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1. Formulation of the Problem and  

Introductory Remarks. 
 

The contracts we are going to study have two types 

of uncertainty: 

• Uncertainty in the framework of given financial 

market (market risk), 

• Mortality of insured. 

These types of uncertainty are weakly correlated, and 

in our setting we shall model them exploiting two 

different probability spaces: 

( )PF ,,Ω  and ( )PF ~,~,~Ω . 
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Combining both models, we get the product space  

( )PPFF ~,~,~ ××Ω×Ω . 

Financial Market is represented by a pair of assets, 

non-risky B  and risky S , that are identified by their 

prices ( )tB  and ( )tS  as stochastic processes on 

( )PF ,,Ω . 

Assuming for simplicity 1=tB , we describe a 

filtration  

{ }( ) 00 ...,, ≥== ttt SSF σF  

as the available information about prices at time t . 

To give a full description of the market, we should 

introduce a variety of admissible operations with the 

basic assets, B  and S .  

Define a 2-dimensional stochastic process 

( )ttt γβπ ,=  (usually predictable) adapted to F , as a 

portfolio, or a strategy with the value (capital) 

ttttt SBX γβ
π

+= . 
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If  π
tX  follows the equation 

ttttt dSdBdX γβ
π

+= , 

then we call π  self-financing. 

Only portfolios with non-negative capital are 

admissible in the framework of the market. 

Any financial contract is identified with its potential 

liability (payoff) H , exercised at the end of a contract 

period [ ]T,0 . In fact, H  is a TF -measurable random 

variable. Any such nonnegative random variable H  

is called a contingent claim. In financial economics, a 

contingent claim is called a derivative security of the 

European type. 

Remark: A larger class of derivative securities, the 

American type, is not considered here.  

The main problem is to find the current price of a 

given contingent claim during a contract period [ ]T,0  

in order to manage the risk in the framework of the 

contract. 
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An appropriate solution is found by hedging the 

contingent claims: to construct an admissible strategy 

*π  so that  
*π

TX  is close enough to H  

in some probabilistic sense.  

Hedging gives us a possibility to determine the 

current price tC  at time Tt ≤  as the current capital 
*π

tt X=C  of the hedging portfolio *π .  

In particular, 
*

0
πX=C  

represents the initial price of the claim. 
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                   Types of hedging 

 
1. Perfect hedging: 

{ } 1*
=≥ HXP T

π . 

2. Mean-variance hedging: 

( )2* HXE T −
π  is minimal. 

3. Efficient hedging: 

( ){ }+−
*π

TXHlE  is minimal, 

where l  is a loss function.  

In particular, for quantile hedging, we have  

( ) ( ) ( )xIxl ∞= ,0   and 

{ }HXP T ≥
*π  is maximal.  
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            How to calculate the price C? 

To answer this question, we use the martingale 

characterization of arbitrage and completeness of a 

financial market (in terms of existence and 

uniqueness of risk-neutral or martingale measures) 

given by the first and the second fundamental 

theorems in financial mathematics.  

So, we reduce the method of risk-neutral valuation of 

the contingent claim H  to finding the price tC  as 

)|(* tt FHE=C , 

where *E  is an expectation w.r. to a single 

martingale measure *P  (complete market) or 

)|(*sup
*

t
P

t FHE=C  

(incomplete market). 
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   Life insurance contracts based on risky assets 

 

The source of randomness in financial contracts is the 

evolution of stock prices. The source of randomness 

in life insurance is the mortality of clients. Denote 

( )xT  a random variable representing the future 

lifetime of a client of age x . ( )xT  is given on 

( )PF ~,~,~Ω . 

 An insurance company can issue a mixed contract for 

the period [ ]T,0 , where the payoff function is a 

function of stock prices TSS ...,,0  and ( )xT . 

This type of contract is called equity-linked life 

insurance contract. 

We will consider only pure endowment contracts 

with the following structure of payoffs: 

( ){ }TxTIHxTH >⋅=))(( . 
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Remarks: (1) Traditional life insurance deals with 

the deterministic payoff constKH == . The price of 

the contract is equal to xT pK ⋅ , where 

( ){ }TxTPpxT >= ~  is a survival probability of the 

insured of age x . 

(2) Pure endowment with a fixed guarantee: 

{ } { }TxTT IKSxTH >⋅= )(,max))(( , 

where S  is a risky asset, K  is a guarantee. 

(3) Pure endowment with a flexible guarantee: 

{ } { }TxTTT ISSxTH >⋅= )(
21 ,max))(( , 

where 1
TS  is the risky asset, 2

TS  is the flexible (may be 

also a risky asset) guarantee. 

Assume that S  in (2) follows geometric Brownian 

Motion (Black-Scholes model): 

,,
2

exp
2

0 TtWtSS tt ≤
⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ −= σσµ    

where W  is a Wiener process, µ  is a rate of return on 

stock S , and σ  is the volatility.  
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                             A Brief History  

 

We note the papers by Brennan and Schwartz 

(1976,1979), Boyle and Schwartz  (1977), which 

recognized a close connection of equity-linked life 

insurance with the option pricing theory (Black, 

Scholes, and Merton (1973)). They found that the 

payoff from equity-linked life insurance contract at 

expiration is identical to the payoff from a European 

call option plus some guaranteed amount. Hence, the 

appearance of Black-Scholes formula in such pricing 

is quite natural in the construction of the initial price 

and the value of the portfolio: 

( ) ( )[ ]
( ) ( )[ ],0

0

−+

−+

−Φ−Φ+=
−Φ+Φ=

dKdSpKp
dKdSpU

xTxT

xTxT  

,2
ln

2
0

T

T
K
S

d
σ

σ
±

=±  ( ) ∫=Φ
∞−

−x
y

dyex 2

2

2
1
π

. 
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Further developments:  Delbaen (1986), Bacinello 

and Ortu (1993), Aase and Persson (1994). 

The important step was done by Moeller (1998, 2001, 

2002) who applied the mean-variance hedging 

technique. He obtained the following result: 

( ) ( )[ ]−+ −Φ+Φ⋅= dKdSpllTU xTxx 0),(  

and  ( ) ( )txtxtTtxt StFpNl ,* ′−= +−−γ  

give the initial price and optimal (in the mean-

variance sense) hedging strategy for the contract of 

pure endowment with a guarantee K  for a group of 

clients of age x , where xl  is the size of the group of 

the insured with the remaining life times 

( ) ( )xTxT
xl,...,1 , 

( ){ } ( )tTtxTPpIN itxtT

l

i
txTt

x

i
−>+== +−

=
≤∑ )(~,

1
.  

( )xtF ,  satisfies the Black-Scholes fundamental 

equation ( )0=r  
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( ) ( ) 0,
2
1, 22

=′′+′ xtFxxtF xxt σ  

with the boundary condition 

( ) { }.,max, KxxTF =   

Remark: Our main focus is on calculating the 

premium xT U  for a single contract. Since for a group 

of size xl  we get 

xTxx UllTU ⋅=),( . 

Also, for every fixed Tt ≤  we can repeat the logical 

steps for the interval ],[ Tt  and find the corresponding 

premiums as a product 

txtTtx UNl +−⋅− )( . 
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2.Conditioned Contingent Claims in a          

semimartingale setting. 

 

Assume that the risky asset S  is a semimartingale 

Tttt FSS ≤= ),(  on ( )PF ,,, FΩ . 

A self-financing admissible strategy ( )γβπ ,=  

has a capital 0
0

0 ≥+= ∫
t

uut dSXX γ
ππ .  

),( PSM  is a set of martingale measures of this 

market. Firstly, we assume that }{),( *PPSM = . 

Consider a nonnegative contingent claim H  which is  

tF -measurable random variable with ∞<HE* . 

According to the risk-neutral valuation methodology, 

,)(

,0)()|()(

*
0

0
0

*

HEH

dSHFHEH
t

u
H
utt

=

≥+== ∫

C

CC γ
 

( )HHH
γβπ ,=   is a replicating portfolio (perfect 

hedge). 
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Consider a nonnegative random variable τ  defined 

on another probability space ( )PF ~,~,~Ω  and determine 

a conditioned contingent claim 

{ }TIHH >⋅= ττ )(  

on the product space ( )PPFF ~,~,~ ××Ω×Ω . 

 

To price )(τH  we consider the value 

{ }

)()()(

~))((~)(

00

**

HTpH

IEHEHEE T

CC

C

<⋅=

⋅=×= >τττ  

as a bound for the initial price of )(τH  and define the 

set of successful hedging 

})(:{),( 00 HXXXA T ≥=
πππ

ωπ . 

If  H
ππ =   then  1))),((( 0 =πHAP C . We should 

consider a restricted set of strategies with the initial 

capital )()(000 TpHXX ⋅=≤ Cπ . Thus, we cannot 

provide the above equality. 



 14

To price a contingent claim )(τH , we should 

consider the following extreme problem: 

find an admissible strategy *
π  such that 

)),((max)))((( 0

*

πτ
π

π

π XAPHXP T =≥C  

under the restriction )()( 000 HXX CC <=≤ τ
π . 

This is exactly the problem of quantile hedging 

(Follmer and Leukert (1999, 2000)). According to 

this theory, the optimal strategy ( )*** ,γβπ =   is a 

perfect hedge for the claim ** AA
IHH ⋅= , where the 

set TFA ∈
*  has a maximal P -probability with 

0
* XHIE A ≤ . This set is called a maximal successful 

hedging set . 

Remarks:  In case of an incomplete market, the 

bound for the initial capital is given by 

)()()(sup)( *
0

),(

*
0 TpHTpHE

PSMP
⋅=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′=
∈′

CC τ . 
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3. Pricing of contracts with a fixed guarantee. 

 

Consider Black-Scholes model for the risky asset 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= tt WtSS σσµ

2
exp

2

0  

or  )( ttt dWdtSdS σµ +=  

with the martingale measure 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−−== TW

dP
dPZP TT

2*
*

2
1exp:

σ
µ

σ
µ  

and  tWW tt σ
µ

+=
*  , the new Wiener process with 

respect to *P . 

A pure endowment contract with a fixed guarantee is 

identified with the following contingent claim: 

{ } { }

{ } { }.)(

),max())((

)()(

)()(

TxTTTxT

TxTTTxT

IKSIK

IKSIHxTH

>
+

>

>>

⋅−+⋅=

=⋅=⋅=

The initial price xT U  for this contract can be 

calculated as  
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)).()((
)())((

0

*
0

−+

+

Φ−Φ⋅+⋅=
=−⋅+⋅==

dKdSpKp
KSEpKpxTU

xTxT

TxTxTxT C  

We can consider the quantity  
+

−⋅==⋅− )())(( *
0 KSEpxTKpU TxTxTxT C , 

as the bound of the initial capital available for a call 

option. Applying the methodology of quantile 

hedging, we get 

*)()( **

ATTxT IKSEKSEp ⋅−=−⋅
++ , 

or the following convenient form for further actuarial 

analysis of the contract: 

.
)(

)(
*

*
*

+

+

−

⋅−
=

KSE

IKSE
p

T

AT
xT  

The maximal successful hedging set *A  has a special 

structure: 

{ } .)()( 1
1* 2

⎭
⎬
⎫

⎩
⎨
⎧

−>=−>=
++− KSaSKSaZA TTTT

σµ  
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There are two cases when the equation  

+
−= )(1

2

Kxax σµ  

has one or two solutions. Case 2
σµ ≤  is reduced to 

{ } { }bWcSA TT ≤=≤=
**  , and 

.)()(

)(

00

*
*

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −Φ−⎟

⎠
⎞

⎜
⎝
⎛ +−

Φ−Φ−Φ=

−

−+

+

T
bK

T
TbSdKdS

IKSE
AT

σ

Finally, 

.
)()(

1
0

0

−+ Φ−Φ

⎟
⎠
⎞

⎜
⎝
⎛ −Φ−⎟

⎠
⎞

⎜
⎝
⎛ +−

Φ
−=

dKdS
T
bK

T
TbS

pxT

σ

 

A constant b  (or c) can be found from given 

probability of successful hedging: an insurance 

company can be agreed with a certain risk level 

)1,0(∈ε  such that  )(1 *AP=−ε . 

Due to the structure of *A , we can find 
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( )
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −
Φ=

T

Tb
AP σ

µ
*  

and therefore  TTb
σ
µε +−Φ=

− )1(1 . 

             Illustrative Numerical Example 

 Let’s fix a risk level 01.0=ε  and specify other 

parameters of the model and the contract: 

years.53, ,1;110;100;3.0;08.0 0 ===== TKSσµ
 

We can find that 

.955106.0;94826.0;930095.0 531 === xxx ppp  

Using Life Tables (Bowers et al, 1997), we can 

reconstruct the appropriate age of the insured: 

53;62;78 ≥≥≥ xxx years. 

Black-Scholes prices : 8.141; 16.876; 22.849.   

Quantile prices εC : for 01.0=ε  are 7.571; 16.003; 

22.849  (5-7% lower); for 03.0=ε  are 6.653; 14.514; 

20.033 (12-18% lower). 
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Remark.  Consider  cumulative claims 
+

+ − )( KSl TTx , where Txl +  is the number of insureds 

at time T from the group of size xl . 

The terminal capital of a quantile hedge εππ =  of the 

risk level ε  satisfies to  

.1))(( ε
π

−=−≥
+KSXP TT  

The maximal set of successful hedging is invariant 

w.r.to multiplication by a positive constant δ . Hence,  

εππ =  represents a quantile hedge for the 

claim +
− )( KSTδ  with the initial price εδC . 

Take  
xl

nαδ = , where αn  is defined from the equality 

αα −=≥ + 1)( TxlnP . 

Parameter )1,0(∈α  characterizes the level of 

mortality risk, and this probability is calculated with 

the help of Binomial Distribution with parameter  

xT p . Independence Txl +  and the market implies 
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).(1)1)(1(

)())(())((

αεαε

α
αππ

+−≥−−≥

≥−≥≥−≥ +
++

+ TxT
x

TTTxTx lnPKS
l
nXPKSlXlP

 

So, with the help of strategy  εππ =   and the initial 

price ε
α

αε C
l
nC

x

=,  one can hedge the given 

cumulative claim with the probability  )(1 αε +− . 

For risk levels 03.0=ε  , 02.0=α  , 5,3,1=T , and 

100=xl  we have: 94,93,89=αn  and 

831.18;498.13;921.5, =αεC . 

Therefore, under the risk level at 5%, the initial 

contract price can be reduced by 18-28%. 

Case 2
σµ >  leads to two constants 21 cc <  (or 

21 bb < ). The structure of a successful set will be as 

follows 

{ } { }2
*

1
** bWbWA TT >≤= U  

and we can do the same as in the previous case. 
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4. Contracts with flexible guarantees. 

 

The contract under consideration here has the 

structure 

{ } { },,max))(( )(
21

TxTTT ISSxTH >⋅=  

where ,2,1, =iS i
t  follows the equation 

).( tii
i
t

i
t dWdtSdS σµ +=  

The first asset 1S  is supposed to be more risky than 

the second one 2S . Hence, we assume that 21 σσ >  

and 2S  plays the role of the flexible guarantee. 

The market modelled in this case can be identified 

with a Black-Scholes model for the asset 1S  because 

2S  can be expressed as a power function of 1S . 

Hence, we can use a standard martingale measure *P  

with the density 
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.
2
1exp

2

1

1

1

1
*

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−== TW

dP
dPZ TT σ

µ
σ
µ  

We can reduce the problem to the equality  

.
)(

)(
21*

21*
*

+

+

−

⋅−
=

TT

ATT
xT

SSE

ISSE
p  

Assume that .and0 2121 σσσσ <<−<  

The structure of the successful hedging set *A  is 

{ } 2

1

2

211 ,)1(1)(
T

T
TT

TT

TTT
S
SYYa

SZ
SSaZ =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−>=−>
++− . 

We represent as ,2 constYSZ TTT ⋅=
α  and find 

the characteristic equation defining *A  as 

+−
−⋅= )1(xaconstx α , 

where 

( )
( ) .1

2
2

212

2212 ≅
−−

−+
=−

σσσσ
σσσσα  

Therefore, we can replace the equation above by  
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+
−⋅= )1(xaconstx  

and find its unique solution .1>c  

So, we arrive to the equality 

{ }

( )( ) ( )( )
( )( ) ( )( ) ,

,~,~,~,

,~,~,~,1

)(

)(

2
0

1
0

2
0

2
0

1
0

1
0

2
0

1
0

2
0

2
0

1
0

1
0

21*

21*

TSSbSTSSbS

TScSbSTScSbS

SSE

ISSE
p

TT

cYTT
xT

T

−+

−+

+
≤

+

Φ−Φ

Φ−Φ
−=

−

⋅−
=

 

where 

( )
( )

( )
.2

ln
,,

,exp~

21

2
212

1

21

1

12212
0

2*2
0

T

T
S
S

TSSb

TSSES T

σσ

σσ

σ
µσµσ

−

−±
=

⎭
⎬
⎫

⎩
⎨
⎧ −

==

±

 

Both, the numerator and the denominator are variants 

of Margrabe’s formula. 

We can find c  from the given level of risk ε : 

( )( ) ( )( ).ln1 *

,

**
2* εσµε

ε
ε acacYPAP Ta

Φ=≤=⎟
⎠
⎞⎜

⎝
⎛=− . 
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5. Numerical Example. 

 

Consider the financial indices the Russell 2000 

(RUT-I) and the Dow Jones Industrial Average 

(DJIA) as risky assets 1S  and 2S .  

We estimate ( )11,σµ   and ( )22 ,σµ  for these indices 

empirically, using daily observations of prices from 

August 1, 1997, to July 31, 2003: 

.2089.0,0417.0
,2232.0,0481.0

22

11

==
==

σµ
σµ

 

The initial prices of these indices are 414.21 and 

8194.04. Therefore, we use 1

21.414
04.8194

tS⋅  as the value 

of the first asset to make initial values of both assets 

the same 04.81940 =S . 

Utilizing the formulae for c  and xT p  with T=1, 3, 5, 

10 and 05.0,025.0,01.0=ε , we get the 
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corresponding survival probabilities for the contract 

with flexible guarantee (Table 1). 

We also do the same for the contract with fixed 

guarantee 0)1.1( SK ⋅=  (Table 2). 

Using Life Tables (Bowers et al, 1997), we define the 

corresponding age of the insured for these contracts 

(Tables 3 and 4). 

Whenever the risk that the company will fail to hedge 

successfully increases, the recommended ages rise as 

well. This means that the insurance company should 

compensate by choosing “safer” older clients. We 

also observed that with longer contract maturities, the 

company can widen its audience to younger clients. 

In both cases (fixed and flexible guarantees) quantile 

prices (for example, 025.0=ε )  are reduced by 7-8% 

and 9-12%. If the combined ( =α 025.0=ε ) risk is 

5%, the corresponding price reduction will be 12-

18%. 
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Survival Probabilities 

 

Table 1 

 01.0=ε  025.0=ε 05.0=ε  

T=1 0.9447 0.8774 0.7811 

T=3 0.9511 0.8910 0.8041 

T=5 0.9549 0.8989 0.8174 

T=10 0.9605 0.9108 0.8378 

 

Table 2 

 01.0=ε  025.0=ε 05.0=ε  

T=1 0.9733 0.9306 0.8585 

T=3 0.9700 0.9247 0.8510 

T=5 0.9706 0.9266 0.8553 

T=10 0.9732 0.9332 0.8679 
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Age of the Insured 

 

Table 3 

 01.0=ε  025.0=ε 05.0=ε  

T=1 78 87 94 

T=3 61 71 79 

T=5 53 63 71 

T=10 41 50 58 

 

Table 4 

 01.0=ε  025.0=ε 05.0=ε  

T=1 68 80 88 

T=3 55 67 76 

T=5 48 59 68 

T=10 36 47 56 
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6. Further Developments. 

 

We present here how our approach to the pricing of 

equity-linked life insurance contracts can be extended 

to other types of efficient hedging and other models 

of financial market. 

 

6.1. Efficient hedging with power loss function. 

.0,0,)( >≥= pxxxl p  

 

Model (with zero interest rate): 

 ( ) .,2,1, TtidWdtSdS tii
i
t

i
t ≤=+= σµ  

The optimal strategy *
π  for a given c.c. H  is defined 

from ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

++
π

π

π
TT XHElXHEl inf

*

, 
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Where the inf is taken over all self-financing 

strategies with nonnegative values satisfying the 

budget restriction HEXX *
00 <≤

π . 

For the mixed contract with ( )( ) ( ){ }TxTIHxTH >⋅=  

the bound { }21**
0 ,max TTxTxT SSEpHEpX == . 

 

The efficient hedge *
π  for this problem exists and 

coincides with a perfect hedge for a modified c.c. pH  

with the structure 
( )

HZaHH p
Tpp ∧−=

−11   for          1>p , 

{ }p
pT HaZp IHH −−

>
⋅= 11                for       10 << p , 

{ }pT aZp IHH
>

−⋅= 1              for      1=p , 

where Z  is the density of the unique martingale 

measure *P , constant pa  is determined from 

0

* XHE p = . 
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We reduce the problem to efficient hedging of the 

option ( )+−
21
TT SS  and find the following key relation 

( )
( ) 0,

21*

21*

>
−

−
= +

+

p
SSE

SSE
p

TT

pTT
xT . 

We give the analysis of this equality. For example, in 

the case where 10 << p  and p−≤12
1

1

σ

µ , such 

considerations lead us to the formula: 

( )( ) ( )( )
( )( ) ( )( )TSSbSTSSbS

TSCSbSTSCSbSpxT
,~,~,~,

,~,~,~,1 2
0

1
0

2
0

2
0

1
0

1
0

2
0

1
0

2
0

2
0

1
0

1
0

−+

−+

Φ−Φ

Φ−Φ
−=  

where constant C  is the unique solution of the 

characteristic equation 

( )( ) 0,1
1

≥−⋅=
−+−

yyconsty
ppα

 

with      ( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−
+=− pp 12

1

1

21

2
2
1

1

σ

µ
σσ

σ

σ

µα . 
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                  6.2. Jump-Diffusion Model. 

( )
.1,0,,2,1

,
<>≤=

Π−+= −

ii

titii
i
t

i
t

Tti
ddWdtSdS

νσ
νσµ  

 

Here, W  is a Wiener process and Π  is a Poisson 

process with intensity 0>λ . 

In the framework of this model, we can find the 

unique martingale measure *P  with the density 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
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⎟
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⎠
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λ
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*
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2
exp TTT TTWZ  
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2112

1221*

2112

2112* ,
νσνσ
σµσµλ

νσνσ
νµνµα

−
−

=
−
−

= . 

We can consider the same pricing problems for the 

given model. For example, quantile methodology 

leads to the key relation 
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( )
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21*
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ATT
xT

SSE

ISSE
p  

where *A  is the maximal set of successful hedging 

for ( )+−
21
TT SS . 

In case 12 1
*

≤− σα , we have the following 

expression for xT p  in terms of Margrabe’s formula 

averaged by Poisson distribution: 
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and C  is the unique solution of the equation 

( ) 0,11

*2

≥−⋅= +
−

yyconsty
σ
α

. 
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6.3. Quantile hedging in two-factors model 

generated by correlated Wiener processes. 

( )
( ) .,cov,0,,2,1

,
21

21 tWWTti

dWdtSdS

tt

i
tii

i
t

i
t

ρσσ

σµ

=>>≤=

+=
 

 

This market is complete and the unique martingale 

measure *P  has a density 
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Both assets 1S  and 2S  are martingales w.r. to *P . 

Exploiting this measure, we reproduce the same 

quantile technique for pricing 

( )( ) { } ( ){ }TxTTT ISSxTH >⋅=
21 ,max  

as in Section 4.  
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Firstly, we find the initial price of this contract as 

( )+−+=
21*2

0 TTxTxTxT SSEpSpU  

reducing the problem to quantile hedging of 

( )+−
21
TT SS . Secondly, the quantile hedge *

π  is a 

perfect hedge for the modified c.c. ( ) *
21

ATT ISS
+

−  

where *A  is the maximal set of successful hedging 

for ( )+−
21
TT SS . 

These considerations again lead to the key relation 
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⋅−
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The set *A  can be represented as  
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⎬
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σ
ϕα −−== . 
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We again introduce the characteristic equation   

( )+−
−⋅= 1yconsty α  

and find that for 1≤−α  this equation has the unique 

solution 1≥C , and for 1>−α  there are two solutions 

211 CC <≤ . 

We consider only the first case and find that 

{ }CYA T ≤=
* . 

Using log-normality of TY  and Margrabe’s formula 

for ( )+−
21*
TT SSE , we obtain 
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Applying this to the pricing of premium xT U , we 

arrive to the following equation 

( )( ) ( )( )
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Hedging strategy *
π  with the capital  
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1

*

ttt dSdSdX γγ
π

+=  

can be calculated in a similar way. Using the 

independence of increments of Wiener processes, we 

calculate 
*

π
tX  as the conditional expected value  
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and get 
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                  7. Concluding Remarks. 

1. Some similar calculations can be done for Black-

Scholes model with stochastic volatility as a 

representative model of incomplete market. 

2. Further developments of this issue may include the 

effect of transaction costs. 

3. We considered conditioned contingent claims 

under assumption that “market” and “conditioned 

factor” τ  are independent. This is not necessary. One 

can study conditioned contingent claims thinking 

about τ  as a source of insider information: 
τ
tt FF a . 

As a measure of optimality of the strategy, the 

criteria of expected utility can be chosen. 

4. There exists a close connection with defaultable  

derivatives and credit risks. 
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⊆

Equity-linked life insurance ))(( xTH  

Pure endowment insurance  
{ }TxTIHxTH >⋅= )())((  

Pure endowment with flexible 
guarantee 

{ } { }TxTTT ISSxTH >⋅= )(
21 ,max))((

 

Pure endowment with 
fixed guarantee 

{ } { }TxTT IKSxTH >⋅= )(,max))((

• Black-Scholes model 
• Jump-diffusion model

Prices and hedging 
strategies are given in 

terms of Black-Scholes 
formula and its Poisson 

averaging 

Illustrative one-factor model 
• ( ) 2,1, =+= idWdtSdS tii

i
t

i
t σµ  

Two-factor models 

Prices and hedging strategies 
are given in terms of 
Margrabe’s formula 

Jump-diffusion model 
( ) 2,1, =Π−+= − iddWdtSdS titii

i
t

i
t νσµ

Black-Scholes model 
( ) 2,1, =+= idWdtSdS i

tii
i
t

i
t σµ  

Prices and hedging strategies 
are given in terms of 

Margrabe’s formula and its 
Poisson averaging 


