tN
1

 between t and ut   approximately follows a Poisson distribution of parameter 
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       
t u

t

R s h s ds R t h t u



 . Indeed, one had seen that conditionally to the “immediate 

past”, the increase in  1N t  between t and dtt   follows a distribution of Bernouilli of 

parameter    h t R t dt . The sum on the various individuals thus leads to a binomial variable, 

which can be approached by a Poisson distribution in choosing
u

dt
n

 . It is therefore deduced 

that, conditionally to  tR , 
   

 
 
 

1 1N t u N t h t u
V

R t R t

  
  

 

 ; however one saw in the previous 

section that  h t u  could be estimated by 
   

 

1 1N t u N t

R t

 
, leading to the estimator of the 

variance 
   

 
   

 

1 1 1 1

2
ˆ

N t u N t N t u N t
V

R t R t

    
  

 
, which finally results in proposing as an 

estimator of the variance of Ĥ : 

  
 

  

1

2
/

ˆ ˆ

i

i

i T t
i

N T
V H t

R T


   

which can be written with simplified notations, in the absence of ex aequo: 

  
 

  

1

2
/

ˆ ˆ

i

i

i T t
i

N T
V H t

R T


  . 

3.1.3. An example 

Freireich, in 1963, carried out a therapeutic test to compare remission durations, in weeks, of 

patients suffering from leukemia depending on whether or not they took a drug called 6 M-P; 

the reference group received a placebo. The results are the following6: 

6 M-P: 6,6,6,6+, 7.9+, 10.10+, 11+, 13,16,17+, 19+, 20+, 22,23,25+, 32+, 32+, 34+, 35+. 

Placebo: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23. 

Numbers followed by the sign + correspond to censored data. The application of the formulas 

above to these data leads to: 

                                                 
6 Duration of remission, in weeks. 
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Relapses 
it  ir  id  

i

i
r

d
  tĤ  2

i

i

r

d
    2 Ĥ t    Ĥ t   

1-2-3 6 21 3 0.143 0.143 0.007 0.007 0.082 

5 7 17 1 0.059 0.202 0.003 0.010 0.101 

7 10 15 1 0.067 0.268 0.004 0.008 0.089 

10 13 12 1 0.083 0.352 0.007 0.011 0.107 

11 16 11 1 0.091 0.443 0.008 0.015 0.123 

15 22 7 1 0.143 0.585 0.020 0.029 0.169 

16 23 6 1 0.167 0.752 0.028 0.048 0.220 

 

for the group treated with 6 M-P and for the group taking the placebo one obtains: 

 

 

Relapses 
it  ir  id  

i

i
r

d
  tĤ  2

i

i

r

d
    2 Ĥ t  

  Ĥ t   

1-2 1 21 2 0.095 0.095 0.005 0.005 0.067 

3-4 2 19 2 0.105 0.201 0.006 0.010 0.100 

5 3 17 1 0.059 0.259 0.003 0.014 0.116 

6-7 4 16 2 0.125 0.384 0.008 0.021 0.146 

8-9 5 14 2 0.143 0.527 0.010 0.032 0.178 

10-11-12-

13 

8 

12 4 

0.333 0.861 0.028 

0.059 0.244 

14-15 11 8 2 0.250 1.111 0.031 0.091 0.301 

16-17 12 6 2 0.333 1.444 0.056 0.146 0.382 

18 15 4 1 0.250 1.694 0.063 0.209 0.457 

19 17 3 1 0.333 2.027 0.111 0.320 0.565 

20 22 2 1 0.500 2.527 0.250 0.570 0.755 

21 23 1 1 1.000 3.527 1.000 1.570 1.253 

 

It is noted in particular that the cumulative hazard rate of the treated group is appreciably 

lower than that of the untreated group, which allows the guessing of a certain effectiveness of 

the treatment. This point will be shown infra. 

3.1.4. Asymptotic properties 

The estimator of Nelson-Aalen is asymptotically Gaussian; more precisely there is the 

following result. 

Proposal: if the cumulative distribution functions of survival and censoring do not have any 

common discontinuity, then: 

tHˆ

tHˆ

tHˆ
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 ˆ
H

n H H W   

with HW  a centered Gaussian process of covariance  
 

 
1

2

0

,

s t

c

dS u
s t

S u




   with 

       1 1
c

S t F t G t   and    1
1,S t P T t D   . 

3.2. The Kaplan-Meier estimator of the survival function 

One can notice that the estimator of Nelson-Aalen of the cumulative hazard rate leads to a 

natural estimator of the survival function, by using the relationship     expS t H t  ; one 

can thus propose for estimator of the survival function: 

    ˆ ˆexp
HF NA

S t H t  . 

This estimator is the estimator of Harrington and Fleming; its variance can be obtained by the 

Delta method which, under reasonable conditions of regularity of the function f, makes it 

possible to write that        
2

df
V f X E X V X

dx

 
  
 

. Indeed, if X Z    with   small 

and Z centered and reduced, one notices that for a sufficiently regular function  xfx  , by 

carrying out the limited development      
df

f h f h
dx

     , one finds that 

        
22df df

V f X V f Z
dx dx

    
 

   
 

. In taking   xexf  , one finds that 

       2 2
ˆ

ˆ ˆˆ ˆE H
V S e V H S V H


  , which leads to the estimator of the variance: 

  
 

 

 

  

 
 

  

2

2 2
2

1 1 1/ / /

ˆ ˆˆ exp
i i i

i i i

HF HF

i t t i t t i t t

d t d t d t
V S t S t

n i n i n i  

 
           

   . 

As it was shown that    ˆ
NA

E H t H t  
 

 and that the function   xg x e  is convex, one 

deduces that: 

                   ˆ ˆ ˆ ˆexp exp
HF NA NA NA

E S t E g H t g E H t E H t H t S t       , 

in other words, the estimator of Harrington-Fleming of the survival function presents an over-

estimating bias. 

However, this estimator can be improved, which leads to the Kaplan-Meier estimator. 

3.2.1. General presentation 

The Kaplan-Meier estimator (Kaplan and Meier [1958]) can be introduced via point 

processes, by noticing that the model’s basic survival function is the unique solution of the 

following integral equation: 



   

13 

     
0

1

t

S t S u h u du   . 

The equation above simply expresses the fact that the sum of survivors in t and individuals 

who have left before t is constant. When the survival function is continuous, the 

demonstration is immediate by carrying out the variable shift  lnv S u ,  dv h u du  . 

Replacing  duuh  by its estimator 
 
 uR

uNd
1

 introduced in the previous section, one can 

propose an estimator of the survival function by seeking a solution to the equation: 

   
 
 

1

0

1ˆ ˆ
t dN u

S t S u
R u

   . 

One can show that there exists a unique solution to this equation and one then obtains the 

Kaplan-Meier estimator of the survival function. If the existence is not simple to prove, 

unicity rises directly from the remark that if two estimators are solutions of the equation 

above then: 

       1 2 1 2

i

i
i i

T t i

d
S t S t S T S T

r

     
 ˆ ˆ ˆ ˆ  

and since    1 2
0 0 0S S ˆ ˆ , by recurrence    1 2

0S t S t ˆ ˆ  for any t. This estimator can be 

expressed using the estimator of Nelson-Aalen in the following way: 

    1ˆ ˆ

s t

S t H s


   

Where      ˆ ˆ ˆH s H s H s    . One can however propose a more intuitive explicit 

construction of this estimator, described infra. 

The heuristic construction of the Kaplan-Meier estimator is based on the following remark: 

the probability of surviving beyond st   can be written: 

         S t P T t T s P T s P T t T s S s       . 

One can renew the operation, which reveals products of terms in  P T t T s  ; if one 

chooses as conditioning instants the moments when an event occurs (exit or censoring), one is 

left estimating probabilities of the form: 

    1i i i
p P T T T T


    

i
p  is the probability of surviving on the interval 

   1
,

i i
T T


 
 

 knowing that one was alive at the 

instant 
 1i

T


. A natural estimator of 
ii

pq  1  is 
1

ˆ i i
i

i

d d
q

r n i
 

 
. One then observes that at 

instant 
 i

T , and in the absence of ex aequo, if 
 

1
i

D   then there is exit by death thus 1
i

d , 
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and in the contrary case the observation is censored and 0
i

d . The Kaplan-Meier estimator 

is thus finally written: 

 
 

 

1
1

1
ˆ

i

i

D

T t

S t
n i

 
  

  
 . 

In practice however one is confronted with the presence of ex æquo; one then supposes by 

convention that the non-censored observations always precede the censored ones. One obtains 

the following expression of the estimator: 

 
 

1ˆ

i

i

T t i

d
S t

r

 
  

 
  

Comment n°1: here one works with the continuous to the right version of the survival 

function; some authors use the continuous to the left version. In which case the expressions 

above remain valid by replacing the term 
 i

T t  by 
 i

T t . 

Comment n°2: should there be arrivals in the course of the period (left truncations), the 

expression  
 

1ˆ

i

i

T t i

d
S t

r

 
  

 
  remains valid by taking it into account in the calculation of ir ; 

there again, the survival function only jumps at the time of non-censored exits. 

3.2.2. Comparison with the estimator of Harrington and Fleming 

The two estimators are written respectively, after transformation by the logarithm 

 
 

1ˆln ln

i

i
KM

T t i

d
S t

r

 
  

 
  and  

 

ˆln

i

i
HF

T t i

d
S t

r

   thus 

   
 

1ˆ ˆln ln ln

i

i i
KM HF

T t i i

d d
S t S t

r r

  
      

  
 . 

It is easily verified that the function    1lnf x x x    is always negative and thus 

   ˆ ˆ
KM HF

S t S t . 

3.2.3. Examples 

3.2.3.1. Freireich dataset 

One takes the Freireich dataset used into 3.1.3 above, and one is interested in the comparison 

of results obtained by Kaplan-Meier and Nelson-Aalen methods; it is found that: 
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Relapses 
it  ir  id  

i

i
r

d
  tHNA

ˆ   tSKM
ˆ   tSKM

ˆln  

1-2-3 6 21 3 0.143 0.143 0.857 0.154 

5 7 17 1 0.059 0.202 0.807 0.215 

7 10 15 1 0.067 0.268 0.753 0.284 

10 13 12 1 0.083 0.352 0.690 0.371 

11 16 11 1 0.091 0.443 0.627 0.466 

15 22 7 1 0.143 0.585 0.538 0.620 

16 23 6 1 0.167 0.752 0.448 0.803 

 

It is noted that the cumulative hazard rate obtained with Kaplan-Meier is higher than the 

cumulative hazard rate resulting from the estimator of Nelson-Aalen. If one calculates the 

estimator of Harrington and Fleming of the survival function     ˆ ˆexp
NA

S t H t  , one 

notes just as well that it is systematically higher than the Kaplan-Meier estimator. Beyond the 

strictly statistical aspects, prudential considerations could therefore point towards the choice 

of one estimator or another. 

3.2.3.2. Another example 

Over 10 patients suffering from bronchi cancer, one observed the following survival 

durations, expressed in months7: 3/1/4 +/5/7+/9/8/10 +/11/13+. The Kaplan-Meier estimator 

of the survival function  S t  is calculated in the following way: 

 

it  
i
r  

i
d  Survival Interval 

0 10 0 100.0% [01 [ 

1 10 1 90.0% [1 3 [ 

3 9 1 80.0% [3 5 [ 

5 7 1 68.6% [5 8 [ 

8 5 1 54.9% [8 9 [ 

9 4 1 41.1% [9 11 [ 

11 2 1 20.6%  

 

3.2.4. Main properties 

The Kaplan-Meier estimator has a certain number of “good properties” which makes it the 

natural generalisation of the empirical estimator of the cumulative distribution function in the 

presence of censoring: it is convergent8, asymptotically Gaussian, coherent and is also a 

generalised maximum-likelihood estimator. However, this estimator is positively biased. The 

                                                 
7 The sign + indicates a censored observation 
8 Provided the survival function and the distribution of censoring do not have common discontinuities. 

tHˆ
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Kaplan-Meier estimator is the only coherent estimator of the survival function (see Droesbeke 

and al. [1989] for the demonstration of this property). 

The concept of “maximum-likelihood” must be adapted to the non-parametric context in the 

following way9. 

Definition: let  be a family of probabilities on n  (with the Borel tribe) not dominated;  

nx   and 1 2
,P P  , one writes  

 
 1

1 2

1 2

, ,
dP

l x P P x
d P P




, it is then said that P̂  is 

GMLE for P if    ˆ ˆ, , , ,l x P P l x P P . 

One can then show that the estimator Ŝ  is GMLE for S, provided that the distributions of the 

non-censored lifetime and of the censoring are diffuse, and provided that the family   

contains the distributions of probability charging the points  
ii

DT , . The other properties are 

detailed hereafter. 

3.2.5. Variance of the Kaplan Meier estimator 

One proposes here a heuristic justification of an estimator of the variance of the Kaplan-Meier 

estimator, the estimator of Greenwood. 

The expression   1
( )

ˆ

i

i

T t i

d
S t

r

 
  

 
  makes it possible to write10:  

    1 1
( ) ( )

ˆ ˆln ln ln
i i

i
i

T t T ti

d
S t q

r 

 
    

 
  . 

If, as a first approximation, one assumes the independence of variables  1 ˆln
i

q , as the 

distribution of ˆ
i i
r p  is binomial with parameters  ,

i i
r p , one obtains through the delta method 

       
2

df
V f X E X V X

dx

 
  
 

: 

     
 

2

1

ˆ
ˆ ˆ ˆln ln

ˆ
i

i i i

i i

qd
V p V p p

dp r q

 
  

 
 

which leads to suggesting as an estimator of the variance of  tŜln : 

  
   1

( ) ( )

ˆˆˆ ln
ˆ

i i

i i

T t T ti i i i i

q d
V S t

r q r r d 

 
 

   

By applying the delta method again with the logarithmic function for f, one finally obtains: 

      
2 2ˆ ˆV̂ S t S t t  

                                                 
9 One will see in 3.2.7 the link with maximum-likelihood in a parametric context. 
10 This formula provides an estimator of the cumulative hazard function called estimator of Breslow of H. 



   

17 

with  
 

 i

i

T t i i i

d
t

r r d







 . This estimator is the estimator of Greenwood. It is consistent for 

the asymptotic variance of the Kaplan-Meier estimator. It allows, together with the asymptotic 

normality11 of the Kaplan-Meier estimator, the calculation of (asymptotic) confidence 

intervals whose bounds are, for the value of survival at time 
 i

T : 

  
     

1 2

1 1
1 1 1 2 2 22 2

1 1 i
i ii

i i i

dd d
S u T S u

r r d r r d r r d
 

 

  
                

 

In this way, one builds point intervals, with t fixed. One can then seek to build bands of 

confidence for the survival function. Nair proposes in 1984 (cf. Klein and Moeschberger 

[2005]) linear bands of confidence of the form: 

         1ˆ ,
m M

S t c a t a t t   

with  
 

 

2

2
1

n t
a t

n t








 
 and where the confidence coefficients cα (x1,x2) are tabulated (they 

are provided in appendix of Klein and Moeschberger [2005]). 

One can also observe that these formulas can be used to build confidence intervals for 

conditional rates of exit 
 

 

1
1

ˆ
ˆ

ˆx

S x
q

S x


  ; indeed, one can deduct from   1

( )

ˆ

i

i

T x i

d
S x

r

 
  

 
  

that  
1

1 1ˆ

i

i

x T x i

d
q x

r  

 
   

 
  and thus: 

     
 

2

1

1ˆ ˆ ˆ

i

i

x T x i i i

d
V q x q x

r r d  

 


  

from which the expression of an asymptotic confidence interval is immediately yielded: 

    
 1

12

1 1 1ˆ ˆ

i

i

x T x i i i

d
q x q x u

r r d



  

 
      

  
 . 

3.2.6. Asymptotic properties 

The Kaplan-Meier estimator is asymptotically Gaussian; precisely there is the following 

result. 

Proposal: if the cumulative distribution functions of survival and censoring do not have any 

common discontinuity, then: 

 ˆ
S

n S S W   

with 
S

W  a centered Gaussian process of covariance: 

                                                 
11 See 3.2.6. 
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     
 

     
2

0 1 1
,

s t dF u
s t S s S t

F u G u





 

 . 

In particular, when the model is non-censored (i.e.   0uG ), one finds the traditional result 

presented in 1.1 above. The interest of results of convergence of the process itself – rather 

than for one fixed instant – is that one can deduce some asymptotic bands of confidence for 

the Kaplan-Meier estimator. 

One can find in Gill [1980] a demonstration of the asymptotic normality of KMŜ , based on the 

theory of point processes. By noting SF  1  and 1 ˆˆ
KMF S  , the band of confidence 

which is obtained is written: 

 

   

 

 

 
       

0

1 2 1 2 1
1 1,

ˆˆ
lim inf sup

ˆ ˆ

k

n s t k

V tF s F s
P x k x k x

F s F t



  

  
             

  

where  
 

      

1

2

10

ˆˆ
t

KM

dN u
V t S

R u R u N u



  estimates the variance of the limiting Gaussian 

process SW . 

3.2.7. Discretised version: link with the parametric approach 

Calculation of the Kaplan-Meier estimator implies that one disposes of individual data with 

the exact dates of occurrence of events; in practice, in addition to the fact that for large 

populations calculations can be heavy, this information is not always available. One then 

wishes to use this approach for data gathered by period, for example considering the month as 

the unit of time and counting exits month by month. It is the approach followed by the BCAC 

in France for disability12 (decree of 1996). 

Formally, if one considers the instants 
N

tt  ..
1

 at which the exits occur (for example 

integer ages of death) and if one disposes of a sample of size n for which one observed a 

sequence  
ii

dr,  of individuals at risk as well as deaths at dates 
N

tt  ..
1

, one can notice that 

i
D  the number of exits on the interval  

1ii
tt ,  follows a binomial distribution of parameters 

 
ii

hr, ; 
i

h  indicating the hazard rate at time 
i

t  (homogeneous to one 
x

q ). 

The exits in the intervals  
1ii

tt ,  being independent from one another, it is therefore found that 

the likelihood of this model is written: 

 
1

1 i ii i

i

N
r dd d

i ir
i

L C h h




  . 

Hence log-likelihood is written: 

                                                 
12 http://www.ressources-actuarielles.net/C1256F13006585B2/0/A0D8FE4A9807886AC1257D11002A0BE9 

http://www.ressources-actuarielles.net/C1256F13006585B2/0/A0D8FE4A9807886AC1257D11002A0BE9


   

19 

       
1

1ln ln lni

i

N
d

i i i i ir
i

L C d h r d h



     
    

and the first order conditions 0

 L
h

i

ln  lead to the estimators: 

i

i
i r

d
h ˆ . 

One is reminded of the estimator introduced in 3.2.1 above. For that approach to be relevant, 

it is advisable to make sure that the discretisation does not generate large bias on the 

estimation of exit rates: for example, in the case of sick leave, it is known that the exits are 

very numerous during the first month (in practice approximately 50 % of sick leaves last less 

than 30 days). Therefore, if a monthly step is adopted, one badly takes into account the high 

pace of exits during the first period; it would thus be advisable here to choose a smaller 

discretisation step. More generally, the above reasoning is relevant as long as the length of 

each interval considered is “small” in the light of the variation speed of the survival function. 

4. Taking into account explanatory variables 

When the studied population is heterogeneous, it is important to take into account specificities 

of each sub-group. By assuming that heterogeneity is the consequence of a blend of 

subpopulations each characterised by observable variables, one looks into modelling the 

hazard function that integrates the effect of explanatory variables. This question was already 

tackled in parametric and semi-parametric contexts (Cox model) – one is interested here in the 

non-parametric case. 

This chapter is inspired by Martinussen and Scheike [2006] to which the reader will be able to 

refer for demonstrations. It is also specified that the practical application of the models 

presented here can be carried out using the timereg package of the software R, developed by 

these authors or by using the survival package. 

4.1. The additive model of Aalen 

The hazard function is supposed to be written: 

     Th t X t t  

with       1
, ,T

p
X t X t X t  a vector of explanatory variables (predictable) and  t  a 

p-dimensional process locally integrable. One can in an equivalent way say that the intensity 

of the underlying counting model is written: 

       Tt R t X t t  . 

One has a set of observations       1

1
, ,

i

i i
i n

N t R t X t
 

 and one seeks to estimate the vector 

 t ; in practice one will be able to easily build an estimator of    
0

t

B t u du   through 

the use of the remarks which follow. 
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One notes to reduce the formulas       1
, ,

T

n
t t t    and       1 1 1

1
, ,

T

n
N t N t N t , 

then           1

1
, ,

T
n

n
X t R t X t R t X t , which is a matrix of dimension n p . With 

these notations one gets, while defining by    
0

t

t u du    the vectorial process of the n 

cumulated intensities,      1M t N t t   which is a martingale. By observing that: 

             1dN t X t t dt dM t X t dB t dM t     

since the term  dM t  is centered and the increments of the martingale are non-correlated, 

one can seek to estimate the increments  dB t  by traditional techniques of linear regression. 

For that, one writes: 

        
1

T TX t X t X t X t


  , 

if    TX t X t  is invertible and 0 if not.  X t  is called the generalised inverse of X, which 

is a matrix of dimension p n  that verifies       p
X t X t J t I   with  J t taking value 1 if 

the inverse exists, and 0 if not. In practice when  X t  is of full rank    TX t X t  is invertible 

and one simply has     p
X t X t I  . It is then natural to propose for estimator of B the 

following process: 

     1

0

ˆ
t

B t X u dN u  . 

The fact that          
0 0

ˆ
t t

B t J s dB s X s dM s    ensures that B̂  estimates B essentially 

without bias; and one can moreover show under certain not very restrictive technical 

conditions that  ˆn B B  converges in distribution as a process towards a centered Gaussian 

process which function of covariance can be calculated. 

The calculation of the estimator      1

0

ˆ
t

B t X u dN u   consists in calculations of discrete 

sums at the instants of jump of the process  1N t . In a more precise way  B̂ t  is a vector of 

size p and: 

     1

0

ˆ
t

j ji i

i

B t X u dN u  

But  1

i
N t  jumps no more than once at time 

i
T  and the increment at this instant is 1 (if a jump 

occurs). The following expression is deduced: 

   ˆ

i

j ji i i

T t

B t X T D



  . 
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Calculation thus requires the determination of         
1

T T

i i i i
X T X T X T X T


   for all the 

non-censored exits. 

4.2. Semi-parametric alternative: the model of Lin and Ying 

In insurance situations, the explanatory variables are in general constant in the course of time 

(typically they are associated with a characteristic such as gender, professional status, contract 

type, etc.). 

This results in the constancy of variables  j
X t . This typical case leads to a semi-parametric 

model, and the methods described above are slightly modified. Among these models one can 

mention in particular the model of Lin and Ying [1994], in which the hazard function is 

supposed of the following form: 

   0
|

Th t Z z h t z   . 

Lin and Ying [1994] and Klein and Moeschberger [2005] show that starting from the 

martingale decomposition of the Poisson process, the estimator of the coefficients of the 

model is: 

1A B  , 

where    
1 i

D
T

j i j i

i j R

A z z z z
 

   ,  
1

n

i i i

i

B d z z


   and 
1

i

i j

j Ri

z z
R 

  . 

The global significance of the model can be appreciated through the statistics of Wald which 

follows a Chi-squared distribution with p degrees of freedom (p being the dimension of Z 

representing the explanatory variables of the model) under the assumption 
0

0:H   , that is 

to say: 

1
2

T

W
V  



 , 

where 
1 1V A CA   with    

1

n
T

i i i i i

i

C d z z z z


   . In the case of the significance test of a 

parameter, one tests the null hypothesis for each parameter j
  (with 1, ,j p  and 

 1
, ,

p
   ), and one thus considers 0

0:
j

H   , hence 
2

2

j
jjjW

V  . 

5. Sample comparison: non-parametric approach 

Imagine the situation in which one wishes to compare the respective lifetimes of two 

independent samples. More precisely, one disposes of two independent samples, possibly 

censored, and one wishes to test the null hypothesis of equality of survival functions in the 

two samples. In the absence of censoring, one can use the traditional rank tests (Wilcoxon 

test, Savage test), which one will adapt to the presence of censoring. 
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5.1. Reminder: principle of rank tests13 

One disposes of two series of observations, 1E  and 2E , of respective sizes 1n  and 2n ; one 

notes 21 nnn  ; one arranges the sequence of observed values  1, , nx x  in ascending 

order: 

   1 n
x x  . 

The principle of linear rank statistics is to grant a weight (a score) i  to observation  ix  of 

rank i in the common classification of both samples. Two statistics are then built: 






1

1
Ei

iR   and 




2

2
Ei

iR  . 

As 



n

i
iRR

1
21  , which is known and deterministic, working on one or the other statistics 

makes no difference; in practice one retains the one associated with the smallest sample. In 

choosing ii  , one obtains the Wilcoxon test; the Savage test being associated with the 

choice 





i

j
i jn

1
1

1
1 . 

Lastly, the choice of a test rather than another can be guided by the form of the alternative, by 

retaining the (locally) most powerful test for a given alternative. 

5.2. Adaptation of rank tests to the censored case14 

The adaptation of the preceding tests to the censored case leads to introducing the ordered 

series of observed moments of deaths (non-censored) into the common sample, which one 

will note 1 Nt t  . At each moment it , ijd  indicates the number of deaths and ijr  the 

population under risk in the group j. Population under risk is calculated before exits in it , so 

that the “survivors” after it  are of headcount ijij dr  . One can summarise this in the 

following table: 

 Death in ti Survivors afterwards  Total 

Group n°1 
1id  1 1i i

r d  1i
r  

Group n°2 
2id  2 2i i

r d  2i
r  

All groups 
id  

i i
r d  i

r  

 

Under the null hypothesis of equality of the survival distributions in the two groups, at every 

moment one must have equality of the proportions of death in the two groups, which has as a 

consequence of independence of the lines and the columns in the above table. One is therefore 

                                                 
13 For developments on the subject, refer to Capéraà and Van Cutsem [1988]. 
14 See for example Hill and al [1996] for further developments. 
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in the case of a contingency table with fixed margins, and then the random variable ijd  is 

distributed according to a hypergeometric distribution15 , ,
ij

i i

i

r
H r d

r

 
 
 

 (since one counts the 

number of deaths in the selected group n°j among the total deaths id , the probability of 

belonging to group n°j being 
ij

i

r
p

r
  and population size being i

r ). One concludes that the 

expectancy and the variance of ijd are:   ij

ij i

i

r
E d d

r
  and   1 2

21

i i i i
ij i

i i

r d r r
V d d

r r





. These 

observations lead to building statistics based on weighed sums of  ijij dEd  , which are 

asymptotically Gaussian. By noting  iw  the selected weights, one finally uses statistics of the 

form: 

2

1

2 1 2

2
1 1

N
ij

i ij i

i i

j N
i i i i

i i

i i i

r
w d d

r

r d r r
w d

r r






  
  

  







 

which asymptotically follows  1
2

 . In what follows one will note 2 2 1 2

2
1 1

N
i i i i

i i

i i i

r d r r
w d

r r








 . 

5.2.1. The log-rank test 

The most simple choice one can think of for the weights is 1iw , which leads to the test 

known as the “log-rank test”. In this case the numerator of the statistics of test j is the square 

of the difference between observed and theoretical counts of deaths, under the null 

hypothesis: 

 
2

2

th obs

j j

j

D D





 . 

This test generalises Savage test to the case with censored data. One can note that under the 

null hypothesis 
ththobsobs

DDDD 2121  , in other words the value of the test statistics does 

not depend on the group on which one evaluates it. The statistics form suggests the following 

approximate formula: 

   
2 2

1 1 2 2

1 2

th obs th obs

th th

D D D D

D D


 
   

                                                 
15 It is reminded that the hypergeometric distribution  pknH ,,  is the distribution of k successes in n draws, 

without replacement, from a finite population containing successes in proportion p. 
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which one can show that it is lower than that of the log-rank (cf Peto and Peto [1972]). Its 

form evokes that of a usual fitting Chi-squared. The log-rank test is the most frequently used 

one. 

5.2.2. The Gehan test 

Gehan (Gehan E.A. [1965]) proposes to retain i i
w r , which results in weighing more 

strongly the earliest deaths. This test generalises Wilcoxon test to the case of censored data. 

This test statistics does not admit a simplified expression like the log-rank. It presents the 

disadvantage of depending rather strongly on the distribution of censoring. 

5.2.3. Example: application to the Freireich dataset 

One takes again the two groups of the protocol used by Freireich. Calculations of the test 

statistics can be carried out based on the following table: 

 

 6-MP Placebo     

Durations 
1in  1id  2in  2id  in  id   2idE   2idV  

1 21 0 21 2 42 2 1.00 0.49 

2 21 0 19 2 40 2 0.95 0.49 

3 21 0 17 1 38 1 0.45 0.25 

4 21 0 16 2 37 2 0.86 0.48 

5 21 0 14 2 35 2 0.80 0.47 

6 21 3 12 0 33 3 1.09 0.65 

7 17 1 12 0 29 1 0.41 0.24 

8 16 0 12 4 28 4 1.71 0.87 

10 15 1 8 0 23 1 0.35 0.23 

11 13 0 8 2 21 2 0.76 0.45 

12 12 0 6 2 18 2 0.67 0.42 

13 12 1 4 0 16 1 0.25 0.19 

15 11 0 4 1 15 1 0.27 0.20 

16 11 1 3 0 14 1 0.21 0.17 

17 10 0 3 1 13 1 0.23 0.18 

22 7 1 2 1 9 2 0.44 0.30 

23 6 1 1 1 7 2 0.29 0.20 

 

One gets the results summarised as follows: 
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 log-rank Gehan 

Durations Weighting Coefficient Variance Weighting Coefficient Variance 

1 1.00 1.00 0.49 42 42.00 860.49 

2 1.00 1.05 0.49 40 42.00 777.54 

3 1.00 0.55 0.25 38 21.00 357.00 

4 1.00 1.14 0.48 37 42.00 653.33 

5 1.00 1.20 0.47 35 42.00 570.71 

6 1.00 -1.09 0.65 33 -36.00 708.75 

7 1.00 -0.41 0.24 29 -12.00 204.00 

8 1.00 2.29 0.87 28 64.00 682.67 

10 1.00 -0.35 0.23 23 -8.00 120.00 

11 1.00 1.24 0.45 21 26.00 197.60 

12 1.00 1.33 0.42 18 24.00 135.53 

13 1.00 -0.25 0.19 16 -4.00 48.00 

15 1.00 0.73 0.20 15 11.00 44.00 

16 1.00 -0.21 0.17 14 -3.00 33.00 

17 1.00 0.77 0.18 13 10.00 30.00 

22 1.00 0.56 0.30 9 5.00 24.50 

23 1.00 0.71 0.20 7 5.00 10.00 

  105.07 6.26  73441.00 5457.11 

   79162 ,    46132 ,  

One finds in both cases very weak p-values, which confirms the different behaviour of the 

two groups, which had already been highlighted at the time of the study of the respective 

cumulated risk functions. 

5.3. Approach through point processes 

In the same manner that estimators of cumulative hazard or survival function can be obtained 

in a “natural” way within the framework of point processes, this formalism can be applied to 

the tests presented above. This method is detailed in Gill [1980]. 

Imagine the situation where two groups are observed, and one disposes of the two processes 

of non-censored events  tN
1
1  and  tN

1
2 . The assumption is made that the two processes do 

not jump at the same time (which translates the orthogonality of martingales 1M  and 2M , 

021  MM , ,). The idea is, for a predictable and positive process K, to consider the 

following process: 

   
 

 
 

 

 
1 2

1 1

1 20 0

t tdN u dN u
t K u K u

R u R u
     
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The process    
 
 

 
 
 

1 2

1 20 0

t tdM u dM u
M t K u K u

R u R u
    is a martingale and also verifies: 

          1 2

0

t

M t t K u h u h u du    . 

Lastly, under the null hypothesis of identity of the underlying distribution of both populations 

   ttM  . 

The traditional tests are then obtained by specifying the process K. Thus      uRuRuK 21  

leads to the statistics of Wilcoxon-Gehan and  
   
   
1 2

1 2

R u R u
K u

R u R u



 to the statistics of the 

log-rank. General results on point processes make it possible to obtain the limiting 

distribution of  t  under the null hypothesis; more precisely, it is shown that  t  converges 

in distribution towards a centered normal distribution of variance  t2
 ; a convergent 

estimator of the variance is given by the quadratic variation of the martingale  t : 

 
 

 
 
 

 

2 2

1 1

1 2

1 20 0

,

t t

t

K u K u
dN u dN u

R u R u

   
        

      
  . 
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