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1. Introduction 

When building an experience distribution based on exit or survival data, the first step consists 

in estimating gross rates1; this is an essential step, whether the adopted approach is parametric 

or non-parametric. 

The resulting obtained values show some irregularity, which can be thought as not reflecting 

the underlying studied phenomenon, and is rather the outcome of the imperfection of 

conditions of experiment; sampling fluctuations thus induce a “parasitic” variability in 

estimated values. 

One then wishes to apply “fitting” or “smoothing” to gross rates, in order to represent in a 

more faithful way the (unknown) distribution which one wants to estimate. 

In a formal way, and while being placed in the standard case of incidence rates estimation 

(mortality, exit of sick leave, long term care, etc.), the initial estimation procedure led to a 

value 
x

q̂  for estimating 
x

q , and thus to an error 
xxx

qqe  ˆ ; the purpose of the estimate 

update which is to be undertaken is to decrease this error, while building a curve of rates as a 

function of x more “smooth” than the curve of gross rates. 

It can also be seen that the gross rates estimation process generally considers ages (or 

seniorities) independently from one another, and thus does not take into account the 

interactions which obviously exist: for example, in the case of mortality and starting from a 

certain age, it seems natural that the theoretical series of 
x

q  is increasing. The series of 
x

q̂  is 

in general not increasing. 

1.1. Regularity and precision 

The choice of a gross data revision procedure sees two types of constraints which will have to 

be taken into account in a joint way: 

 precision (or fidelity / “fit”): it is natural to expect revised rates which are close to 

initial rates; 

 regularity (“smoothness”): the series of adjusted rates will be seeked as regular as 

possible. 

As for any statistical approach, the relevance of the fitting procedure will have to be validated 

by tests. 

1.2. Various approaches 

The revision process of the initial estimate can be carried out in two ways: 

 one can set an a priori form for the underlying distribution, for example assuming 

that the hazard function is a Makeham function; this is a fitting approach defined 

by a parameter  ; examples of such procedures are spline smoothing and “smooth 

junction” interpolations; 

                                                 

1 Or the empirical estimate of a characteristic function of the survival distribution: cumulated hazard function, 

survival function, etc. 



   

4 

 one can live without a parametric representation, and simply define processes to be 

applied to initial gross data in order to “smooth” them; examples of such non-

parametric methods are moving averages2, Whittaker-Henderson type smoothing 

as well as their extension to a more general Bayesian framework. 

From a semantic point of view, one will tend to refer to “fitting” in the parametric framework 

and “smoothing” in the non-parametric framework – this terminology not actually being 

fixed. 

The two approaches are developed below. 

1.3. Definitions and notations 

Smoothing methods are often based on the series of term to term differences of the original 

series. In practice one finds three discrete differentiation operators:  

 forward difference:      1u x u x u x     

 backward difference:      1u x u x u x     

 central difference:  
1 1

2 2
u x u x u x

   
      

   
 

These operators can be applied in a recursive way:  2u u     ; thus 

       2 2 2 1u x u x u x u x      ; more generally          , is written with the binomial 

coefficients: 

     
0

1
n

n jn

j

n
u x u x j

j





 
    

 
  

One obtains similar expressions with    and  . 

2. Parametric fitting 

The common approach described in lecture notes about “parametric models” consists in 

carrying out a fitting to a generally continuous parametric distribution; it will therefore not be 

developed here again. 

It can be noted that in this case the maximum likelihood method directly leads from 

observations to fitted values via obtaining the parameters of the underlying distribution; the 

two-steps reasoning – obtaining gross rates, then fitting – can therefore be simplified. 

In the case of sick leave, methods initially developed for construction of prospective mortality 

tables, like the Lee-Carter method, can be adapted to the fitting of instantaneous exit rates xt


where x is the seniority of sick leave and t the age at the beginning of sick leave3. 

                                                 

2 Which are in a way the ancestors of smoothing procedures. 
3 See the lecture notes on “mortality tables” for the presentation of these methods 
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2.1. Spline smoothing 

2.1.1. Presentation 

Fitting to a continuous distribution implicitly assumes that the curve of incidence rates can be 

represented for all considered ages or seniorities by a single parametric function. In practice, 

for example because of ruptures in the evolution of gross rates, this condition is rather 

restrictive. 

The idea of spline smoothing is to divide the support of the function to be fitted in sub-

intervals, then fit a simple function on each sub-interval, and be cautious of proper 

connections at junction points. Dividing in a smart way should indeed allow the use on each 

sub-interval of a function materially more simple than the function corresponding to a global 

fit. 

Polynomials are simple functions and can for this reason be used to carry out spline 

smoothing; in practice, one only considers from now on polynomials of degree 3 which will 

allow us to build cubic splines. The connection of these arcs will be done by imposing 

continuity as well as equality of slopes and curvatures, at the junction points. 

2.1.2. Cubic spline with two arcs 

Initially, it is supposed that dividing the support of variation of ages (or seniorities) in two 

parts is sufficient, and one therefore writes: 

 
 

0 0 1

1 1 2

x

p x x x x
q

p x x x x

  
 

 
 

 i
p x  being a polynomial of degree 3, with the following constraints at the junction point: 

           
2 2

0 1 1 1 0 1 1 1 0 1 1 12 2

d d d d
p x p x p x p x p x p x

dx dx dx dx
    

Which results in posing   2 3

0 1 2 3 4
p x c c x c x c x     and      

3

1 0 5 1
p x p x c x x   . The 

problem thus comprises 5 unknown factors (8 polynomials coefficients minus 3 regularity 

constraints). One solves it by using a criterion of weighed least squares, on the basis of 

weights  x
w , which results in looking for the parameters which minimise 

 
2

0

2
ˆ

x

x x x

x x

M w q q


  . 

It can be noted that in this approach it is not necessary to have all of the gross values ˆx
q  as the 

spline could be interpolating for missing values. If one then notes 1
x  the greatest value of x 

lower or equal to x1 for which one has a value of 
x

q̂ , then one breaks down the sum involved 

in criterion M into two sums and one writes the normal equations by cancelling the derivative 

with respect to the parameters: 0
i

M

c





. 

After some calculations, these equations can be put in the form: 
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ˆ' 'X wXc X wq  

the matrix X of size  5,m  for m 
x

q̂ values available on  0 2
,x x  being defined by: 

     

 

2 3

0 0 0

2 3

1 1 1

2 3 3
1 1 1 1

1 1 1 1 1

32 3

2 2 2 2 1

1 0

1 0

1

1

.. .. .. .. ..

.. .. .. .. ..

x x x

x x x

X
x x x x x

x x x x x

 
 
 
 
 
 
 
 
 

  

 

with 1

1
x the index value posterior to 

1
x  for which 

x
q̂  is known. 

2.1.3. Cubic splines: the general case 

The above expressions can easily be generalised to the n nodes case 
n

xx ,..,
1

, with a matrix of 

size  4,m n  ; the coefficients are obtained through the ordinary least squares estimator: 

 
1

ˆ' 'c X wX X wq


 . 

2.1.4. Choice of parameters 

The choice of parameters is reduced to the choice of nodes’ locations. Since the fitting 

function is a polynomial of degree 3, it can be noticed that if only 4 values of 
x

q̂  are available 

in the interval  1
,

i i
x x


, the fitted values will be equal to the gross ones: it is thus advisable to 

choose sufficiently broad intervals; in practice, changes in gross curve curvature will provide 

indications on locations of the nodes. 

2.1.5. Generalisation 

The spline smoothing method can be presented in a more general non-parametric regression 

framework, which allows the introduction of a fidelity vs regularity arbitrage through a 

criterion similar to that of Whittaker-Henderson (see section 3.3 below). 

This presentation will not be developed here, but the interested reader on the matter will be 

able to consult Besse and Cardot [2001]. 

2.2. Smooth junction interpolations 

If, instead of calculating a gross estimate for each age, individuals are gathered by age groups, 

then one obtains gross estimates by “steps” (a step corresponds to an age group). This 

situation can for example be seen in the case of the construction of sick leave retention 

distributions, with age at entry being regrouped. 

One then wishes to get back to estimates for each age. The “smooth junction interpolations” 

technique meets this objective. It will be noted that the objective is not here to smooth or fit 
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erratic values, but rather to supplement missing values. The cubic splines fitting technique 

also allows to interpolate missing values, and it will have to be used preferably to these 

interpolations. 

2.2.1. Everett interpolation formula 

One now looks into symmetrical interpolation procedures, in the sense that the direction of 

the interpolation does not modify the result. It is then possible to write the interpolation 

formula in the following general form: 

   1
1ˆ ˆ

x s x x
q F s q F s q

 
    

for 0 1s   and  sF a differentiation operator of the form: 

       2 4

0 1 2
..F s p s p s p s      

With   the central difference operator and 
i

p some polynomials. One can for example 

imagine that one has quinquennial rough rates, and one will use this approach with 

0 2 0 4, ; , ;..s   in order to obtain annual rates through interpolation. If if in the expression of 

 sF  above the last term is in 2m , then 
sx

q


 is determined based on the  2 1m  values 

1
ˆ ˆ, ..,

x m x m
q q

  
. This is referred to as “interpolation formula at  2 1m   points”. When 0m  

and  0
p s s  one obtains the traditional linear interpolation formula. Lastly, one can note 

that 
sx

q


 is a polynomial function in s. This is therefore a spline-type interpolation, as in 2.1 

above. 

Regularity conditions on the obtained interpolation function are imposed: 

 continuity implies that  0 0
i

p  ; 

 equality of the derivative at the junction points, which implies the (formal) equality 

    22 1 0 2' 'F F   ; 

 equality of the second derivative at the junction points, which implies that 

 0 0''

i
p  . 

The above conditions do not impose that the interpolation formula provides original values to 

integer points, i.e. one can have ˆ
x x

q q . In order to actually keep original values at integer 

points, it is necessary to also have   11
0

p  and   101  ip
i

, . 

In the same way one can determine conditions on polynomials 
i

p  so that the formula is exact 

for the interpolation of polynomials of fixed degree z4. 

2.2.2. Four points formulae 

In practice, the 4 points formulae, hence with 2m , are the most commonly used. One thus 

seeks to express 
sx

q


 as a function of to 
1 1 2

ˆ ˆ ˆ ˆ, , ,
x x x x

q q q q
  

; one has       2

0 1
F s p s p s    

                                                 

4 Cf. London [1995]. 
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and it is thus necessary to determine the polynomials 
0

p and 
1

p . The constraints of continuity, 

derivability and invariance for the polynomials of degree one easily imply that:   ssp 
0

, 

  00
1

p ,   00
1

'p  and  
2
11

1
'p ; one controls regularity via  1

1
pl  . Hence there are 4 

constraints and the polynomial of minimal degree which satisfies them is of degree 3, with the 

following expression: 

  2 3

1

1 1
3 2

2 2
p s l s l s

   
      
   

 

The typical case 0l  led to the Karup-King formula, often used in practice:  

   2

1

1
1

2
p s s s  . 

3. Non-parametric smoothing methods 

3.1. Moving averages 

Moving averages have the advantage of simplicity of implementation; however, they present 

some disadvantages, essentially related to the sensitivity of the arithmetic mean to extreme 

values, which will often eventually result in moving averages not being used. At the very 

least, moving averages will not be the only means of revision of gross rates. 

Provided one restricts oneself to symmetrical moving averages, the basic formula is as 

follows: 

ˆ
r

x i x i

i r

q a q






  

With 
i i

a a

 . The major limitation of moving averages is that their use at the edges is 

problematic. 

When aiming to decrease estimation error within the framework of the measurement of 

theoretical rates qx, constraints can be imposed that consist in requiring that should the series 

of 
x

q  present the regularity of a polynomial, for example of degree 3, application of the 

moving average would not modify values of 
x

q ; in other words, one writes 
r

x i x i

i r

q a q






  

which leads to: 

21 0
r r

i i

i r i r

a i a
 

 

    

In some cases (sick leave with age at entry and leave seniority as dimensions, or prospective 

mortality with age and year as dimensions), two-dimensional tables push to look for the 

smoothing method best adapted to each of both dimensions. 

The idea is that, should smoothing in one direction and then the other be chosen, one is likely 

to deteriorate the first smoothing. One therefore seeks to smooth the series in the two 

directions at once. The moving average method is well adapted to that purpose. It is for 
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example used to smooth reserves calculated based on regulatory gross tables. In this case the 

BCAC uses: 

     
1 1

2 16 ,

ˆ ˆ, , ,
k l

q i j q i j q k l   , 

the summation being extended to the 8 points bordering  ,i j . 

This approach can be generalised to any moving average; however, this process is not well 

adapted to the treatment of the edges of the table, and results in practice in letting some 

irregularities remain. 

3.2. Kernel methods 

When estimating a survival function through a non-parametric method, the obtained function 

is non differentiable, and it is therefore not possible to recompute the hazard function simply. 

When one wishes to regularise the empirical cumulative distribution function 

   
1

1
1

i

n

n X x
i

F x
n




  , a traditional method consists in choosing a function K regular, positive 

and of unit integral, called kernel, and in posing: 

 
1

1
,

ˆ
n

i
h n

i

X x
f x K

nh h

 
  

 
 . 

When 0h  and nh  ,  ,
ˆ
h n

f x  converges towards  f x  and one has: 

         2
0

,
ˆ ,
h n

nh f x f x N f x K u du   . 

Among the kernels often used one can quote the Gaussian kernel  
21

22
exp

x
K u



 
  

 
 

and the Epanechnikov kernel      
2

1

3
1 1

4 u
K u u


  . The practical main difficulty consists in 

determining the optimal “bandwidth” h. 

In the context of a censored survival model, the direct application of these formulae 

introduces a bias because of (right) censoring. Marron and Padgett [1987] proposed to use the 

following estimator: 

 
1

1
,

ˆ
n

i i
h n

i i

d T t
f t K

h r h

 
  

 
  

in which the uniform jump 
1

n
 of the non-censored case is replaced by the jump of the Kaplan-

Meier estimator at the time of occurrence of a non-censored exit. 

For a complete presentation of these methods, the reader can refer to Wand and Jones [1995]. 



   

10 

3.3. Whittaker-Henderson smoothing 

The principle of the Whittaker-Henderson method is to combine a fidelity criterion with a 

regularity criterion and to look for fitted values that minimise the sum of both criteria. 

3.3.1. The one-dimensional case 

One sets weights  
i

w  and one poses for the fidelity criterion: 

 
2

1

ˆ
p

i i i

i

F w q q


   

and for the of regularity criterion: 

 
2

1

p z
z

i

i

S q




   

z being a model parameter. The criterion to be minimised is a linear combination of fidelity 

and regularity, the weight of each of the two terms being controlled by a second parameter h: 

M F h S    

The solution to this optimisation problem satisfies the conditions 0
i

M

q





, pi 1 ; the 

resolution of this system of equations can be carried out by means of a few matrix processing 

steps. For that purpose, one poses  
1i i p

q q
 

 ,  
1

ˆ ˆ
i i p

q q
 

  and  
1i i p

w diag w
 

 ; with these 

notations one can write    ˆ ˆ'F q q w q q   ; as far as the regularity criterion is concerned, 

if one notes  
1

z z

i
i p z

q q
  

   , then  'z zS q q   . In order to further detail this writing, 

one introduces the matrix 
z

K  of size  ,p z p , the terms of which are the binomial 

coefficients of order z of alternating sign and starting positively for z even5: 

     
0

1
z

z jz

j

z
q i q j i

j





 
    

 
 . 

For example, for 2z  and 5p  one gets: 

2

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

K

 
 

 
 
  

 

If 3p and 1z , one obtains 2

1 1 0

0 1 1
K

 
  

 
. It is easily verified that z

z
q K q  , which 

finally makes it possible to write criterion M in the following form: 

    'ˆ ˆ' '
z z

M q q w q q hq K K q     

                                                 

5 Cf. section 1.3 
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By developing the above expression one finds that: 

2 'ˆ ˆ ˆ' ' ' '
z z

M q w q q w q q w q hq K K q     

which leads to: 

2 2 2 'ˆ
z z

M
w q w q hK K q

q


  


. 

The resolution of 0
M

q





 leads to the following expression for fitted rates: 

 
1

* ' ˆ
z z

q w hK K w q


   

However, the inversion of matrix '

z z
C w hK K   requires some care, since '

z z
hK K is not 

invertible, and adding the term w makes C invertible, but the inversion of C can then be 

delicate. In practice, the Cholesky decomposition of the positive symmetrical matrix C can be 

used to invert it. 

3.3.2. Extension to the two-dimensional case 

The extension of the Whittaker-Henderson method to the dimension 2 (or more) does not pose 

major problems. One thus has estimates  
1 1,

ˆ ˆ
ij i p j q

q q
   

 ; the fidelity criterion can 

immediately be generalised: 

 
2

1 1

ˆ
p q

ij ij ij

i j

F w q q
 

  . 

The extension to dimension 2 of the regularity criterion is a little more delicate; one 

distinguishes initially the vertical regularity via the operator z

v
  (which acts on 

ij
q  with j 

fixed, seen as a series with i indices) which allows the calculation of a vertical regularity 

index: 

 
2

1 1

q p z
z

v v ij

j i

S q


 

  . 

In the same manner, one calculates the horizontal regularity index 
h

S , then one poses: 

v h
M F S S       

which must be minimised. The resolution of the optimisation problem is carried out by 

rearranging the elements in order to get back to the unidimensional case. For that purpose, 

one defines the size vector qp , u such that: 
 1

ˆ
ijq i j

u q
 

 ; that amounts to taking for the first 

q elements of vector u the first row of matrix q̂ , then the elements of the second row, and so 

on. In the same way, one manufactures a weight matrix by copying on the diagonal rows of 

matrix  
ij

w . One thus poses 
   1 1

*

, ijq i j q i j
w w

   
 . One proceeds in the same manner to define 

matrices v

z
K  and h

y
K  (cf. Knorr [1984]). Smoothed values are then obtained by: 
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 
1

* * *
' '

v v h h

z z y y
q w K K K K w u 



   . 

An example 

Here is a simple and hands on case, which illustrates this method. Gross rates form a matrix 

p q  with 4p  and 3q . One chooses 2z  (resp. 1y ) as degree of vertical regularity 

(resp. horizontal), one will have 
z
vK , of dimensions     6 12, ,q p z m   and 

y
hK , of 

dimensions     8 12, ,p q z m  . One-dimensional construction was already carried out 

previously. The breakdown of the vertical matrix yields: 

2

1 0 0 2 0 0 1 0 0 0 0 0

0 0 0 1 0 0 2 0 0 1 0 0

0 1 0 0 2 0 0 1 0 0 0 0

0 0 0 0 1 0 0 2 0 0 1 0

0 0 1 0 0 2 0 0 1 0 0 0

0 0 0 0 0 1 0 0 2 0 0 1

h
K

 
 

 
 

  
 

 
   

 

The breakdown of the horizontal matrix leads to: 

1

1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

h
K

 
 

 
 
 

 
 
 

 
 
 
  

 

The Whitaker-Henderson method in dimension 2 can in particular be applied to sick leave 

data, which are usually estimated as a function of entry age and leave seniority. This method 

allows a joint  smoothing in both directions, more effective than separate smoothing upon 

each variable. It is illustrated below: 
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Gross rates Smoothed rates 

  

3.3.3. Whittaker-Henderson method as Bayesian6 smoothing 

The regularity measure    
2

1

p z
z

i

i

S q q




  can be used to define an a priori distribution for the 

vector  x
q q ; indeed, one is naturally inclined to assume that small values of S are 

associated with “more probable” values of q, which leads to writing for a priori density: 

   exp
q

f q c S   

with c a constant of standardization7 and   a parameter. If moreover one makes the 

assumption that the estimation error ˆ
x x x

e q q   is distributed according to a centered normal 

distribution of variance 2

x
 , and that the various ages (or seniorities) are independent, one 

finds that: 

 
 

2

2
1

1

2
ˆ

ˆ
ˆ exp

p
i i

q q
i i

q q
f q q c



 
  
 
 

  

One then happens to be under the conditions for application of the Bayes theorem to write the 

density of  x
q q  conditionally to the observations  ˆ ˆ

x
q q : 

 
 

2

2
1

1

2
ˆ

ˆ
ˆ exp

p
i i

q q
i i

q q
f q q c S



 
   
 
 

  

Maximising this expression in q is equivalent to minimising 
 

2

2
1

1

2

ˆp
i i

i i

q q
M S




   ; one 

recognises the Whittaker-Henderson criterion; the Whittaker-Henderson smoothing thus has a 

                                                 

6 See in particular Taylor [1992]. 
7 The notation c indicates a constant term which can change depending on the formula considered. 
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probabilistic interpretation within the framework of Bayesian smoothing, described in a more 

general way hereafter. 

3.4. Bayesian smoothing 

It was seen that the Whittaker-Henderson method could be justified by a probabilistic 

reasoning in making an assumption on the a priori distribution of true values and on the form 

of the conditional distribution of errors. This approach can be generalised, leading to the 

definition of Bayesian smoothing – the most famous of which is the Kimeldorf-Jones method. 

3.4.1. General presentation 

One considers vector  x
q q  of true values which one assumes result from an a priori 

distribution  .q
f . Within the framework of the experiment, one carries out observations 

resulting from the conditional distribution knowing q,  ˆ
.

q q
f . In the case of mortality rates 

estimation, this distribution is a product of binomial distributions of parameters8  ,
x x

n q ; in a 

general manner, this distribution is determined by the context of the experiment9. 

Based on these two distributions, Bayes formula is used to determine the a posteriori 

distribution of q: 

 
   

 
ˆ

ˆ

ˆ

ˆ
ˆ

ˆ

qq q

q q

q

f q q f q
f q q

f q
  

Lastly, starting from this a posteriori distribution one can define a revised version of the 

estimator q̂ , for example through the maximum likelihood method by keeping the mode of 

the a posteriori density as adjusted value. 

The difficulty of this approach is to define the characteristics of the a priori distribution. The 

Kimeldorf-Jones method, presented below, provides a relatively general framework for the 

Bayesian approach implementation, well adapted to the context of incidence distributions (or 

retention), in which some useful indications for the definition of the characteristics of the a 

priori distribution are provided. 

3.4.2. Kimeldorf-Jones10 method 

The context is the estimation of incidence rates. The assumption is made that  .q
f  is a 

multidimensional normal law of parameters  ,m  ; hence one has: 

       
1

2 11
2

2
exp '

p

q
f q q m q m


           

 

                                                 

8 Which will be approximated by a multidimensional normal distribution when the number of observations is 

large. 
9 i.e. by the procedure of gross rates estimation. 
10 See Kimeldorf and Jones [1967]. 
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with  1
, ..,

p
q q q  the p incidence rates to be estimated. At this stage of the approach, one 

assumes  ,m  given and known. In this context, and as it was seen in 3.4.1 above, the 

distribution of the experiment is a product of binomial distributions, which can each be 

approximated by a normal law, and one can thus write: 

       
1

2 11
2

2
ˆ

ˆ ˆ ˆexp '
p

q q
f q q V q q V q q


         

 

since the initial gross estimators are without bias; the matrix V is diagonal, with elements 

 
iii

qqn 1 . The a posteriori density is thus of the form: 

         1 11

2
ˆ

ˆ ˆ ˆexp ' '
q q

f q q C q m q m q q V q q  
          

 
, 

C being a constant; after some processing one can put this expression in the form: 

     11

2
ˆ

ˆ 'exp '
q q

f q q C q z W q z 
    

 
 

with    
1

1 1 1 1ˆz V V q m


        and 1 1 1W V     . This shows that this distribution is 

also Gaussian. The natural expression of fitted rates11 can be deduced: 

   
1

1 1 1 1* ˆq V V q m


       . 

This expression means that fitted rates are a weighted average of gross rates and a priori 

rates. This expression can be written in the following way, useful for calculations: 

   
1

1* ˆ ˆ
p

q q I V m q


     

Note: the elements of the diagonal matrix V are  1
i i i

n q q  which are unknown; they can be 

replaced in the above formula by the estimator  1ˆ ˆ
i i i

n q q , that is to say by the a priori 

estimates  1
i i i

n m m . 

Beyond a smoothed version of gross rates, this approach provides a simple framework of 

mortality stochastic model, by providing a (normal) distribution for the model’s exit rates. 

However, further clarification of smoothing parameters  ,m   remains to be done; the values 

of m are the idea that one can have about incidence rates without observations; one can for 

example use a reference like the BCAC tables for sick leave, an INSEE mortality table for 

mortality, etc. The situation is more delicate for the variance-covariance matrix  . 

The idea is to describe a dependency amongst rates, according to differences in age or 

decreasing seniority; this leads to proposing the following form for the coefficients of the 

matrix  : 

i j

ij i j
  


   

                                                 

11 The expectancy of a normal distribution is also its mode. 
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with  2
var

i i
q   and  the correlation coefficient of 2 consecutive terms. Determining 

numerical values for these 1p  elements remains to be done. 

4. Fit validation 

Once the fit is finished, it is appropriate to verify its validity through some traditional 

statistical tests, which will in particular allow to make sure that the revised rates are not too 

far away from the gross rates. However, in certain situations (construction of an experience 

mortality table, for example), the application of rules of prudence can lead to values of 

adjusted rates deliberately different from gross rates (for example higher in the case of a 

contract in the event of death), and the statistical tests will then have to be adapted to this 

situation. Concretely, it will be necessary to give up bilateral tests and rather use unilateral 

tests better adapted to the situation. 

The objective of this section is not to describe in an exhaustive way the tests to be done, but 

rather to provide some hints and illustrations in order to carry out this validation process. 

4.1. Chi-squared test 

Once fitting (or smoothing) has been carried out, the Chi-squared test allows the verification 

of the global quality of revised rates, by making sure that they are not “too far” from 

estimated rates. The statistics is calculated: 

 
 

2

1 1

ˆp
i i

i

i i i

q q
Z n

q q





  

In the case of a parametric fit through maximum of likelihood with r parameters, then the 

(asymptotic) distribution of Z is a                  ; in the case of a non-parametric smoothing the 

number of degrees of freedom is less easy to determine. 

4.2. Standardised mortality ratio (SMR) 

SMR is defined as the ratio of observed death to the number of deaths predicted in a reference 

population, with the objective to decide whether the mortality of the observed group is 

identical to that of the reference group; one has as follows: 

1

1

p

i

i

p

i i

i

D
D

SMR
E

n q





 



. 

In this expression, E is a constant and D a binomial random variable which one can 

approximate through a Poisson distribution, which leads to the following confidence interval 

for the SMR variable, in the case where the reference mortality does not depend on the studied 

group: 
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 

3 3

1 1
2 21 1 1

1 1
9 9 13 3 1

u u
D D

SMR
E D E DD D

 
 

   
   

     
         
   

 

In the case of a reference mortality depending on the data (thus following a fitting process), 

similarly to Chi-squared, the above formula must be adapted according to the context. 

4.3. Changes of sign test 

The sign of the difference 
xxx

qqd ˆ  has, under the conditions for application of the normal 

approximation, a ½ probability of being positive. If ages are independent, the probability that 

x
d  and 

1x
d do not have the same sign is thus also equal to ½. If the considered age segment 

contains p values, then it can be deduced that the number of sign changes in the series 
x

d  

follows a binomial distribution of parameters 
1

1
2

,p
 

 
 

. In particular, the average number of 

sign changes is 
1

2

p 
. A test can easily be deduced, either with finite distance12 or through 

Gaussian approximation, based on the following statistics: 

 2 1

1

n p
S

p

 



 

where n is the observed number of sign changes. 
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